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Abstract 

 Electro-mechanical device controllers typically come 
in one of three forms, proportional (P), Proportional 
Derivative (PD), and Proportional Integral Derivative 
(PID).  Two methods of control are discussed in this 
paper; they are (1) the classical technique that requires 
an in-depth mathematical use of poles and zeros, and (2) 
the fuzzy logic (FL) technique that is similar to the way 
humans think and make decisions [1].  FL controllers are 
used in multiple industries; examples include control 
engineering, computer vision, pattern recognition, 
statistics, and data analysis [2].  Presented is a study on 
the development of a PD motor controller written in very 
high speed hardware description language (VHDL), and 
implemented in FL. 

Four distinct abstractions compose the FL controller, 
they are the fuzzifier,  the rule-base, the fuzzy inference 
system (FIS), and the defuzzifier [3].  FL is similar to, but 
different from, Boolean logic; where the output value may 
be equal to 0 or 1, but it could also be equal to any 
decimal value between them.  This controller is unique 
because of its VHDL implementation, which uses integer 
mathematics.  To compensate for VHDL’s inability to 
synthesis floating point numbers, a scale factor equal to 
10(N/4) is utilized; where N is equal to data word size.  The 
scaling factor shifts the decimal digits to the left of the 
decimal point for increased precision. 

PD controllers  are ideal for use with servo motors, 
where position control is effective.  This paper discusses 
control methods for motion-base platforms where a 
constant velocity equivalent to a spectral resolution of 
0.25cm-1 is required [4]; however, the control capability 
of this controller extends to various other platforms. 

1. Introduction 
The PD form of a controller is an ideal method for 

controlling servo motors with respect to motion base 

platforms, because it is a position algorithm based on the 
current position and the rate at which that position is 
changing [5].  The focus of this research is on the design 
and development of a FL PD servo motor controller 
implemented in VHDL.  A basic diagram of a classical 
control system with a feedback loop is shown in Figure 1.   

 
Figure 1. Diagram of a typical control circuit. 

 
FL works much like a human brain; an example is 

monitoring the water temperature while preparing a bath.  
If the water is too cold then increase the hot water flow, if 
it is just right then do nothing and let the water continue 
to fill, but if it is too hot then increase the cold water flow.  
In this example there are three temperature conditions 
used as criteria; too cold, just right, and too hot.  These 
temperature conditions are called fuzzy variables and 
compose a fuzzy set.  There is no exact measure of heat 
for the perfect bath, because that temperature is at 
differing degrees for different people, which implies that 
the final assessment will be made by the individual taking 
the bath.  

FL is about relative truth and the importance of being 
exact or approximate [6], it refers to the degree of truth, 
not the likelihood of truth.  The “degree of truth” refers 
the degree of membership (DOM), Equation 1 
demonstrates how the fuzzy set opinion could be used to 
calculate this value.  Opinion could be a piece-wise linear 
function, an elliptical function, or some other descriptive 
analysis used to determine an approximate value. 

 
DOM = f(opinion)                      (1) 

 
The value placed on the temperature is a fuzzy one, so 

there must be a numerical value associated with it if a 
computer is to make human-like decisions.  One might 
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say that a given water temperature is a little too cool, but 
overall it is almost OK.  Mathematically that may 
translate to 35% too cold, and 65% just right.  A human 
inputs the numeric range values that the fuzzy variables 
will be equated to.  An expert may derive these values 
using their intuitive assessment based on their experience 
or what seem to be logical [7].   

The range limits of these fuzzy variables can be 
viewed as linguistic in the design stages of the system; the 
variables used for this example are defined as: (too cold, 
just_rightmin], [just_rightmin, just_rightmax], and 
[just_rightmax, too hot).  See Figure 2 for a visual depiction 
of the fuzzy set, and note that this is the precept to the 
formulation of membership functions (MFs).  MFs are the 
functions already discussed for the right-hand side of 
Equation 1, and the DOM is the derived confidence that 
the temperature of the water is too cold or just right or too 
hot. 

Figure 2.  Visual depiction of the fuzzy set. 
 
