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Abstract

The cumulative degree distributions of transport networks, such as air transportation net-
works and respiratory neuronal networks, follow power laws. The significance of power
laws with respect to other network performance measures, such as throughput and syn-
chronization, remains an open question. Evolving methods for the analysis and design of
air transportation networks must be able to address network performance in the face of
increasing demands and the need to contain and control local network disturbances, such as
congestion. Toward this end, we investigate functional relationships that govern the perfor-
mance of transport networks; for example, the links between the first nontrivial eigenvalue,
A2, of a network’s Laplacian matrix—a quantitative measure of network synchronizability—
and other global network parameters. In particular, among networks with a fixed degree
distribution and fixed network assortativity (a measure of a network’s preference to attach
nodes based on a similarity or difference), those with small Ay are shown to be poor syn-
chronizers, to have much longer shortest paths and to have greater clustering in comparison
to those with large A2. A simulation of a respiratory network adds data to our investigation.
This study is a beginning step in developing metrics and design variables for the analysis
and active design of air transport networks.

1 Introduction

The U.S. and world-wide air transport networks are scale-free!, i.e., their degree distributions
follow power laws [9,10]. A large body of recent work has been published on scale-free
networks including the popular books Linked by Barabéasi [4] and Siz Degrees by Watts [21].
A number of excellent review articles, including Newman [17], Strogatz [19], Albert and
Barabasi [1] and Dorogovtsev and Mendes [6], contain hundreds of references.

Arguably, many scale-free networks occurring in natural and technological realms have
never been actively designed in the traditional sense: identify design variables, objectives,
and constraints and follow a prescriptive algorithm to obtain a design that satisfies con-
straints and is “optimal” with respect to the given objectives. Rather, these networks have
evolved in response to demands, in accordance with some natural or technological rules.
Thus many of the investigations have been of an analytical nature, i.e., given a particular
natural or technological network, its characteristics are studied. Our ultimate interest is
to take a step from analysis to active design and our motivation comes from air transport
systems. We emphasize that complex networks will likely never be completely amenable to
traditional design methods, given the intrinsic lack of predictive modeling akin to that of
physical artifacts (e.g., airplanes, automobiles). However, we conjecture that some measure
of active design is still possible with the identification of appropriate design variables and
metrics. Specifically, we are looking for an appropriate functional relation between global
metrics (e.g., throughput, delays, capacity, synchronizability) and locally controllable struc-
ture (e.g., connectivity, degree).

Air transport networks are our ultimate domain of interest. Are scale-free networks
desirable for air transport? Given a fixed degree distribution, how should the network links
be configured to achieve optimal performance for relevant metrics? Can salient features of
scale-free air transport networks critical to network performance be identified?

With the advent of deregulation of the U.S. air transport system in 1978, airlines began
to organize their operations with a hub-and-spoke approach. Two natural outcomes have
been an increase in flight frequency and an increase in the variance of flight times. Recently,

1We use the term “scale-free” here to denote networks whose degree distributions follow a power law.
Due to a wide range of properties possessed by networks of similar degree distributions, there is an ongoing
discussion of the meaning of “scale-free” [13].



competitors to the hub-and-spoke model have garnered attention with the use of point-
to-point flight schedules. With the delays experienced by travelers at hub airports these
direct flights are an attractive alternative. How will these point-to-point airlines alter the
air transport network structure? Can we provide any guidance to local air routing decisions
with global air transport network performance measures in mind? To begin to address these
questions we examine the effects of a network metric for synchronization on transport route
structure by holding the degree distribution and a scale-free/scale-rich metric constant.
We also report on a simulation of a respiratory neuronal network used as an additional
testbed for investigating the synchrony metrics. It is a first step in the investigation aimed
at deriving the functional dependences among various local network properties and the
aggregated metrics of interest to participants in the transportation system in an effort to
eventually arrive at active transport network design and optimization algorithms.

