Numerical Strip-Yield Calculation of CTOD

The 10th Joint DOD/NASA/FAA Conference on Aging Aircraft
April 16-19, 2007

Joachim Beek
Royce Forman
NASA Johnson Space Center
Houston
Outline

- CTOD background

- Using Boundary Elements to calculate crack face displacements
 - Theory
 - Practical procedure
 - Example cases

- Summary and future plans
CTOD background: plastic zone sizes

- **Irwin (1958)**
 - LEFM gives $\sigma \sim 1/\sqrt{r}$; however: real materials yield
 - Crack behaves as if it were longer: $a_{\text{eff}} = a + \rho$
 - Plastic zone size estimated from stress redistribution

- **Dugdale (1960)**
 - Yielding confined to narrow strip ahead of crack (the “strip yield” model)
 - Stresses at “effective” crack tip ($a + \rho$) are finite
 - Yield zone loading neutralizes stress singularity due to remote loading
 - Plastic zone size estimated from setting $K(a + \rho) = 0$
Knowledge of ρ enabled derivation of explicit CTOD expression
- Complex-variable analysis used (no full elastic-plastic analysis)
- Elastic-plastic behavior modeled by superposition of 2 elastic solutions

Wells (1963)
- CTOD is proportional to overall tensile strain, even after general yielding
 ⇒ CTOD became widely accepted as a useful fracture criterion when effects of the crack tip plastic zone are important
CTOD background: some calculation methods

- Dugdale’s model
 - Based on thin infinite plate, plane stress, remote tension
 - Extensions to other infinite geometries limited to a few particular cases
 - Arbitrary finite geometries require tailor-made elastic solutions

- Weight function, green’s function, collocation methods
 - Developed for particular finite geometries
 - Potentially heavy computational burden (e.g. reference solutions)

- Finite elements
 - General-purpose, but also severe computational toll
 - Where behind the crack tip to measure CTOD?
 - 1st node, 2nd node, 45° intercept, or some prescribed distance
 - Re-meshing burden for analyses of multiple loads or cracks
Using Boundary Elements to calculate crack face displacements: theory

- Direct application of conventional BEMs to fracture problems leads to mathematically degenerate formulation
 - Cause: geometric proximity of crack surfaces
 - Information about crack face tractions is lost
 - Can circumvent by developing additional integral equation for crack face tractions

- One approach:
 - Derive crack face traction equation from displacement eq^n via
 - Strain-displacement relations, Hooke’s law, limiting process
 - Resulting equation contains hypersingular kernel
 - Requires special interpretation; challenging to evaluate numerically
Better approach (Prof. Mear et al, Univ of Texas):

- Hypersingularity avoided by eliminating the offending terms in the displacement equation **before** deriving traction equation:
 - Appropriate choice of stress function for the stress kernel
 - Integration by parts to obtain a “modified” displacement equation

- Crack face traction equation is then derived as before
 (strain-displacement relations, Hooke’s Law, limiting process)

- Other practical benefits: small mesh size and fast solution times

- This is the basis of NASGRO’s BE component
Using Boundary Elements to calculate crack face displacements: theory (cont’d)

- Gradients of relative crack face displacements ΔD
 - Described by dislocation density function A
 - A is approximated by functions containing the requisite singularity
 - A_j are nodal quantities in the vector of unknowns solved by NASBEM

- Technique implemented in NASBEM to integrate A
 - ΔD is sum of contributions from each crack element between the tip and the point of interest

\[
A(\zeta) = \frac{i\mu}{\pi(\kappa + 1)} \frac{\partial[\Delta D(\zeta)]}{\partial s}
\]

\[
A(t) = A[\zeta(t)] = \frac{1}{2\sqrt{\alpha_j}} \left(\frac{1-t}{\sqrt{\rho_j + t}} A_j + \frac{1+t}{\sqrt{\rho_j + t}} A_{j+1} \right)
\]

\[
\Delta D(\zeta) = \frac{\pi(\kappa + 1)}{i\mu} \int_0^\zeta A[\zeta(s)] ds
\]
NASGRO is an analysis software suite with four distinct modules:

