
Robust Fuzzy Controllers Using FPGAs

Author Gene S. Monroe, Jr.

NASA LaRC

Gene.S.Monroe@NASA.gov

Abstract

 Electro-mechanical device controllers typically come
in one of three forms, proportional (P), Proportional
Derivative (PD), and Proportional Integral Derivative
(PID). Two methods of control are discussed in this
paper; they are (1) the classical technique that requires
an in-depth mathematical use of poles and zeros, and (2)
the fuzzy logic (FL) technique that is similar to the way
humans think and make decisions [1]. FL controllers are
used in multiple industries; examples include control
engineering, computer vision, pattern recognition,
statistics, and data analysis [2]. Presented is a study on
the development of a PD motor controller written in very
high speed hardware description language (VHDL), and
implemented in FL.

Four distinct abstractions compose the FL controller,
they are the fuzzifier, the rule-base, the fuzzy inference
system (FIS), and the defuzzifier [3]. FL is similar to, but
different from, Boolean logic; where the output value may
be equal to 0 or 1, but it could also be equal to any
decimal value between them. This controller is unique
because of its VHDL implementation, which uses integer
mathematics. To compensate for VHDL’s inability to
synthesis floating point numbers, a scale factor equal to
10(N/4) is utilized; where N is equal to data word size. The
scaling factor shifts the decimal digits to the left of the
decimal point for increased precision.

PD controllers are ideal for use with servo motors,
where position control is effective. This paper discusses
control methods for motion-base platforms where a
constant velocity equivalent to a spectral resolution of
0.25cm-1 is required [4]; however, the control capability
of this controller extends to various other platforms.

1. Introduction
The PD form of a controller is an ideal method for

controlling servo motors with respect to motion base

platforms, because it is a position algorithm based on the
current position and the rate at which that position is
changing [5]. The focus of this research is on the design
and development of a FL PD servo motor controller
implemented in VHDL. A basic diagram of a classical
control system with a feedback loop is shown in Figure 1.

Figure 1. Diagram of a typical control circuit.

FL works much like a human brain; an example is

monitoring the water temperature while preparing a bath.
If the water is too cold then increase the hot water flow, if
it is just right then do nothing and let the water continue
to fill, but if it is too hot then increase the cold water flow.
In this example there are three temperature conditions
used as criteria; too cold, just right, and too hot. These
temperature conditions are called fuzzy variables and
compose a fuzzy set. There is no exact measure of heat
for the perfect bath, because that temperature is at
differing degrees for different people, which implies that
the final assessment will be made by the individual taking
the bath.

FL is about relative truth and the importance of being
exact or approximate [6], it refers to the degree of truth,
not the likelihood of truth. The “degree of truth” refers
the degree of membership (DOM), Equation 1
demonstrates how the fuzzy set opinion could be used to
calculate this value. Opinion could be a piece-wise linear
function, an elliptical function, or some other descriptive
analysis used to determine an approximate value.

DOM = f(opinion) (1)

The value placed on the temperature is a fuzzy one, so

there must be a numerical value associated with it if a
computer is to make human-like decisions. One might

 2

say that a given water temperature is a little too cool, but
overall it is almost OK. Mathematically that may
translate to 35% too cold, and 65% just right. A human
inputs the numeric range values that the fuzzy variables
will be equated to. An expert may derive these values
using their intuitive assessment based on their experience
or what seem to be logical [7].

The range limits of these fuzzy variables can be
viewed as linguistic in the design stages of the system; the
variables used for this example are defined as: (too cold,
just_rightmin], [just_rightmin, just_rightmax], and
[just_rightmax, too hot). See Figure 2 for a visual depiction
of the fuzzy set, and note that this is the precept to the
formulation of membership functions (MFs). MFs are the
functions already discussed for the right-hand side of
Equation 1, and the DOM is the derived confidence that
the temperature of the water is too cold or just right or too
hot.

Figure 2. Visual depiction of the fuzzy set.

Confidence levels are physical measures from where

the input value on the independent axis measures
perpendicularly to intersect the MF, and from there
measures horizontally to the dependant axis, which will
be some value between 0 and 1. MFs are line equations
and each fuzzy range has its own MF. MFs can be shaped
as a straight line, an elliptical form, a bell shape, etc.
They are used to define the degrees of membership
(DOM) for input and output values. MATLAB was used
to depict how this ties together, and is shown in Figure 3.
This combination of fuzzy ranges, MFs and confidences
is replicated for each input and each output. Later during
a discussion on fuzzy rules the interpretation of this chart
would read that the computer is 35% confident that the
water is too cold, because the analysis can only be as sure
as the least confidence.