2 Background

In this section we briefly review some of the network attributes salient to our investigation
into the network functional relationships. Early network growth models were based on
preferential attachment. A variety of authors have developed extensions and improvements
to the early models. All of these mechanisms build networks sequentially, one node at a
time. Barabasi’s [4] original approach selected the end nodes for the edges associated with
the new node based solely on the current network’s degree distribution. Subsequent efforts
have altered the end node selection method to control other network features. For example,
Wang et al. [20] develop a growth model in which assortativity is tunable while Schank and
Wagner [18] and Holme and Kim [11] grow networks with tunable clustering coefficients.

The network attribute under study here is synchronicity. One notion of synchronicity has
to do with the network’s tendency to synchronize over time, given a specific static structure
of the network. In particular, we are not yet considering explicit traffic flows through the air
transport network. Instead, we are investigating how the node (e.g., airport) connectivity
may influence the traffic flow.

Of importance here is the tunability of a given network with respect to synchronicity.
We realize tunability as network optimization. Before proceeding further we provide a
definition of network synchronization for a discrete complex system. Given a connected
network, denote the state of a node ¢ at time ¢t by z;(t). How do the states of the nodes
change over time? Clearly if nodes do not rely on any information generated by adjacent
nodes then there is no opportunity of synchronization. Atay et al. [2, 3] assume that all
nodes are identical and conform to the following generic discrete time equation to determine
their next state:

w1 = fa®) tn | S f) - )| 1)

Jl(3,5)€ Edges

where &, known as the coupling constant, is a scalar describing the extent to which neighbors
effect the state of a node; f(-) is any differentiable function mapping some finite interval
to itself. The function f(-) describes the behavior of a node in the absence of any outside
influence. We say that a network synchronizes for a given initial condition if for all 7, j

li i(t) —x;(t)| = 0. 2
L |lzi(t) —z;(t)]| =0 (2)
Note that if k = 0, then the equation becomes z;(t + 1) = f(z;(t)).

One attribute that correlates with the network’s capacity to synchronize is the first
nontrivial eigenvalue, A2, of the Laplacian matrix associated with the network structure



(more about A2 in the next section). Here A2 acts as a measure of the range of k over which
the network will synchronize.

Clearly, air transport networks will not meet some of the assumptions. The nodes
(airports) are not all identical and we are more interested in the transient (say, 24 hour
period) behavior than in what happens as ¢ — oo. Nonetheless, in the next section we will
see that A2 will provide useful information with regard to network structure and synchrony.

For some complex systems synchronization is an essential feature. For example, in
mammals a small group of neurons (roughly 200) is responsible for generating a regular
rhythmic output to motor cells that initiate a breath. (We explore this example further in
Section IV.) Without synchronization of the neuronal output, breathing would be ragged or
not occur at all. However, in the defined sense, synchronization is an undesirable attribute
for air transport networks. Think of the airports as neurons in our mammalian respiratory
example. Inhaling means all planes land at all airports simultaneously. Exhaling means
they depart together. The result is congestion. Thus, for the given definition, one would
like an air transport network design to minimize synchronization.

Another network metric, developed in [13], serves to classify the ways in which networks
with a given degree distribution may be constructed. The metric is s(G), where G stands
for “graph” (networks and graphs are interchangeable). To determine s(G), compute the
product of the degrees of the end nodes for each edge or link, sum them up for all edges,
and divide by S;4z, Where $p,4, is the maximum value of the sum taken over all possible
connected graphs for a fixed degree distribution. That is,

s@=( Y dixd)/smar (3)
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where d; is the degree of node i. The value of s;,4, provides a way to scale the sum of
the product of the degrees for each edge. In [13], for a fixed degree distribution, graph
realizations with large values of s(G) are termed scale-free and graph realizations with small
values of s(G) are termed scale-rich. Consequently, scale-free graphs or networks are those
in which high degree nodes are more likely to be adjacent to other high degree nodes while
scale-rich graphs are those for which high degree nodes are more likely to be adjacent to
low degree nodes. As shown in [13], s(G) and assortativity are equivalent but are scaled in
different ways. Typically the scaling for the assortativity measure leads to a tighter range
of values for a given degree distribution. For further information about s(G) and how it
is used to distinguish between networks for the Internet at the router level the interested
reader is referred to [13] and [14].