- Fracture mechanics and fatigue crack growth analysis (NASFLA series)
- Fracture and fatigue crack growth material property database; fitting of experimental data (NASMAT)
- 2D boundary element stress analysis and stress intensity factor calculation (NASBEM)
- Fatigue crack formation (initiation) analysis (NASFORM)
NASGRO history

- **1980s:**
 - NASA/FLAGRO development initiated to provide fracture control analysis for manned space programs
 - NASA Fracture Control Methodology Panel formed to standardize methods and monitor NASA/FLAGRO development

- **1990s:**
 - NASA Interagency Working Group (NASA, DoD, FAA, ESA) formed to provide guidance for NASA/FLAGRO development
 - Additional NASA, FAA, USAF support for aging aircraft

- **2000s:**
 - NASA and Southwest Research Institute® sign Space Act Agreement for joint NASGRO development
 - NASGRO Industrial Consortium formed by SwRI; members include government agencies and industrial representatives
Example of typical NASBEM use: Orbiter feedline flowliner

- Fatigue cracks in flowliner (LH$_2$ supply to SSME)
 - 1’ Ø, 8-12’ L
 - Bellows within gimballing joints
 - Flowliners inside bellows to smooth flow

- Concern:
 - Engine failure due to debris
 - Loss of mission or vehicle

- NASBEM used to get K vs a
Using NASBEM to calculate CTOD: procedure

- Use NASBEM to construct model
 - “Mathematical” crack consisting of
 - Physical crack a
 - Cohesive load zone ρ
 - Applied loading
 - Cohesive yield loading

- Following Dugdale’s idea
 - Plastic zone is sized so that K due to cohesive loading cancels K due to applied loading:
 \[K_{\sigma y} = -K_{\sigma} \]
For a given yield stress σ_Y, achieve $K(a+\rho) = K_{\sigma_Y} + K_\sigma = 0$

- by setting the plastic zone size ρ and iterating on the remote stress σ
 - advantage: no need to remesh while iterating
- or by setting the remote stress σ and iterating on ρ
 - advantage: CTOD obtained for specific values of σ

CTOD value is given by crack face displacement at tip of physical crack a
Using NASBEM to calculate CTOD: results

- **Mesh**
 - Quadratic boundary elements, linear crack elements

- **Smaller mesh size than other BEM formulations**
 - Typical error <3% with 20 elements or less per boundary or crack
 - Crack face loading discontinuity requires a finer mesh
 - Fast results (example cases run in 2-3 seconds)

- **Configurations studied**
 - Center crack in finite and infinite sheets
 - Edge crack in finite sheet
 - Cracks from holes in infinite sheets
 - Periodic cracks in infinite sheet
 - 3-hole tension specimen
CTOD verification case: reproducing Dugdale’s result

- First verification case
 - Reproducing Dugdale’s model really should work!

- Dugdale model consists of
 - Center crack in infinite plate
 - Remote uniform tension
 - Cohesive yield stress on crack faces near crack tips
CTOD verification case: reproducing Dugdale’s result, cont’d

- Results virtually identical over wide range of σ/σ_Y
 - 4 significant digits
 - non-uniform error due to manually iterating to $K=0$

<table>
<thead>
<tr>
<th>σ / σ_Y</th>
<th>CTOD/$(\sigma_Y a/E)$ BEM</th>
<th>CTOD/$(\sigma_Y a/E)$ Dugdale</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.0810</td>
<td>0.0813</td>
<td>0.37</td>
</tr>
<tr>
<td>0.24</td>
<td>0.1845</td>
<td>0.1854</td>
<td>0.49</td>
</tr>
<tr>
<td>0.32</td>
<td>0.3362</td>
<td>0.3362</td>
<td>0</td>
</tr>
<tr>
<td>0.40</td>
<td>0.5397</td>
<td>0.5397</td>
<td>0</td>
</tr>
<tr>
<td>0.48</td>
<td>0.8100</td>
<td>0.8050</td>
<td>0.62</td>
</tr>
<tr>
<td>0.56</td>
<td>1.1469</td>
<td>1.1470</td>
<td>0.01</td>
</tr>
<tr>
<td>0.64</td>
<td>1.5890</td>
<td>1.5890</td>
<td>0</td>
</tr>
<tr>
<td>0.72</td>
<td>2.1740</td>
<td>2.1740</td>
<td>0</td>
</tr>
<tr>
<td>0.80</td>
<td>2.9900</td>
<td>2.9900</td>
<td>0</td>
</tr>
<tr>
<td>0.88</td>
<td>4.2650</td>
<td>4.2640</td>
<td>0.02</td>
</tr>
<tr>
<td>0.96</td>
<td>7.0620</td>
<td>7.0490</td>
<td>0.18</td>
</tr>
</tbody>
</table>
CTOD verification case: edge crack

