
New Basis Functions for the Electromagnetic Solution of

Arbitrarily-shaped, Three Dimensional Conducting

Bodies Using Method of Moments

Anne I. Mackenzie1, Michael E. Baginski2, Sadasiva M. Rao3

1NASA Langley Research Center, Hampton, VA 23681 (USA), email:anne.mackenzie-1@nasa.gov
2Department of E & CE, Auburn University, Auburn, AL 36849 (USA), email:baginme@auburn.edu
3Department of E & CE, Auburn University, Auburn, AL 36849 (USA), email:rao@eng.auburn.edu

Abstract

In this work, we present a new set of basis functions, defined over a pair of planar triangular
patches, for the solution of electromagnetic scattering and radiation problems associated with
arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions
are constant over the function subdomain and resemble pulse functions for one and two dimen-
sional problems. Further, another set of basis functions, point-wise orthogonal to the first set,
is also defined over the same function space. The primary objective of developing these basis
functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and
composite bodies. However, in the present work, only the conducting body solution is presented
and compared with other data.

1 Introduction

The solution of electromagnetic scattering/radiation problems involving arbitrary shapes and
material composition is of much interest to commercial as well as defense industries. The method
of moments (MoM) [1] solutions to these problems generally involve triangular patch modeling
and utilizing Rao-Wilton-Glisson (RWG) basis functions [2]. It may be noted that the RWG basis
functions have been primarily defined for the solution of conducting bodies and the utilization
of the same basis functions for dielectric/composite bodies is less than satisfactory. The primary
difficulty associated with a material body solution is the requirement of two orthogonal basis
functions to express unknown electric and magnetic currents J and M . In our opinion, using the
same basis functions for both J and M is not a good idea and invariably results in numerical
difficulties. However, a host of techniques have been developed which involve either tinkering
with the basis functions or modifying the testing procedures to apply to material bodies [3, 4, 5].
Keeping these difficulties in perspective, in this work, we present two sets of basis functions, each
one point-wise orthogonal to the other function, which can be used for conducting as well as
material bodies. The present work, however, involves only conducting bodies along with several
numerical results. The solution of the material body problem will be presented in a future article.
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shaped conducting body
excited by an incident
electromagnetic plane
wave.

T
n

+

T
n

-

n    edge
th

nS

Figure 2: Basis function descrip-
tion.

2 Description of the Problem

Let S denote the surface of an arbitrarily-shaped perfectly conducting body illuminated by an
incident electromagnetic plane wave Ei as shown in Figure 1. Using the equivalence principle,
potential theory and the free-space Green’s function [1], the electric field integral equation (EFIE)
is given by

[jωA +∇Φ]tan = Ei
tan (1)

where the subscript “tan” refers to the tangential component. In (1),

A = µ
∫

S
J s G ds′ (2)

Φ = ε−1
∫

S
qs G ds′ (3)

G =
e−jkR

4πR
(4)

R = |r − r′| (5)

ε and µ are permittivity and permeability of the surrounding medium, k is the wave number
and r and r′ represent the position vectors to observation and source points, respectively, from a
global coordinate origin. The unknown surface current J s is related to the charge density qs by
the continuity equation, given by

∇ • J s = −jω qs (6)

For the numerical solution of (1), we apply the method of moments formulation using planar
triangular patch modeling and the basis functions as described in the following section:
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3 Description of Basis Functions

Let T+
n and T−

n represent two triangles connected to the edge n of the triangulated surface model
as shown in Figure 2. We define two mutually orthogonal vector basis functions associated with
the nth edge as

fn(r) =

{
a±n × ˆ̀, r ∈ Sn,

0, otherwise
(7)

and

gn(r) =

{
ˆ̀, r ∈ Sn,

0, otherwise
(8)

where Sn represents the region obtained by connecting the mid-points of the free edges to the
centroids of triangles T±

n , and to the nodes of edge n. Note that this area is shown shaded in
the Figure 2. Also, ˆ̀ and a±n represent the unit vector along the nth edge and the unit normal
vector to the plane of the triangle T±

n , respectively. Note that the basis functions defined in
(8) are actually the pulse functions defined over the region Sn. It is well-known that the pulse
functions do not have continuous derivatives but result in delta distributions along the boundary.
This point is crucial in modeling the charge density and the calculation of scalar potential which
may be accomplished as described in the following section. Also, note that in this work, only
perfect electric conductor (PEC) bodies are analyzed and hence only fn’s are used in the method
of moments solution.

4 Numerical Solution Procedure

As a first step, we consider the testing procedure. Consider the mth interior edge, associated with
triangles T±

m . We integrate the vector component of (1) parallel to the path from the centroid rc+
m

of T+
m , to the midpoint of the edge rm and thence from rm to the centroid of T−

m given by rc−
m .