Internet | Air Transport
product packets planes (loaded)
constraint | bandwidth | airport capacity
competitors ISPs airlines
links hardwired | FAA/Airlines
distributors routers airports

Table 1. Analogy between Internet router and air transport networks.

The problems faced by designers of air transport networks share some aspects with the
design of an Internet router network. Many authors have contributed to investigations of
how a router network is constructed. Two references in this field, [13] and [14], contain
ideas central to our consideration of the design of air transport networks. At one level of
resolution, Table 1 points out the analogies between these two network design problems.
With regard to bandwidth, the Internet router designer must weigh the trade-offs between
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Figure 1. Geometric graph with Ay = 0.238 and A\ = 0.925

many low bandwidth connections and fewer high bandwidth connections. These trade-offs
are akin to choosing between a few hub airports in a hub-and-spoke system and choosing
lower frequency airports that might arise in a direct route system. Of course, there are many
differences as well. The variation in the size of the packets for the Internet is not nearly
as great as the number of passengers on planes of different sizes. In addition, although the
FAAZ? clearly defines the routes allowed between airports, the links are as not hard-wired as
they are in the Internet model. Still there is much to be learned from the research efforts
on the design of effective Internet router networks.

3 Network Experiments with )\

In this section the interplay between Aa, a gross measure of network synchrony, and s(G), a
network measure similar to assortativity is examined. Networks of two types—preferential
attachment and geometric—are the testbeds. Each network has 100 nodes and is a simple
undirected network (no self-loops, no multiple edges). An adjacency matrix, A, is con-
structed. G(V, E) denotes a graph (network) with vertex (node) set V' and edge (link) set
E. For each network type the degree distribution and s(G) values are fixed. Finally, a tabu
search heuristic rewires a given network so as to minimize (or maximize) the value of X,.

Preferential attachment graphs are generated following the approach given in [4]. The
network is grown by adding nodes and edges. For each node added, m edges are added
preferentially, based on the current degree distribution. Geometric graphs are generated by
randomly selecting 100 points (r,§) with values of 7 € [0, 1] and values of 6 € (0,360]. Edges
exist between pairs of points if the Euclidean distance is less than a specified threshold (in
our experiments thresholds between 0.17 and 0.25 were used). If the resulting graph is
connected, it is kept; otherwise it is rejected and the process begins again. A variety
of network performance measures are available. These include network diameter, average
degree, assortativity, clustering coefficient, synchrony and s(G).

Our measure of synchrony relies on computing an eigenvalue of the Laplacian matrix
associated with a given network structure. For our networks or graphs the Laplacian matrix
is a symmetric matrix L = D — A, where D is a diagonal matrix with the degree of each
node located along the main diagonal. A is the adjacency matrix for the graph. The
second eigenvalue of L measures algebraic connectivity [7]. Intuitively, graphs with small
Ao are easier to “pull apart”. In particular, if Ay = 0, then the graph is disconnected.
Many authors [2,5,22] have convincingly used A, as a global measure of how likely a graph
is to synchronize. That is, given an arbitrary flow of entities, the graph is less likely to
synchronize if Ay is small. The two graphs in Figure 1 have identical degree distributions,
but the graph on the left is more weakly connected (e.g., the removal a single edge can
disconnect the graph). The identification of structural differences between large graphs

2Federal Aviation Administration



with varying values of As is studied in the following set of numerical experiments.

In the remainder of the section, we describe numerical experiments in optimizing two
types of networks for A;: geometric graphs with 100 nodes and preferential attachment
graphs with m = 2.

The graphs plotted in Figures 2 and 3 were constructed by first generating a random
instance of the particular graph class—geometric in Figure 2 or preferential attachment
in Figure 3. Next, a simple tabu search [8] heuristic was called to minimize or maximize
A2 while keeping the degree distribution and s(G) fixed. Allowable moves (re-wirings) are
pair-wise edge interchanges that preserve the degree distribution and s(G). Briefly, the
tabu search checks to see if the move is acceptable, that is, if the move is improving and
not tabu, or improving and tabu but leads to the best observed value of A2 (aspiration
criterion). Note that these moves are precisely the moves allowed in a random rewiring
scheme without checking for the preservation of s(G). The interested reader is referred to
Glover and Laguna [8] for further information on tabu search.