- Verification case: C(T) specimen with W=3, a=1
 - Plastic zone size and CTOD were calculated (ρ is shown here)
 - Excellent agreement with collocation results by Newman & Mall, and also Terada (both 1983)
CTOD verification case: 1 crack from a hole, infinite plate

- Verification case: 1 crack from a hole in an infinite plate under remote uniaxial loading
 - Plastic zone size calculated
 - Excellent correlation to analytical results by Rich (complex-variable analysis with conformal mapping, 1968)
Verification case: plastic zone size studied for various values of a/R

- Difference between NASBEM and Rich < 2.5%
- Larger ρ in small cracks due to higher stress concentration at hole
- Solution approaches Dugdale solution for large a/R
CTOD verification case: periodic cracks in an infinite sheet

- Practical considerations:
 - How to model an infinite number of cracks?
 - 7 cracks seems a good approximation -- idea taken from literature on modelling large arrays of fuselage fasteners
- BE compared to Tada (Westergaard stress function, 1974)
CTOD verification case: periodic cracks in an infinite sheet, cont’d

- Excellent correlation for plastic zone size vs applied stress
CTOD verification case: periodic cracks in an infinite sheet, cont’d

- Excellent correlation for CTOD v plastic zone size
CTOD calculations: center crack in finite-width sheet

- BE compared to test data (Forman, 1966)
 - Tests on 0.020” AM350CRT steel sheet for toughness variation with specimen size
 - Plastic zone sizes were measured photographically
 - NASBEM compares well with test data
CTOA calculations

- **Using NASBEM as a fracture predictor:**
 - Crack tip opening angle (CTOA) has been noted by many to be a useful fracture criterion.
 - CTOA is calculated at ~0.04” (1 mm) behind the crack tip.
 - Comparisons to analytical results on previous pages were for CTOD at crack tip (“δ₅”) – not a practical location for real measurements.
 - CTOA = 2 * tan⁻¹(CTOD/2x), where x is distance behind crack tip.

- **Comparisons for**
 - M(T) specimen: Al 7075-T6, Al 2024-T81
 - 3-hole tension specimen: Al 7075
CTOA calculations:
center crack in finite-width sheet

- BE compared to test data (Forman, 1966)
 - M(T) specimens, 0.060” sheet
 - Al 7075-T6, 2024-T81

- Idea was to see if calculated CTOD or CTOA was reasonably constant over crack size \(a \)
 - looks good for 7075
 - less so for 2024
CTOA calculations:
3-hole tension specimen

- 3-hole tension (THT) specimen simulates K for a cracked stiffened panel
 - K curve taken from ASTM STP 896 (1985)
CTOA calculations: 3-hole tension specimen

- CTOA calculated for failure loads taken from ASTM round-robin on experimental and predictive fracture analysis methods (ASTM STP 896)
 - K and calculated CTOA show that THT is a complex configuration
 - Work is in progress
Many existing methods to calculate CTOD can be costly and complicated, or apply only to particular configurations.

A new numerical method for calculating CTOD was investigated:

- NASGRO’s Boundary Element module NASBEM was adapted to calculate displacements at any point on the crack.
- Demonstrated for a number of crack configurations:
 - finite and infinite domains
 - center and edge cracks
 - complex cases with several cracks and holes
- Great accuracy at minimal computational cost
Future

- Still a work in progress:
 - CTOA investigated ... more work needs to be done
 - Is K_c corrected for Dugdale plastic zone size a better fracture criterion than $K_c(a)$ alone, or K_c corrected for Irwin plastic zone size?
 - Multi-site damage issues to be investigated
 - Strain hardening -- easy to model

- CTOD capability is currently still a research tool
 - Turn capability into production-level tool
 - Implement automation of CTOD calculations
 - Manual meshing and convergence to $K=0$ for multiple cracks is tedious!