Project Prometheus and Future Entry Probe Missions

Thomas R. Spilker

Jet Propulsion Laboratory,
California Institute of Technology, USA

2nd International Planetary Probe Workshop
Moffett Field, CA, USA
Aug. 24, 2004
What Is Project Prometheus?

- Program to develop a broad range of nuclear power & propulsion techs
 - Nuclear electric power & propulsion (NEPP)
 - Fission reactors with thermal-to-electric conversion systems
 - High-power ion propulsion systems
 - Advanced electric propulsion (e.g., magnetoplasma dynamic (MPD) systems?)
 - Nuclear thermal propulsion (NTP)
 - Newly considered; higher thrust at lower I_{SP}
 - Radioisotope power systems (RPS)
 - RTGs, mini-RTGs
 - Milliwatt thermoelectric systems
 - Stirling power systems

- ...for the Space Science & Space Exploration communities
 - Anywhere in the solar system, regardless of solar energy availability
 - Outer solar system
 - Permanently shadowed regions
 - Potential power source for human exploration programs
What Capabilities Can Project Prometheus Offer?
What Mission Types Are Being Considered?

- **Capability**: very high total energy from fission-based systems
 - High power (kW to MW) for long durations (> a decade)

- **Capability**: very high propulsive delta-V
 - Ion propulsion specific impulse (thousands of seconds)
 - Ion-propulsion-level accelerations (~10^{-4} m/s^2) for more than a decade
 - Anywhere in the solar system, independent of heliocentric distance

- **Missions considered**: ones making appropriate use of the technologies
 - Need very high post-launch delta-V (10’s of km/s)
 - Chemical systems can provide up to a few km/s
 - Pushing a large payload to a relatively low delta-V is *not* efficient use of NEP
 - Need high power (10’s of kWe or more), for years, at the destination
 - High power science instruments
 - High data rate telecommunications
Jupiter Icy Moons Orbiter (JIMO)

Fission-Powered Vehicle

- Turbine-generated electric power, ~100 kWe
- Ion propulsion (probably Xenon propellant)
 - I_{sp} 6000 - 9000 s
 - Delta-V capability tens of km/s
- When propulsion system is not active, high power is available for science instruments
 - Extremely high data rates
- Launch 2011-2013?
- Some mission designs might allow delivering Jupiter entry probes
 - Significant impact to mission
 - Payload mass
 - Mission duration
How Are Mission Opportunities Changing?

– Decadal Survey priorities were based on Pre-Project Prometheus tech
 • Priorities for science objectives only partly influenced by technical feasibility
 • Flight schedule priorities heavily influenced by tech development schedules

– Project Prometheus re-arranges technical feasibility
 • Feasibility limitations by power or propulsion apply to fewer missions
 • Multiple ways this can affect mission schedules; examples:
 ♦ A mission’s high-priority science is enabled sooner by NEPP
 ♦ Earlier implementation of one mission pushes another mission later
 ♦ Prospect of greater science return with NEPP implementation pushes it later

– Lower-priority missions steered to Discovery, New Frontiers Programs
 • Example: Terrestrial-planet atmospheric entry missions
 • NASA faces a “mission size gap” between New Frontiers Program & Project Prometheus
Missions Of Interest a Year Ago

– Some mission concepts directly involve atmospheric entry vehicles
 • Venus In Situ Explorer ("VISE"; New Frontiers candidate)
 • Venus Sample Return
 • Jupiter Polar Orbiter With Probes ("JPOP"; New Frontiers candidate)
 • Titan Explorer
 • Neptune Orbiter With Probes (NASA Vision Mission concept)

– Other concepts might add entry probes, but then-current designs did not have them
 • Venus Aeronomy Probe
 • Io Electrodynamics
 • Saturn Ring Observer
Missions Now Being Considered
For Further Study

Science direction from Decadal Surveys and NASA-convened groups

• Example: Second Outer Planets Forum held June 21-22, 2004

Project Prometheus Advanced Missions Office is tasked with studies

• Decisions about which missions to study are made at NASA HQ
• Studies are performed by the multi-center “Team Prometheus” led by JPL
• Missions deemed highest priority for near-term studies:
 - Saturn / Titan (study largely completed)
 - Neptune / Triton (study just began; considered directly applicable to Uranus)
 - Kuiper Belt (multiple objects)
 - Interstellar Precursor / Heliopause
 - Comet Cryogenic Sample Return
 - Multiple Asteroid Rendezvous and Sample Return

Top two missions on the list potentially involve entry probes

• **Saturn** entry probes; **Titan** mobile surface/atmospheric platform (aerobot?)
• **Neptune** (also, **Uranus**) entry probes; **Triton** lander?
Galileo-Style (Conventional) Probe Delivery

- Delivery from approach, several months before probe entry
- Orbiter on entry trajectory; release, then small delta-V deflects & times
- Orbiter is overhead of probe during its descent
Conventional Delivery and Support of Multiple Probes

Targeting Maneuvers, ~6 mo before encounter

Carrier/Relay Spacecraft (CRSC)

CRSC receives data during a polar flyby, then plays it back from heliocentric orbit

Locus of potential entry sites is roughly a circle of radius ~30° lat, centered opposite the approach direction

To Sun

~100 mil km!
How Entry Probe Delivery From an NEP Vehicle Is Different

- Delivery from approach
 - Delivery vehicle can (sometimes, must) accelerate continuously after release
 - E.g., to achieve capture into orbit
 - Can result in untenable data relay situations
 - Large distances between probe and orbiter at entry
 - Orbiter zenith angle (seen from probe) is too large for useful communications
 - Mitigating this problem can have large impacts on the orbiter
 - Major changes in trajectory design, causing increases in required delta-V
 - Adding a dedicated relay subsatellite, with a cost and complexity penalty

From Balint et al., 2003
How Entry Probe Delivery From an NEP Vehicle Is Different

Delivery from near-circular orbit

- Orbiter must expend propellant to carry probe into orbit
- Imposes large delta-V requirements on the entry probe
 - Large delta-V just for entry
 - Timing increases delta-V
 - For orbits larger than several planetary radii, entry speed may not be too different from "on-approach" situation
- Unless the orbit radius is the right size, angular rates can be quite different

[Diagram showing orbital positions and delta-V vectors]
How Entry Probe Delivery From an NEP Vehicle Is Different

Delivery from eccentric orbit

- Orbiter must expend propellant to carry probe into orbit
- Smaller delta-V requirements on the entry probe
 - Smaller timing penalty
 - Might be possible to perform the delta-Vs with the orbiter
 - Apoapse must be high for sufficient operations time
- Probe-orbiter distance smaller
- Overflight altitude must not be too low
 - Need reasonable overhead time
- Greatly increased flexibility in entry locations
Concluding Remarks

Still, many future opportunities for entry probe missions

- Many science objectives at many potential destinations
- Available mechanisms for implementing missions have changed
 - Gap between New Frontiers and “Flagship”

Opportunities for methodological & technological innovation

- Design space for delivery and support has not been exhausted
 - Many avenues for new ideas
 - Old ideas are being “dusted off”
- Design of entry vehicles themselves is not significantly altered
 - One exception: possible addition of in-space delta-V capability

Realizing missions requires significant community consensus about mission objectives