Figures 2-4 display networks with respect to the reciprocal of the eccentricity of each
node u. The eccentricity of u is its maximum (shortest path) distance. The graphs are
generated by socnetv®. The goal of the plots is to uncover any qualitative differences
between the graphs with small and large values of the second eigenvalue of the Laplacian.*
For each pair of plots in a figure, the number of nodes (100), the degree distribution, and
the value of s(G) is fixed.

Nodes with equal eccentricity values are plotted on the same (dashed line) circles. The
circles with larger radii have larger eccentricity. Consequently, nodes near the center have
shorter longest paths. The paired plots exhibit large qualitative differences in the eccen-
tricity patterns. The same pairs of plots for other available measures in socnetv were also
constructed. Although small variations were seen, none of the other paired plots exhibited
significant differences.

Qualitatively, when A, is small, the patterns are less organized, the eccentricity plots in
Figures 2a and 3a are more dispersed and consist of many rings of constant eccentricity. The
eccentricity plots with larger A, are more organized, with few rings of constant eccentricity.
Specifically, the plots with small A; have 11 (Figure 2a) and 10 (Figure 3a) rings. For
larger Ay there are five (Figure 2b) and four (Figure 3b) rings, respectively. The ranges of
eccentricity values for the small A2 plots are dominated by the ranges for the large A2 plots.
For example, the range of eccentricity values for the geometric graph with small Ay (Figure
2a) is [26,42] and for the geometric graph with large A» (Figure 2b) it is [4,8]. Thus, the
patterns of eccentricities in Figures 2b-3b are non-overlapping and dominate those given in
Figures 2a-3a.

The diameter of the graph in Figure 2a is 42 while the graph diameter in Figure 2b is
8. The diameters are 19 and 6 for graphs in Figure 3. Notice that this is also true for the
simple graphs in Figure 1. The graph on the left has a larger diameter than the one on
the right. For graphs with a fixed degree distribution and a fixed value of s(G), this result
appears to hold in general. We know of no theorem that proves this result but numerous
computational tests support this claim so far. Moreover, the inverse relationship between
A2 and the eccentricity does not hold if s(G) is allowed to vary. Figures 4a and 4b provide
an example. The value of A2 = 0.935 in Figure 4a is larger than Ay = 0.440 in Figure 4b.
Yet the range of eccentricity values for Figure 4a, [8,16], is larger and does not overlap with
the range for Figure 4b of [3,6].

In Figures 5 and 6, we investigate the relation between s(G) and the clustering coefficient,
¢(G) [17], of a network or graph. These figures display results for 5000 geometric graphs.
In Figure 5, the 5000 geometric graphs are generated randomly. Edges connect nodes if the

3The source code and documentation can be found at http://socnetv.sourceforge.net/.
4We leave it to the reader to become acquainted the variety of measures and display features in socnetv.
For the purposes of this exposition, we are interested only in the qualitative differences between the plots.
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(a) A2 = 0.009, e(V) = (26,42), c(G) = 0.426 (b) Az = 0.314, e(V) = (4,8), ¢(G) = 0.297

Figure 2. Geometric graphs: 100 nodes, s(G) = 0.971, fixed degree distribution
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(a) A2 = 0.006, (V) = (10, 19), ¢(G) = 0.210 (b) A2 = 0.365, e(V) = (3,6), c(G) = 0.101

Figure 3. Preferential attachment: 100 nodes, s(G) = 0.716, fixed degree distribution

Euclidean distance between these nodes is less than 0.23. If the resulting graph is connected,
it is kept; otherwise it is rejected and the process begins again. Figure 5b displays the values
of s(G) versus ¢(G). There is no apparent correlation. Figure 6a records the values of s(GQ)
when a given 100-node geometric graph is randomly rewired 5000 times. Figure 6b illustrates
the inverse relationship between s(G) and ¢(G) when the first 364 re-wirings are excluded.