Confidence levels are physical measures from where 

the input value on the independent axis measures 
perpendicularly to intersect the MF, and from there 
measures horizontally to the dependant axis, which will 
be some value between 0 and 1.  MFs are line equations 
and each fuzzy range has its own MF.  MFs can be shaped 
as a straight line, an elliptical form, a bell shape, etc.  
They are used to define the degrees of membership 
(DOM) for input and output values.  MATLAB was used 
to depict how this ties together, and is shown in Figure 3.  
This combination of fuzzy ranges, MFs and confidences 
is replicated for each input and each output.  Later during 
a discussion on fuzzy rules the interpretation of this chart 
would read that the computer is 35% confident that the 
water is too cold, because the analysis can only be as sure 
as the least confidence. 

After all the inputs have been fuzzified, the computer 
must use a fuzzy inference system (FIS) to combine these 
values to derive the inputs to the output’s fuzzy set.  This 
is done through a set of rules, composed of IF… THEN… 
statements.  The IF’s conditional statements for the rules 
compare the two inputs of velocity and acceleration and 
join them using the fuzzy ‘AND’, this is how a FL PD 
control design is created.  The fuzzy ‘AND’ yields the 
minimum value from a comparison between the two 
inputs.   

The final stage in FL defuzzifies the output variables 
from the FIS.  This algorithm combines the results from 
the rules and multiplies each output variable by its 
associated weight.  The weight is a value given to each 
fuzzy output variable of the fuzzy output set.  It could be 
a standard non-biased value equal to the center of the 

variable’s range, or some other value based on an expert’s 
opinion.  The sum of these variables composes the crisp 
output delivered to the external object being controlled.  
The method of defuzzification used in this research was 
the root-sum-square; five other candidate methods 
include: Centroid, Maximum, Mean of Maximum, Height, 
and Modified Height [8]. 
 

 
Figure 3.  Visual diagram depicting the DOM. 

 
Using fuzzy sets to establish the control parameters of 

a system offers significant advantages in non-linear cases 
provided that the rule base does not get too large [9].  
Using these fuzzy sets maintains precise control over the 
controlled system as the hardware may degrade over time, 
or one or more of the inputs may vary.  A significant 
advantage of this FL controller is that  it has been coded 
in VHDL and programmed into a single field 
programmable gate array (FPGA), because this reduces 
the number of electronic components used to implement 
the controller, it enables redundancy by having multiple 
copies/images of the code, and yields robustness as a 
controller that has multiple systems capability.   

The final product of this research is a FL controller 
that has been developed using VHDL to program a Xilinx 
FPGA, for use in motion base systems or other types of 
systems that require precise signal response.  The 
controller is capable of overseeing multiple types of 
control signals; an infant software version of this 
firmware system was tested and successfully implemented 
in the robotics lab of the Electronics System Branch at the 
NASA Langley Research Center (LaRC).  This VHDL-
coded FL controller is planned to be utilized in the spring 
of ‘2007 on-board an aerodynamic structure mounted in a 
NASA LaRC wind tunnel.  The controller will be part of 
project that will programmatically maneuver ailerons and 
other wing-tip objects during the tests without manual 
manipulations, using a multiple input multiple output 
(MIMO) general predictive algorithm. 
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2.   Technology Review 
 

FL controllers work well with both linear and non-
linear systems.  FL is rapidly spreading throughout the 
technology world in the areas of aircraft/spacecraft, 
automated highway systems, automobiles, autonomous 
vehicles, manufacturing systems, power industry, process 
control, and robotics [10].  PD control is also referred to 
as a “lead network,” a term relevant to classical 
controllers.  Evidence will be provided to conclude that 
classical PD controllers may not meet design 
specifications for non-linear systems.  The Mathworks’ 
Simulink and MATLAB software packages are used to 
demonstrate through simulation that FL controllers are 
easier to design and are more robust than classical 
controllers.   

 
CLASSICAL DESIGN METHOD 

The following example uses a hypothetical plant that is 
non-linear, using the open loop equation form from 
Equation 2 the open loop system is defined in Equation 3.  
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Design engineers generate control parameters to satisfy 
system requirements, such as the ones provided in Table 
1.  A thorough understanding of mathematics is required 
for this technique, and it should be noted here that all 
plants and compensators are defined by polynomial 
equations, with zeros in the numerator and poles in the 
denominator.   