After all the inputs have been fuzzified, the computer
must use a fuzzy inference system (FIS) to combine these
values to derive the inputs to the output’s fuzzy set. This
is done through a set of rules, composed of IF… THEN…
statements. The IF’s conditional statements for the rules
compare the two inputs of velocity and acceleration and
join them using the fuzzy ‘AND’, this is how a FL PD
control design is created. The fuzzy ‘AND’ yields the
minimum value from a comparison between the two
inputs.

The final stage in FL defuzzifies the output variables
from the FIS. This algorithm combines the results from
the rules and multiplies each output variable by its
associated weight. The weight is a value given to each
fuzzy output variable of the fuzzy output set. It could be
a standard non-biased value equal to the center of the

variable’s range, or some other value based on an expert’s
opinion. The sum of these variables composes the crisp
output delivered to the external object being controlled.
The method of defuzzification used in this research was
the root-sum-square; five other candidate methods
include: Centroid, Maximum, Mean of Maximum, Height,
and Modified Height [8].

Figure 3. Visual diagram depicting the DOM.

Using fuzzy sets to establish the control parameters of

a system offers significant advantages in non-linear cases
provided that the rule base does not get too large [9].
Using these fuzzy sets maintains precise control over the
controlled system as the hardware may degrade over time,
or one or more of the inputs may vary. A significant
advantage of this FL controller is that it has been coded
in VHDL and programmed into a single field
programmable gate array (FPGA), because this reduces
the number of electronic components used to implement
the controller, it enables redundancy by having multiple
copies/images of the code, and yields robustness as a
controller that has multiple systems capability.

The final product of this research is a FL controller
that has been developed using VHDL to program a Xilinx
FPGA, for use in motion base systems or other types of
systems that require precise signal response. The
controller is capable of overseeing multiple types of
control signals; an infant software version of this
firmware system was tested and successfully implemented
in the robotics lab of the Electronics System Branch at the
NASA Langley Research Center (LaRC). This VHDL-
coded FL controller is planned to be utilized in the spring
of ‘2007 on-board an aerodynamic structure mounted in a
NASA LaRC wind tunnel. The controller will be part of
project that will programmatically maneuver ailerons and
other wing-tip objects during the tests without manual
manipulations, using a multiple input multiple output
(MIMO) general predictive algorithm.

0

0.2

0.4

0.6

0.8

1

MF #1 = 0.35201

MF #2 = 0.64805

C
on

fid
en

ce

too cold just right too hot

 3

2. Technology Review

FL controllers work well with both linear and non-
linear systems. FL is rapidly spreading throughout the
technology world in the areas of aircraft/spacecraft,
automated highway systems, automobiles, autonomous
vehicles, manufacturing systems, power industry, process
control, and robotics [10]. PD control is also referred to
as a “lead network,” a term relevant to classical
controllers. Evidence will be provided to conclude that
classical PD controllers may not meet design
specifications for non-linear systems. The Mathworks’
Simulink and MATLAB software packages are used to
demonstrate through simulation that FL controllers are
easier to design and are more robust than classical
controllers.

CLASSICAL DESIGN METHOD

The following example uses a hypothetical plant that is
non-linear, using the open loop equation form from
Equation 2 the open loop system is defined in Equation 3.

basS
NsGOL ++

= 2)((2)

)61.62)(61.62(
7570)(

−+
=

ss
sGOL (3)

Design engineers generate control parameters to satisfy
system requirements, such as the ones provided in Table
1. A thorough understanding of mathematics is required
for this technique, and it should be noted here that all
plants and compensators are defined by polynomial
equations, with zeros in the numerator and poles in the
denominator.

Table 1. Design requirements.
REQ’T DESCRIPTION

1 %OS < 50%
2 Ts < 1 second
3 e(∞) < 10%; estep, eramp, or eparabolic
4 GM > 8dB
5 PM > 45°

The plant described in Equation 2 reveals a pole in the

right hand plane (RHP), and is an indication that the plant
is non-linear. As a side this can be further verified by
using the Routh-Hurwitz method [11] on the closed-loop
version of the open loop transfer function. Equation 4 is
the closed loop transfer function form.

)(1
)(

)(
sG

sG
sG

OL

OL
CL +

= (4)

Using Equation 4, the closed loop transfer function is:

99.649,3
7570)(2 −

=
s

sGCL (5)

Expanding the denominator polynomial is how the Routh-
Hurwitz table is comprised, such as in Table 2. Routh-
Hurwitz states when a zero is displayed in the middle
column, that the system is non-linear.

Table 2. Routh-Hurwitz table.

S2 1 3,649

S1 0 0

CLASSICAL DESIGN PROCESS IN MATLAB
1. At the MATLAB command prompt, define

“Gs = tf(7570,conv([1 62.61],[1 -62.61])”; open
the root locus tool.