In addition to the inverse relationship between A2 and the eccentricity, the clustering
coefficient varies inversely with Ay in Figures 2 and 3. Notice that when s(G) is not held
constant, as in Figure 4, this relationship does not hold. A similar trend between s(G)
and ¢(Q) is observed in Figure 6. Figure 6a displays the value of s(G) versus 5000 random
re-wirings of a given geometric graph. We note that the same moves as those used in our
tabu search to optimize A, are used for the random re-wirings. Figure 6b plots s(G) versus
¢(Q) for the last 4634 random re-wirings and s(G) varies inversely with ¢(G). Notice that in
Figure 6a, the first 600 or so random re-wirings decrease s(G) almost monotonically before
settling into an oscillating pattern of increases and decreases in the range of (0.79,0.83).
This is not the case, however, when geometric graphs are generated at random (no rewiring),
as in Figure 5. Here no correlation is exhibited between ¢(G) and s(G).

As we have noted earlier, Figures 4a-b illustrate that s(G), or some yet unknown network
metric, appears to exert significant influence on the eccentricity pattern. In Figure 2b,
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(a) A2 = 0.935, s(G) = 0.797, e(V) = (8, 16), (b) A2 = 0.440, s(G) = 0.677, e(V) = (3,6),
¢(G) = 0.306 ¢(G) = 0.126

Figure 4. Geometric graphs: 100 nodes, fixed degree distribution, varying s(G)

Geometric Graph: 100 nodes, 5000 random constructions. Geometric Graph: 100 nodes, 5000 random constructions
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Figure 5. 5000 Random geometric graphs

A2 = 0.314, s(@) = 0.971, and the eccentricity range is [4, 8]. This compares favorably with
the results in Figure 4b, where A2 = 0.440 is larger and the eccentricity range of [3,6] is
smaller with a smaller minimum node eccentricity. However, the comparisons with Figure
4a are not consistent. The value for A2 in Figure 4a is larger but, unexpectedly, the max
and min values for the eccentricity range are much larger than those in Figure 2b. In
addition, the previously observed pattern of ¢(G) varying inversely with A2 no longer holds.
For example, A2 decreases from 0.935 in Figure 4a to 0.440 in Figure 4b. Similar decreases
observed in Figures 2 and 3 led to a doubling of ¢(G). But here ¢(G) decreases by more than
a half. It is unclear if the role of s(G) explains the lack of consistency. Figure 5 provides
one possible explanation. Here geometric graphs are generated at random (no rewiring) and
there is no correlation between s(G) and ¢(G). In Figure 6, an inverse correlation exists
but here the graphs are constructed by successively rewiring a single geometric graph at
random.



Geometric Graph: 100 nodes, 5000 random rewirings Geometric Graph: 100 nodes, 4634 rewirings
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Figure 6. 5000 Re-wirings of a Geometric Graphs

4 Respiratory Network Simulation

In the previous section we have seen that when the degree distribution and s(G) are fixed,
there is a predictable difference in the shortest path distribution (eccentricity measures) and
the clustering coefficients. Ideally the next step would be to simulate the performance of
networks presented in the previous section and investigate their performance as air transport
network systems. We are currently proceeding in this direction using a model previously de-
veloped to simulate the complete U.S. air transport system. For now, we provide simulation
results for a different system—a respiratory neural network—for which a simpler simulation
model was readily available. In this model, synchronization (rhythmic breathing) is desired.

Although synchronization is undesirable for air transport networks, there are systems
for which it is an essential feature. In mammals, a small group of neurons is responsible
for generating a regular rhythmic output to motor cells that initiate a breath. The network
structure of these neurons allows them to synchronize without any external influence and
produce regular bursts that lead to breaths. In [12], two geometric networks, one with a
value of A2 = 0.025 and a second with a value of A2 = 0.974 were tested in a simulation model
[16] of this neuronal network. The rhythmic output from the the network with Ay = 0.025
was ragged with fuzzy bursts, while outputs from the network with As = 0.974 was sharp
with clear, regular bursts (Figure 7).