Table 1. Design requirements. 
REQ’T DESCRIPTION 

1 %OS < 50% 
2 Ts < 1 second 
3 e(∞) < 10%; estep, eramp, or eparabolic 
4 GM > 8dB 
5 PM > 45° 

 
The plant described in Equation 2 reveals a pole in the 

right hand plane (RHP), and is an indication that the plant 
is non-linear.  As a side this can be further verified by 
using the Routh-Hurwitz method [11] on the closed-loop 
version of the open loop transfer function.  Equation 4 is 
the closed loop transfer function form. 
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Using Equation 4, the closed loop transfer function is: 

99.649,3
7570)( 2 −

=
s

sGCL                      (5) 

Expanding the denominator polynomial is how the Routh-
Hurwitz table is comprised, such as in Table 2.  Routh-
Hurwitz states when a zero is displayed in the middle 
column, that the system is non-linear.  

 
Table 2.  Routh-Hurwitz table. 

S2 1 3,649 

S1 0 0 
 

CLASSICAL DESIGN PROCESS IN MATLAB 
1. At the MATLAB command prompt, define  

“Gs  = tf(7570,conv([1 62.61],[1 -62.61])”; open 
the root locus tool.   

2. Right click on the graph and input the system 
characteristics derived in step one using equations. 

3. Click on the step function and adjust the gain to see 
if the given requirements can be met. 

4. Since the system must have more compensation, 
add a zero and a pole to make it a lead network, 
i.e., a PD controller. 

5. It can be seen from step 4 that the transient 
responses have been met, see Figure 4.  The next 
step is to calculate the Steady-State error. 

6. Unfortunately the classical PD design does not 
meet the steady-state error requirement.  Add a lag 
component by inserting another zero and another 
pole; the system now meets all design criteria, but 
as a PID Controller. 
a. With a steady-state error eparabolic(α) = 7.9% 
b. Figure 5 shows that the GM and PM were also 

met, where the GM is nearly 50dB, and the 
PM is 64.4°. 

 

Figure 4. Root locus and step response from step 5. 
 

Figure 5. Verification using Bode plots. 
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FUZZY LOGIC DESIGN METHOD 
 The linguistic fuzzy variables ‘Slow’, ‘OK’, ‘Fast’, 
‘NEG’, ‘OK’, and ‘POS’ comprise the two fuzzy sets; 
error and derror.  To quantify the input confidence levels, 
use the line equation formula as the input to Equation 1 
and refer to Figure 3 to better understand the fuzzification 
process.  A Simulink model of the FL controller is shown 
in Figure 6, note the slight difference from the classical 
model shown in Figure 1 as there are two inputs to the FL 
compensator, “error” and “derror”.  Each of these two 
inputs has three fuzzy variables, as shown in Figure 7, and 
used to develop Linguistic Rules in Table 3.  The 
products of these rules are then aligned to determine the 
polarity of the output.    

Figure 6. FL feedback control system. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Matrix for Rule-Base. 
 

The following statements demonstrate how to use each 
input’s linguistic variables to derive the output fuzzy sets, 
which are Slow Down, Do Nothing, and Speed Up.  The 
matrix in Figure 7 shows the two inputs with their 
respective fuzzy variables outside the matrix, and the 
output’s fuzzy variables inside the matrix.  The rules are 
numbered from left to right beginning with the top row, 
Rule #1 to Rule #9.   
 

Rule 1. “error is Slow and derror is negative” says the 
platform is moving too slow and is slowing 
down.  Output is a positive voltage. 

Rule 2. “error is OK and Δerror is negative” says the 
platform is moving at an acceptable speed and is 
slowing down.  The output is a positive voltage. 

Rule 3. “error is Fast and Δerror is negative” says the 
platform is moving too fast and is slowing down.  
The output is a negative voltage. 

Rule 4. “error is Slow and Δerror is OK” says the 
platform is going too slow and is not changing.  
The output is a positive voltage. 

