Helium-3 Mining Aerostats in the Atmospheres of the Outer Planets

Jeffrey E. Van Cleve, Ball Aerospace
Carl Grillmair, SIRTF Science Center, Caltech
Mark Hanna, Ball Aerospace
Rich Reinert, Ball Aerospace

Art by David Seal of JPL
Imagine an Interplanetary Future
Where -

• d-He3 fusion produces most of Earth’s energy needs without radioactivity or carbon emissions

• Space transportation has been revolutionized by an efficient fusion propulsion system with exhaust velocity up to 0.088 c

• Space commerce is stimulated by the existence of an interplanetary cargo worth $3-M a kilogram

• Unmanned probes travel to the nearest star systems with flight times less than a human lifetime
He-3 Fusion for Energy & Propulsion

\[\text{d} + \text{He}3 \rightarrow \text{p} + \text{He}4 \]

- reactants are stable and storable
- products are energetic, charged and stable
 - Efficient electrical generation from MHD
 - No activation and embrittlement of reactor vessel
 - Efficient conversion to thrust with exhaust velocity up to 0.088 c --> ~50 yr interstellar flight using known physics.
- \(3.6 \times 10^{14}\) J/kg of d-He3 mixture = \(1.0 \times 10^8\) kWh/kg
 - Fuel is about 20% of the kWh cost of electricity
 - If electricity is 15¢/kWh then He3 has a value of $3M/kg

\[\text{He-3 is one of the few commodities worth interplanetary freight costs} \]
Why Outer Planets for He-3?

- Earth: breeding of tritium from either isotope of lithium by neutron bombardment, tritons decay to He-3.
 - Containment, waste problems same as d-t fission.
 - USA has no current capability.
 - Lithium inventory?
- Moon: solar wind implanted in regolith, 10 ppb (10^{-8}) by mass in uppermost few meters. ~1000 yr of 2001 energy needs- a starter catalyst?.
- Outer planets: primordial He3, ~10 parts per million (10^{-5}), ~10^9 yr of 2001 energy needs- the ultimate energy source?.

Which Outer Planet-Jupiter

Pro:
• Closest to Earth and Sun

Con:
• Huge gravity means return vehicle has mass ratio >20 (nuclear thermal $I_{sp} = 900$ s)
 – No mass budget left for cargo!

• A lot hotter at a any given density
 – Galileo probe killed by heat not by pressure
Which Outer Planet - Saturn

Pro:
• Not as far as Uranus and Neptune
• Rapid rotation substantially reduces ΔV to orbit

Con:
• Seen as depleted \sim5x in Helium compared to other outer planets
 – reanalysis of Voyager data 20 yr later restores that 5x - maybe
 – won’t know for sure until we send an entry probe
• Rings as a navigation hazard
 – need close-in, co-orbiting mission to look
Which Outer Planet-Uranus

Pro

• Primordial He3 abundance?
• ΔV to orbit requires mass ratio < 5
• Closer than Neptune

Con

• Axial tilt complicates interplanetary travel
• Twice as far from Earth as Saturn

Uranus may be the closest planet without major possible problems -- but we must return to both Saturn to be sure
Do we really know how much He3 is there?

- He3/He4 cannot be measured by remote sensing
- He3/H₂ and He3/He4 ratios have been measured *in situ* only by *Galileo* at Jupiter
- He3/He4 ratio of 10^{-4} to 1.5×10^{-4} from meteors, solar wind, cosmology
- Use *Galileo* results for He3/He4 = 10^{-4} and Voyager results (?) for He4/H₂
He-3 Mining with Balloons

- Balloon diameter: 80 m
- Total Plant mass: 146 tonnes
- Return vehicle: 59 tonnes
- Total lift needed: 205 tonnes
Notional Distillation Plant Concept

Thinking Big about our Space Cryogenics Future

X₃ = He-3/He-4 ratio
G = gas
L = liquid

HeRV propellant
LH₂ 17 K
LH₂ 22 K
GH₂ 60 K

CH₄ Ar

pump

8/25/04 WS-2 2004
Energy Economics
He3/H₂ = 10 ppm

Table 1

<table>
<thead>
<tr>
<th>Stage</th>
<th>Process</th>
<th>Energy (J)/g He₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>cool atmosphere to 16 K</td>
<td>7.2x10⁷</td>
</tr>
<tr>
<td>3</td>
<td>liquify H₂ at 16 K</td>
<td>3.2x10⁸</td>
</tr>
<tr>
<td>5</td>
<td>cool He from 16 K to 4.2 K</td>
<td>1.3x10⁷</td>
</tr>
<tr>
<td>5</td>
<td>liquify He at 4.2 K</td>
<td>1.1x10⁷</td>
</tr>
<tr>
<td>6</td>
<td>cool LHe from 4.2 to 1.2 K</td>
<td>1.2x10⁷</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>4.3x10⁸</td>
</tr>
</tbody>
</table>

Transportation on 2 yr trajectory: 5x10⁷ J/g He₃
Energy released: 6x10¹¹ J/g He₃
Theoretical energy payback: ~1000
The most valuable interplanetary commodities are refined He-3, deuterium, and heavy metals.
Next Steps

• Jupiter Icy Moons Orbiter (JIMO)
 – nuclear fission-powered
 – electric propulsion flight system
 – Big deal: 20 tonnes, >$4 B, 10 kWe
 – First of a series: Project Prometheus

• Saturn Ring Observer

• Uranus/Neptune Orbiter with Probes

• Self-deploying balloon probes for Mars, Titan

• Discovery/New Frontiers missions to other resource sites (Moon, asteroids, comets) for interplanetary commodity economy

http://www.jpl.nasa.gov/jimo/gallery.cfm
A Trial Balloon?

Scientific balloon missions to outer planets, using Pu RTGs and/or O₂ burners, to study

- He₃/He₄ and He/H₂ ratio
- pressure vs. temperature for 1 < p < 100 bar
- trace gas composition
- entry, deployment, and telemetry engineering experiments

A science balloon could be as small as 2.8 m diameter, and use at most 7 kg of Plutonium as a heat and power source