In mammals, a small group of neurons in the brain stem, called the pre-Bétzinger com-
plex, is responsible for generating a regular rhythmic output to motor cells that initiate
a breath. Disconnected, these neurons are unable to provide sufficient output to activate
the motor neurons, but their interconnected network structure allows them to synchronize
without any external influence and produce regular bursts. Using a detailed simulation due
by Hayes [16], we were able to experiment with how different network topologies control
the effectiveness of the pre-Botzinger complex. We began by testing two geometric graphs
with extreme values of Ay. The results of the two simulations, depicted in Figure 7, provide
compelling evidence for the utility of A2 as a predictor of synchronization. It is easy to see
that the network with higher A2 synchronizes more strongly than the other network. The
second set of simulations investigated two preferential attachment networks. The raster
plots in Figure 8 are nearly indistinguishable. The results of the simulation are further
analyzed via an autocorrelation analysis (Figure 8). Analysis (as in [16]) uncovers better
synchronization in the network with the higher value of Ay. The results in Figure 9 confirm
that, although the difference is undetectable at a first glance (Figure 8), higher A\, results in
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Figure 7. Raster plots of neuron output for two networks with disparate A2 values. A
point at (x,y) indicates neuron z is spiking at time y. The higher A2 network displays much
stronger synchronization among all nodes as predicted, as well as a quicker breath frequency.
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Figure 8. Indistinguishable raster plots of simulated neuron output for two sample networks
with differing Ay values.

a better synchronization. Autocorrelation indicates the largest difference during the refrac-
tory (non-spiking) period: the two graphs exhibit similar behaviors during spikes, but not
between spikes. These experiments provide further evidence that s can be used to identify
graphs (networks) that are not likely to synchronize.

5 Conclusions and Discussion

Given the present state of air transportation networks, there is some urgency in developing
active and rigorous design methodologies. Our goal is to develop a systematic way to
design for some salient aspects of air transport networks. In particular, network structure,
both static (node location) and dynamic (air route scheduling) has a direct effect on the
functioning of the traffic in the network; we are now concerned with the effect of the static
and dynamic network structure on the performance.

How should the design process proceed? Design involves being able to manipulate vari-
ables so as to optimize objectives subject to constraints. As a step in this direction we have



80 —

- —— autocorrelation for A\, =0.055883

@ —— autocorrelation for A, = 0.20587

O 60 —

4=

[

o

(&]

c

S 40 —

©

o

oS 20 -

=

<
I I I I I I 1
0 10 20 30 40 50 60

Time lag (s)

Figure 9. An autocorrelation plot of pre-Botzinger complex synchronization on two networks
with the same degree distribution, but with differing A» values. The autocorrelation analysis
shows that the higher Ay network displays better synchronization.

demonstrated that for a fixed degree distribution and fixed s(G) value (and, consequently, a
fixed assortativity), optimizing for Ay yields networks with distinct eccentricity patterns. We
have demonstrated the ability to construct networks with locally optimal Ay and observed a
correlation with global network attributes, such as clustering, eccentricity and synchroniz-
ability. These results are further supported by a simulation analysis of another transport
system — a respiratory neuronal network. This simulation supports our conjecture that large
differences in Ay result in observable differences in the burst activity: good synchronization
for large A2 and poor synchronization for small Ao. It remains to simulate air transport net-
works with small and large values of A2 (more than likely with identical degree distributions
and s(G) values). In addition to validating the static results for networks (as in Figures 2
and 3) the simulation will also measure quantities of interest to the FAA that are currently
not amenable to rigorous optimization. For example, the simulation will measure congestion
effects in air traffic sectors. Finally, one of our major tasks is to derive maps between the
network metrics we can control and airspace simulations and, ultimately, FAA metrics. We
conjecture that deriving the maps will enable active design for a number of objectives and
constraints.
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