For both path integrations, approximate A and Ei by their respective values at the mid-points
of each path. Thus, we have,

jωA

(
rm + rc+

m

2

)
• (rm − rc+

m ) + jωA

(
rm + rc−

m

2

)
• (rc−

m − rm)+

[
Φ(rc−

m )− Φ(rc+
m )

]
= Ei

(
rm + rc+

m

2

)
• (rm − rc+

m )+

Ei

(
rm + rc−

m

2

)
• (rc−

m − rm) (9)

for m = 1, 2, ·, N , where N represents the total number of interior edges in the triangulation
scheme, i.e. excluding the edges on the boundary for an open body.

Next, we consider the expansion procedure. Using the basis functions fn defined in (8), we
approximate the unknown current J as

J =
N∑

n=1

Infn (10)
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Next, substituting the current expansion (10) into (9) yields an N ×N system of linear equations
which may be written in matrix form as ZI = V , where Z = [Zmn] is an N × N matrix and
I = [In] and V = [Vm] are column vectors of length N . The elements of the Z and V are given
by

Zmn = jω
[
A+

mn • (rm − rc+
m ) + A−

mn • (rc−
m − rm)

]
+ Φ−

mn − Φ+
mn (11)

Vm = E+
m • (rm − rc+

m ) + E−
m • (rc−

m − rm) (12)

where

A±
mn = µ

∫

S
fn

e−jkR±m

4πR±
m

dS ′ (13)

Φ±
mn =

−1

jωε

∫

S
∇s • fn

e−jkRc±
m

4πRc±
m

dS ′ (14)

R±
m =

∣∣∣∣∣
rm + rc±

m

2
− r′

∣∣∣∣∣ (15)

Rc±
m = |rc±

m − r′| (16)

E±
m = Ei

(
rm + rc±

m

2

)
(17)

The numerical evaluation of the vector potential, shown in (13), is straightforward and may be
accomplished by the procedure described in [6]. However, the numerical evaluation of the scalar
potential term, described in (14), may be carried out as follows:

Let us define the unknown charge density qs in (3), as

qs =
Np∑

i=1

αiPi (18)

where NP represents the number of triangular patches in the model, αi is the unknown coefficient,
and

Pi(r) =

{
1, r ∈ Ti

0, otherwise
(19)

Next, consider a triangular patch Ti with associated non-boundary edges, i1, i2, and i3. Then,
using (6), the well-known Divergence theorem, and simple vector calculus, we have

∫

Ti

qsds =
∫

Ti

∇s • J

−jω
ds

=
j

ω

∮

Ci

J • n`dl

=
j

ω
[Ii1`i1 + Ii2`i2 + Ii3`i3 ] (20)
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where Ci is the contour bounding the triangle Ti, n` is the unit normal vector to the contour Ci

in the plane of Ti, and `ij , j = 1, 2, 3 represent the edge lengths. Also, note that

∫

Ti

qsds =
∫

Ti

αids

= αiAi (21)

where Ai represents the area of the triangle Ti. Lastly, using (20) and (21), we have

αi =
j

ω

[
Ii1`i1 + Ii2`i2 + Ii3`i3

Ai

]
(22)

Thus, we can write the scalar potential term in (14) as,

Φ±
mn =

j`n

ωε


 1

An+

∫

T+
n

e−jkRc±
m

4πRc±
m

dS ′ − 1

An−

∫

T−n

e−jkRc±
m

4πRc±
m

dS ′

 (23)

Finally, once the matrices Z and V are determined, one may easily solve the system of linear
equations to obtain I.

5 Numerical Results

In this section, we present numerical results for a square plate (length = 0.15λ), circular disk
(diameter = 0.15λ), a sphere (diameter = 0.15λ) and a circular cylinder (diameter = 0.15λ,
length = 0.15λ), and compare with the solution obtained using the procedure presented in [2].
Also, for the case of the sphere, the results are compared with the exact solution. The plate, the
disk, the sphere, and the cylinder are modeled with 312, 258, 500, and 320 triangles, respectively.
In every case, the body is placed at the center of the coordinate system and illuminated by an
x-polarized plane wave traveling along the z-axis. Further, the square plate and the circular disk
are oriented parallel to the xy-plane. The bistatic radar cross section (RCS) is presented in figures
3, 4, 5, and 6. We note that the results compare well with the other numerical results.

6 Conclusions

In this work, we present a new set of basis functions for the method of moments solution of
electromagnetic scattering by conducting bodies of arbitrary shape. The new basis functions are
pulse basis functions defined over a pair of triangular patches. Another set of basis functions, point-
wise orthogonal to the first set, is also presented. It is hoped that these two sets of basis functions,
in conjunction with the method of moments solution procedure, provide a more stable solution to
material problems. However, in the present work, only conducting scatterers are analyzed with
the new basis functions and the results are compared with those from other solution methods. At
present, the work is in progress to apply the new basis functions to material bodies and will be
reported in the future.
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 Figure 3:  Bistatic RCS of a square plate. Figure 4:  Bistatic RCS of a circular disk. 
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 Figure 5:  Bistatic RCS of a sphere. Figure 6:  Bistatic RCS of a circular cylinder. 
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