2. Right click on the graph and input the system
characteristics derived in step one using equations.

3. Click on the step function and adjust the gain to see
if the given requirements can be met.

4. Since the system must have more compensation,
add a zero and a pole to make it a lead network,
i.e., a PD controller.

5. It can be seen from step 4 that the transient
responses have been met, see Figure 4. The next
step is to calculate the Steady-State error.

6. Unfortunately the classical PD design does not
meet the steady-state error requirement. Add a lag
component by inserting another zero and another
pole; the system now meets all design criteria, but
as a PID Controller.
a. With a steady-state error eparabolic(α) = 7.9%
b. Figure 5 shows that the GM and PM were also

met, where the GM is nearly 50dB, and the
PM is 64.4°.

Figure 4. Root locus and step response from step 5.

Figure 5. Verification using Bode plots.

-60

-40

-20

0

20

M
ag

ni
tu
de

 (d
B)

10
-1

10
0

10
1

10
2

10
3

-180

-135

-90

-45

0

45

Ph
as

e
(d
eg

)

Frequency (Hz)

 4

FUZZY LOGIC DESIGN METHOD
 The linguistic fuzzy variables ‘Slow’, ‘OK’, ‘Fast’,
‘NEG’, ‘OK’, and ‘POS’ comprise the two fuzzy sets;
error and derror. To quantify the input confidence levels,
use the line equation formula as the input to Equation 1
and refer to Figure 3 to better understand the fuzzification
process. A Simulink model of the FL controller is shown
in Figure 6, note the slight difference from the classical
model shown in Figure 1 as there are two inputs to the FL
compensator, “error” and “derror”. Each of these two
inputs has three fuzzy variables, as shown in Figure 7, and
used to develop Linguistic Rules in Table 3. The
products of these rules are then aligned to determine the
polarity of the output.

Figure 6. FL feedback control system.

Figure 7. Matrix for Rule-Base.

The following statements demonstrate how to use each
input’s linguistic variables to derive the output fuzzy sets,
which are Slow Down, Do Nothing, and Speed Up. The
matrix in Figure 7 shows the two inputs with their
respective fuzzy variables outside the matrix, and the
output’s fuzzy variables inside the matrix. The rules are
numbered from left to right beginning with the top row,
Rule #1 to Rule #9.

Rule 1. “error is Slow and derror is negative” says the
platform is moving too slow and is slowing
down. Output is a positive voltage.

Rule 2. “error is OK and Δerror is negative” says the
platform is moving at an acceptable speed and is
slowing down. The output is a positive voltage.

Rule 3. “error is Fast and Δerror is negative” says the
platform is moving too fast and is slowing down.
The output is a negative voltage.

Rule 4. “error is Slow and Δerror is OK” says the
platform is going too slow and is not changing.
The output is a positive voltage.

Rule 5. “error is OK and Δerror is OK” says the
platform is moving at an acceptable speed and is
not changing. The output is a zero voltage.

Rule 6. “error is Fast and Δerror is OK” says the
platform is moving too fast and is not changing.
The output is a negative voltage.

Rule 7. “error is Slow and Δerror is positive” says the
platform is moving too slow and is speeding up.
The output is a positive voltage.

Rule 8. “error is OK and Δerror is positive” says the
platform is moving at an acceptable speed and is
speeding up. The output is a negative voltage.

Rule 9. “error is Fast and Δerror is positive” says the
platform is moving too fast and is speeding up.
The output is a negative voltage.

Table 3. Fuzzy Rules.

Rule # Fuzzy Equation
1 Slow AND NEG
2 OK AND NEG
3 Fast AND NEG
4 Slow AND OK
5 OK AND OK
6 Fast AND OK
7 Slow AND POS
8 OK AND POS
9 Fast AND POS

The inputs have been fuzzified to obtain confidence
levels, and the inference method has generated a rule
matrix. The next process in the FL algorithm is
defuzzification. MATLAB’s default procedure is the
Centroid Method, which uses the center of gravity (COG)
equation shown in Equation 5, with the solutions from
each of the rules listed in Table 3. The equation used to
derive the COG calculates the area in a particular output
MF at height equal to that confidence level derived by
that rule. Where μcrisp is the crisp output value. bi is the
center of each output MF and is also called the weight
factor, and providing that the MFs are symmetrical it can
be shown that the area μ(i) beneath the confidence level
can be derived by multiplying the MF’s width by a factor
of its height. The equation is listed below, as Equation 6.

Step

Scope

s +-39202
7570

Plant
FL Controller

du/dt

Derivative

derror

error
error

 5

∑ ∫
∑ ∫=

i i

i iicrisp
b

)(

)(

μ

μ
μ (5)

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

2

)(
i

iii
h

hwμ (6)

FL DESIGN PROCESS IN MATLAB
1. The FL equivalent of a PD controller is composed of

two inputs and one output. The two inputs are
defined as the ‘error’ signal between the source and
the feedback, and the ‘derror’ signal between the
current error and the previous error with respect to
time. Using MATLAB the first objective is to define
the FIS, see Figure 8.

