The NASA SARP Software Research Infusion Initiative

Mike Hinchey, Research Infusion Lead (NASA GSFC)
Tom Pressburger (NASA ARC)
Lawrence Markosian (QSS Group, ARC)
Martin Feather (JPL)

20 July 2006
SAS 2006, West Virginia
Outline

- Background/Motivation
- Proposal Solicitation Process
- Proposal Evaluation Process
- Overview of some projects to date
- Lessons Learned
NASA Software Working Group

Purpose:

"... to develop and oversee the formulation and implementation of an Agency wide plan to work toward continuous, sustained software engineering process and produce improvements in NASA; and to ensure appropriate visibility of software issues within the Agency".

http://software.nasa.gov/about
Research Infusion Initiative

- Encourages the uptake of new research results within real NASA missions.
- Attempts to smooth the transfer of technology and partner technology providers with end-users who have a need for the technology.
- Charged with overseeing various small infusion projects, and using Lessons Learned to improve the uptake of new technologies within NASA.
Software Engineering Research Infusion Sites
Obstacles to Research Infusion

- "gap" between interpretations of adequate maturity;
- Inadequacy of the TRL scale for quantifying this "gap";
- Risk-aversion of most NASA developers and most NASA projects;
- Lack of evidence to demonstrate benefits (analyses, ROI, etc.);
- Development takes place in the context of a large mission;
- Fragmented practitioner community.
Overcoming Obstacles

- Information Gathering;
- Information Dissemination;
- Brokering Collaborations.
Information Gathering

- Focus on research/technologies that:
 1. Have particular relevance to software assurance.
 2. Can be incorporated into existing software development practices with a minimum of disruption.
 3. Are mid- to high-TRL research, demonstrating success on a real project, and ready for use more or less “as-is”.
 4. Are either NASA-funded, or are related technologies, or have been suggested by NASA software developers.
Proposal Solicitation Process

- Research Infusion team solicited communication with proposal teams
- Encouraged draft proposals prior to final submission and we responded with suggestions.
 - Not all proposal teams took advantage of this
Information Dissemination

- Via the Research Infusion team’s website;
- Via direct contact with developers;
- Via direct “marketing” (email, telephone);
- Via a NASA-wide ViTS.
Brokering Collaborations

- Annual NASA-wide proposal solicitation;
- A small number (+/- 7) of technologies are presented via a NASA-wide ViTS (also available online and via DVD);
- Interested parties are encouraged to submit a proposal, and offered guidance in writing their proposal;
- Introductions are made between the proposal writers (the developers) and the technology provider, and they are encouraged to work closely in writing the proposal.
- Encouraged draft proposals prior to final submission and we responded (not all proposal teams took advantage of this).
Proposal Evaluation Process

- Proposals are evaluated on:
 1. Feasibility;
 2. Impact on NASA;
 3. Likelihood that, if successful, the technology will be adopted as part of the development team’s practice;
 4. Adequate feedback is provided to providers (cf. collaboration);
 5. Good use of NASA funds.
Proposal Evaluation Process

- Same process followed each year;
- More proposals received each year (300% increase over 3 years);
- Each RI team member reviewed & evaluated all proposals
 - Numerical;
 - Qualitative;
- Evaluations were combined, questions and concerns noted; in a few cases we recommended reduction in $ requested;
- Communicated concerns and got feedback from proposal teams;
- Subsequent evaluation meetings held: rankings finalized.
A postriori Evaluation

1. The success criteria (stated at outset) have been met.
2. The research product is adopted by the software development team for current use.
3. A NASA Center adds the research product to its list of recommended practices.
4. The software development team provides feedback (including performance data) to the research team.
5. Six months later the product is still being used by the development team or a successor project.
6. "Lessons Learned" are recorded irregardless of the success (or otherwise) of the project.
Completed Projects