Rule 5. “error is OK and Δerror is OK” says the 
platform is moving at an acceptable speed and is 
not changing.  The output is a zero voltage. 

Rule 6. “error is Fast and Δerror is OK” says the 
platform is moving too fast and is not changing.  
The output is a negative voltage. 

Rule 7. “error is Slow and Δerror is positive” says the 
platform is moving too slow and is speeding up.  
The output is a positive voltage. 

Rule 8. “error is OK and Δerror is positive” says the 
platform is moving at an acceptable speed and is 
speeding up.  The output is a negative voltage. 

Rule 9. “error is Fast and Δerror is positive” says the 
platform is moving too fast and is speeding up. 
The output is a negative voltage. 

 
Table 3. Fuzzy Rules. 

Rule # Fuzzy Equation 
1 Slow AND NEG 
2 OK AND NEG 
3 Fast AND NEG 
4 Slow AND OK 
5 OK AND OK 
6 Fast AND OK 
7 Slow AND POS 
8 OK AND POS 
9 Fast AND POS 

 
 

The inputs have been fuzzified to obtain confidence 
levels, and the inference method has generated a rule 
matrix.  The next process in the FL algorithm is 
defuzzification.  MATLAB’s default procedure is the 
Centroid Method, which uses the center of gravity (COG) 
equation shown in Equation 5, with the solutions from 
each of the rules listed in Table 3.  The equation used to 
derive the COG calculates the area in a particular output 
MF at height equal to that confidence level derived by 
that rule.  Where μcrisp is the crisp output value.  bi is the 
center of each output MF and is also called the weight 
factor, and providing that the MFs are symmetrical it can 
be shown that the area μ(i) beneath the confidence level 
can be derived by multiplying the MF’s width by a factor 
of its height.  The equation is listed below, as Equation 6. 

Step

Scope

s  +-39202
7570

Plant
FL Controller

du/dt

Derivative

derror

error
error
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FL DESIGN PROCESS IN MATLAB 
1. The FL equivalent of a PD controller is composed of 

two inputs and one output.  The two inputs are 
defined as the ‘error’ signal between the source and 
the feedback, and the ‘derror’ signal between the 
current error and the previous error with respect to 
time.  Using MATLAB the first objective is to define 
the FIS, see Figure 8.   

2. Define the fuzzy sets’ range values.  Select the MF 
editor through the edit menu, and declare the range of 
interest (ROI) for each variable.  Then use the edit 
menu to add MFs. 

3. Generate a matrix using the input variables and their 
MF names to derive the consequent to each premise.  
This is accomplished through a series of “IF premise 
THEN consequent” statements, which are inserted 
through the Rule-Editor using the fuzzy ‘AND’ 
method.   

4. Once the rules have been defined then use the built-in 
Rule Viewer to verify any concept issues that may 
arise in the future.     

5. A FIS has now been created, export it to the 

MATLAB workspace.  Open Simulink and create a 
circuit using the fuzzy logic controller.  Open the 
controller and insert the name of the FIS just created.  
The Simulink program is now ready to be run. 

Figure 8. FIS editor defines I/O variables. 
3. Conclusions 

 

The FIS is composed of MFs, logical operators, and 
the linguistic rules.  The two types of FIS are Mamdani, 
and Sugeno.  The Mamdani-type FIS was the first of the 
two to be in the fuzzy world, as Ebrahim Mamdani 
proposed FL to be used to control a steam engine and 
boiler in 1975.  This method uses the Centroid Method for 
its defuzzification process.  The Sugeno method only 
works when the output fuzzy sets are linear, or constant.   

Development of the two systems certainly seems to be 
a basic operation, but implementing them in VHDL posed 
limitations that made them difficult.  This was mainly due 
to the integer mathematics; however, using an offset value 
equal to 10(N/4) solved two issues with the output value: 
(1) an increased precision during the calculation was 
realized, and (2) this offset during the derivation process 
proved to deliver an acceptable output value that did not 
require compensation.  The precision was established by 
knowing how far to shift the values to the left of the 
decimal, which is relative to the word size of the project. 

The next step is to implement this controller on a 
motion base here in the lab, and prepare it for use in the 
wind tunnel test. 
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