2. Define the fuzzy sets’ range values. Select the MF
editor through the edit menu, and declare the range of
interest (ROI) for each variable. Then use the edit
menu to add MFs.

3. Generate a matrix using the input variables and their
MF names to derive the consequent to each premise.
This is accomplished through a series of “IF premise
THEN consequent” statements, which are inserted
through the Rule-Editor using the fuzzy ‘AND’
method.

4. Once the rules have been defined then use the built-in
Rule Viewer to verify any concept issues that may
arise in the future.

5. A FIS has now been created, export it to the

MATLAB workspace. Open Simulink and create a
circuit using the fuzzy logic controller. Open the
controller and insert the name of the FIS just created.
The Simulink program is now ready to be run.

Figure 8. FIS editor defines I/O variables.
3. Conclusions

The FIS is composed of MFs, logical operators, and
the linguistic rules. The two types of FIS are Mamdani,
and Sugeno. The Mamdani-type FIS was the first of the
two to be in the fuzzy world, as Ebrahim Mamdani
proposed FL to be used to control a steam engine and
boiler in 1975. This method uses the Centroid Method for
its defuzzification process. The Sugeno method only
works when the output fuzzy sets are linear, or constant.

Development of the two systems certainly seems to be
a basic operation, but implementing them in VHDL posed
limitations that made them difficult. This was mainly due
to the integer mathematics; however, using an offset value
equal to 10(N/4) solved two issues with the output value:
(1) an increased precision during the calculation was
realized, and (2) this offset during the derivation process
proved to deliver an acceptable output value that did not
require compensation. The precision was established by
knowing how far to shift the values to the left of the
decimal, which is relative to the word size of the project.

The next step is to implement this controller on a
motion base here in the lab, and prepare it for use in the
wind tunnel test.

4. Acknowledgements

I would like to particularly thank my advisor Dr. Jerry
Tucker for his courteous and professional expertise. This
association continues professionally in our working
together, co-authoring papers, and even co-authoring a
mini-course that was taught at the Embedded Systems
Conference in San Francisco. As my advisor Dr. Tucker
has introduced me to three of his colleagues; two of which
are on my thesis review board – Dr. Rosalyn Hobson and
Dr. Karla Mossi, and the third presented a mini-course on
Advanced DSP topics where I work and tailored it to my
needs – Dr. Alen Docef.
 I am extending my appreciation to my place of
employment as my supervisors throughout my career
have allowed me to progress through the education
system and achieve my goal of an Advanced Degree in
Engineering. These managers include Randy Regan,
Steve Jurczyk, Tom Shull, Robert Swain, and James Bell.
 Mostly I thank and appreciate my family, who has
stuck by my side and helped me no matter how difficult
my schedule became. They have given me moral support,
financial assistance and emotional care and love so freely
with no expectation of a return in their investment.

 6

LIST OF REFERENCES

[1] K.M. Passino and S. Yurkovich, Fuzzy Control. Addison-Wesley, 1998. p. v.
[2] H.T. Nguyen and E.A. Walker, A First Course in FUZZY LOGIC, 3rd Edition. Taylor and Francis Group, LLC, 2006. p.
v.
[3] K.M. Passino and S. Yurkovich, Fuzzy Control. Addison-Wesley, 1998. p. 10.
[4] Carl Mills, Gene Monroe, Jeff Herath, Chris Edwards. Adaptive Data Analysis and Processing Technology Final Review.
The John Hopkins University Applied Physics Laboratory. P. 50.
[5] Helsinki University of Technology. Fuzzy Logic Control. http://www.control.hut.fi/Kurssit/AS-
74.3115/Material/Fuzzy_Control_Slides.pdf
[6] Fuzzy Logic Toolbox. The MathWorks, Inc. 1995
[7] K.M. Passino and S. Yurkovich, Fuzzy Control. Addison-Wesley, 1998. p. 12.
[8] Armin Zinali. Interpolative Fuzzy Inferences Using Least Square Principle. Transactions on Engineering, Computing and
Technology V4 February 2005 ISSN 1305-5313. p.245.
[9] Helsinki University of Technology. Fuzzy Logic Control. http://www.control.hut.fi/Kurssit/AS-
74.3115/Material/Fuzzy_Control_Slides.pdf
[10] K.M. Passino and S. Yurkovich, Fuzzy Control. Addison-Wesley, 1998. p. 13.

[11] N.S. Nise. Control Systems Engineering third Edition. John Wiley & Sons, Inc. 2000. pp. 329-332.