<table>
<thead>
<tr>
<th>Technology</th>
<th>Technology Provider</th>
<th>Technology Description</th>
<th>Customer Sites and Target Applications</th>
<th>Outcome/Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspective-based Inspections</td>
<td>Fraunhofer Maryland, SARP</td>
<td>Software Manual Inspection Technique</td>
<td>GSFC (Spacecraft FSW)</td>
<td>Defects found in legacy code and that escaped previous inspections. Adopted.</td>
</tr>
<tr>
<td>Software Cost Reduction (SCR)</td>
<td>Naval Research Laboratory</td>
<td>Requirements Analysis Tools</td>
<td>ARC (ISS Payload)</td>
<td>Personnel trained. Reqts validated.</td>
</tr>
<tr>
<td>Orthogonal-Defect Classification</td>
<td>JPL, SARP</td>
<td>Process Improvement Methodology</td>
<td>JPL (Ground SW)</td>
<td>SQA and project personnel trained.</td>
</tr>
<tr>
<td>CodeSurfer/CodeSonar</td>
<td>Grammatech, Inc.</td>
<td>Reverse Engineering/defect detection</td>
<td>JSC (ISS, Shuttle), IVVF (Spacecraft FSW)</td>
<td>Found defects that escaped previous inspections.</td>
</tr>
<tr>
<td>C Global Surveyor (CGS)</td>
<td>ARC – Intelligent Systems Program</td>
<td>Software defect detection tool</td>
<td>ARC (ISS science payload) MSFC (ISS payload)</td>
<td>Found defects. Good feedback to provider.</td>
</tr>
<tr>
<td>Coverity SWAT/Prevent</td>
<td>Coverity, Inc.</td>
<td>Software defect detection tool</td>
<td>MSFC (ISS, Shuttle FSW)</td>
<td>Found defects that escaped testing. Will be adopted.</td>
</tr>
</tbody>
</table>

20 July 2006

SAS 2006, West Virginia
Some Lessons Learned

- Some developers are not so proficient at research-oriented activities and need more guidance and “hand-holding”.
 - Pro-forma documentation;
 - Frequent oversight to ensure adequate communication and adherence to schedule.
- There is no general solution to the question “What is the next step?”.
 - Some technologies are more easily integrated into the parent organizations processes.
Some Lessons Learned

- Greater qualification of technology/project combination may be required.
 - One tool previously used successfully did not transition well to another application and another development process.

- Sometimes project personnel already have in mind technologies they are interested in and the research infusion effort serves predominantly to provide seed money so that the desired collaboration can take place, and track its progress once initiated.
Some Lessons Learned

- Collaborations’ project plans should explicitly include an iterative approach to technology application, scaling up with each iteration.
- Leading-edge tools sometimes have problems, e.g., needing specialized skills for set-up. Technology providers have made efforts to compensate.
- To succeed, training and continued support are needed. “The most successful way to do tech transfer is to put a member of the [technology vendor team] on the development team”.

20 July 2006

SAS 2006, West Virginia
Some Lessons Learned

- The profile of effort required to learn new technologies varies with the technology.
- Busy researchers and project members may have scheduling pressures that take precedence over infusion studies, which may lead to significant delays in the infusion projects.
- NASA is a dynamic environment. It is important to consider the loss of organizational memory as a risk up front and plan for its mitigation.
Some Lessons Learned

- If the lead-time between technology proposal and beginning the project is too great, the necessary personnel may be lost, or it may be impractical, or unbenevolent, to use the technology at this stage of the development. Several of our infusion collaborations were affected in this way.
New Infusion Starts

<table>
<thead>
<tr>
<th>Technology</th>
<th>Technology Provider</th>
<th>Technology Description</th>
<th>Customer Sites and Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Advisor</td>
<td>Siemens Corporate Research</td>
<td>UML style checker</td>
<td>GSFC (Spacecraft Science Instrument Module)</td>
</tr>
<tr>
<td>Software Architecture Evaluation</td>
<td>Fraunhofer Maryland</td>
<td>Code/Architecture Consistency Analysis</td>
<td>JHU/APL (Ground SW)</td>
</tr>
<tr>
<td>Klocwork Inspect</td>
<td>Klocwork, Inc.</td>
<td>Software defect detection tool</td>
<td>JPL (Ground SW), GSFC (FSW)</td>
</tr>
<tr>
<td>CodeSurfer</td>
<td>Grammatech, Inc.</td>
<td>Reverse Engineering/defect detection</td>
<td>KSC (Shuttle Processing CY06)</td>
</tr>
<tr>
<td>CASRE</td>
<td>JPL</td>
<td>Software reliability estimation</td>
<td>JPL (MONTE)</td>
</tr>
<tr>
<td>RTLinux</td>
<td>FSMLabs</td>
<td>Real time operating system</td>
<td>LaRC (RSC)</td>
</tr>
</tbody>
</table>

20 July 2006
SAS 2006, West Virginia
Publications

Publications in preparation

Conclusions and Future Direction

- We consider the Research Infusion activity to have been a success, and it will continue with increased funding.
- A modest approach has achieved significant results with only small budgetary requirements.
- We anticipate keeping largely the same procedure for project selection, evaluation, and monitoring, with some minor modifications.