An Auto-Configuration System for the GMSEC Architecture and API

SMC-IT 2006

Joseph Moholt (ICS)
Arturo Mayorga (GSFC)
July 20, 2006
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The Goddard Mission Services Evolution Center (GMSEC)</td>
</tr>
<tr>
<td>• Automated Configuration Concept</td>
</tr>
<tr>
<td>• Implementation Approach</td>
</tr>
<tr>
<td>• Key Components and Benefits</td>
</tr>
</tbody>
</table>
GMSEC

- The Goddard Mission Services Evolution Center (GMSEC) was established in 2001 as an evolutionary approach to ground system architectures

- Objectives
 - Simplify integration and development using a Plug and Play approach
 - Facilitate technology infusion over time
 - Support evolving operational concepts
 - Avoid vendor lock-in

- Key Concepts
 - Standardize interfaces – not components
 - Provide a middleware infrastructure
 - Allow customers to select components that meet their needs
GMSEC Ground System Architecture

Traditional Design
Socket Connections

GMSEC Design
Middleware Connections

Middleware simplifies integration by having components interface to a bus and not to each other
GMSEC API

- Application Program Interface (API)
 - Provides connection between application components and architecture middleware
 - Typically implemented as a function library
 - One API implementation per language

- Encapsulate messaging transport
 - Single API for multiple middlewares
 - Flexibility for middleware additions
 - Platform and operating system independence

- Abstract messaging structures
 - Simple message model
 - Facilitates data packaging
Extending GMSEC Concepts through Automated Configuration

- Currently, configuration of a GMSEC-based system requires separate configuration for every component
- An automated, centralized configuration will provide for easier management of architecture components
 - Define a standard for managing the configured content
 - Facilitate reconfiguration of components
 - Allow faster configuration for new missions
Drivers

- The Automated Configuration System must
 - Be platform and language independent
 - Provide a standard data representation format
 - Provide an efficient data representation format
 - Support client/server and server/server communications
 - Provide broadcast capability
GMSEC Ground System Configurations

Current GMSEC Configuration

Automated GMSEC Configuration

Centralized configuration agent simplifies integration by having components interface to a single configuration point.
Impact to Communication Layers

Auto-configuration approach affects the top four layers of the Open Systems Interconnect (OSI) model

- Application Layer
 - Provides service to end user
 - Impacts the GMSEC API

- Presentation Layer
 - Provides data representation
 - Impacts data packing definitions

- Session and Transport Layers
 - Provides connection/data format
 - Impacts protocol selection
Implementation Approach

- Create a Configuration Management Agent (CMA)
 - Implemented as a GMSEC component
 - Manages configuration files

- Enhance GMSEC API to automatically interact with CMA
 - Provides a transparent way to retrieve configurations from CMA

- Create a lightweight middleware
 - Limited to required features
 - Facilitates communication between API and CMA

- Include both TCP and UDP to meet communication requirements
 - TCP for clients
 - UDP for inter-server (broadcast)
Auto-Configuration System Diagram

- CMA
- MBServer
- UDP Broadcast
- GMSEC Message Bus

Temporary TCP connection

New GMSEC component

GMSEC component

GMSEC component

COTS Mission GMSEC Bus
Key System Components

- Configuration Management Agent
 - Holds component configurations
 - Middleware options
 - Message formats
 - Component specific options
 - Responds to configuration requests
- Enhanced GMSEC API
 - Retrieves component configuration from CMA
 - Provides the interface to component developer
- GMSEC Message Bus as the middleware solution
 - Self-configuring, hub and spoke middleware
 - Supports inter-server communication
 - Bridges CMA and GMSEC API enhancement

Although designed as an integrated system, components can also be used independently
Benefits of the Auto Configuration Approach

- Significant reduction in integration time
- Components added/upgraded/migrated without impacting existing system
- Standard configuration approach provides reuse of configuration specs between different missions
- Vendors can build on the configuration definition standards to more easily integrate their products into the NASA ground system domain
Summary

- The GMSEC architecture provides a scalable, extensible ground and flight system approach for future NASA missions, enabling easy integration of components to meet customer requirements
 - Open source download at http://opensource.gsfc.nasa.gov

- The Auto Configuration System expands on GMSEC’s service oriented architecture by providing further integration and configuration capabilities
 - Currently being deployed to component developers
Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>CMA</td>
<td>Configuration Management Agent</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off The Shelf</td>
</tr>
<tr>
<td>GMSEC</td>
<td>Goddard Mission Services Evolution Center</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>ICS</td>
<td>Interface & Control Systems</td>
</tr>
<tr>
<td>MB</td>
<td>Message Bus</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnect</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
</tbody>
</table>
Questions?

jmoholt@interfacecontrol.com