
In, The Martian Surface: Composition, Mineralogy, and Physical Properties (J.F. Bell III, ed.), Cambridge 
University Press, in press, 2007. 

 

Chapter 15: Iron Mineralogy and Aqueous Alteration on Mars 

from the MER Mössbauer Spectrometers 
 

Richard V. Morris 

NASA Johnson Space Center, Houston, TX, USA 

and 

Göstar Klingelhöfer 

Johannes Gutenberg-Universität, Mainz, Germany 

 

 

ABSTRACT 

The twin Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani 

Planum) used MIMOS II Mössbauer spectrometers to analyze martian surface materials in the 

first application of extraterrestrial Mössbauer spectroscopy. The instruments acquired spectra 

that identified the speciation of Fe according to oxidation state, coordination state, and 

mineralogical composition and provided quantitative information about the distribution of Fe 

among oxidation states, coordination states, and Fe-bearing phases. A total of 12 unique Fe-

bearing phases were identified: Fe2+ in olivine, pyroxene, and ilmenite; Fe2+ and Fe3+ in 

magnetite and chromite; Fe3+ in nanophase ferric oxide (npOx), hematite, goethite, jarosite, an 

unassigned Fe3+ sulfate, and an unassigned Fe3+ phase associated with jarosite; and Fe0 in 

kamacite. Weakly altered basalts at Gusev crater (SO3 = 2.5 ± 1.4 wt.% and Fe3+/FeT = 0.24 ± 

0.11) are widespread on the Gusev plains and occur in less abundance on West Spur and 

Husband Hill in the Columbia Hills. Altered low-S rocks (SO3 = 5.2 ± 2.0 wt.% and Fe3+/FeT = 

0.63 ± 0.18) are the most common type of rock in the Columbia Hills. Ilm-bearing, weakly 

altered basalts were detected only in the Columbia Hills, as was the only occurrence of chromite 

in an altered low-S rock named Assemblee. Altered high-S rocks (SO3 > 14.2 wt.% and Fe3+/FeT 

= 0.83 ± 0.05) are the outcrop rocks of the ubiquitous Burns formation at Meridiani Planum. 

Two Fe0-bearing rocks at Meridiani Planum (Barberton and Heat Shield Rock) are meteorites. 

Laguna Class soil is weakly altered (SO3 = 6 ± 2 wt.% and Fe3+/FeT = 0.29 ± 0.08) and widely 
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distributed at both Gusev crater and Meridiani Planum, implying efficient global mixing 

processes or a global distribution of precursor rocks with comparable Fe mineralogical 

compositions. Paso Robles Class soil is heavily altered (SO3 ~ 31 wt.% and Fe3+/FeT = 0.83 ± 

0.05), is relatively uncommon, and occurs as subsurface deposits in the Columbia Hills. Berry 

Class soil is also heavily altered (SO3 = 5 ± 1 wt.% and Fe3+/FeT = 0.60 ± 0.13) and occurs at 

Meridiani Planum as lag deposits, at the crests of aeolian bedforms, and as isolated pockets on 

outcrop surfaces. Magnetite is identified as the strongly magnetic component in martian soil. 

Jarosite (in the Burns outcrop at Meridiani Planum) and goethite (in Clovis Class rocks at Gusev 

crater) are mineralogical markers for aqueous processes because they contain the hydroxide 

anion (OH-) as an essential part of their structure. Each yields ~10 wt.% H2O upon 

dehydroxylation. The presence of Fe sulfates on opposite sides of Mars is evidence that aqueous 

processes under acid sulfate conditions are or were common. Except for Independence Class 

rocks in the Columbia Hills, the overall Fe mineralogical compositions and similar basaltic bulk 

chemical compositions (calculated with respect to S = Cl = 0) of the population of altered rocks 

analyzed by MER imply isochemical alteration of basaltic precursors at low water-to-rock ratios. 

 

 

 

1. Introduction 

As part of the Athena instrument package, the Mars Exploration Rovers (MER) carried 

Mössbauer (MB) spectrometers to the surface of another planet for the first time. The rover 

named “Spirit” landed at Gusev crater on 4 January 2004, and the rover named “Opportunity” 

landed on the other side of the planet at Merdiani Planum on 24 January, 2004 UTC (Squyres et 

al., 2004,a,b, 2006; Arvidson et al., 2006). The MER miniature MB spectrometers MIMOS II 

(Klingelhöfer et al., 2003) detect 57Fe, which has about 2% natural abundance. Mössbauer 

spectra provide information on the Fe oxidation state (e.g., Fe0, Fe2+, and Fe3+), the Fe 

coordination state (e.g., tetrahedral and octahedral coordination), and the relative abundance of 

Fe among oxidation states, coordination states, and Fe-bearing phases. Identification of oxidation 

state, coordination state, and Fe-bearing phases are provided by the positions of peaks in a 

Mössbauer spectrum, and the relative distribution of Fe among oxidation state, coordination 
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state, and Fe-bearing phases is calculated by summing the areas of peaks (subspectra associated 

with particular oxidation states, coordination states, and phases). 

Mössbauer spectrometers were sent to Mars because the element Fe, which is multivalent 

and abundant, provides essential geochemical and mineralogical information. Ferrous iron (Fe2+) 

is common in many rock-forming minerals (e.g., olivine, pyroxene, ilmenite, (titano)magnetite, 

and chromite) and secondary minerals (e.g., serpentine and sulfates). The ratio of Fe3+ to total Fe 

(Fe3+/FeT) for an igneous assemblage is a measure of the prevailing oxygen fugacity during 

crystallization. Although present at significant levels in some primary phases (e.g., augite and 

(titano)magnetite), ferric iron (Fe3+) is commonly a product of oxidative alteration and 

weathering of primary minerals and often occurs as oxides and oxyhydroxides (e.g., hematite and 

goethite). The speciation and distribution of Fe in martian rock and soil thus constrain the 

primary rock type (e.g., olivine- versus pyroxene-bearing basalt), the redox conditions under 

which primary igneous assemblages crystallize, (e.g., presence or absence of magnetite and 

metallic Fe), the extent of oxidative alteration and weathering (value of Fe3+/FeT), the type of 

alteration and weathering products (e.g., oxides versus sulfates versus phyllosilicates), and the 

processes and environmental conditions for alteration and weathering (e.g., neutral versus acid-

chloride versus acid-sulfate aqueous process under ambient or hydrothermal conditions; Morris 

et al., 2000). 

In this chapter, we first review some of the basic principles of Mössbauer spectroscopy, 

and then we review and synthesize the Mössbauer results and implications from the first 602 sols 

(martian days) of Spirit’s mission at Gusev Crater and the first 557 sols of Opportunity’s mission 

at Meridiani Planum. Substantial additional details and results and discussion of the implications 

of the MER Mössbauer investigations can be found in Morris et al. (2004, 2006a,b), 

Klingelhöfer et al. (2004, 2006), and Clark et al. (2007).  

 

2. Mössbauer spectroscopy and Mössbauer mineralogy on Mars 

 A full and detailed discussion of the Mössbauer effect and Mössbauer spectroscopy is 

beyond the scope of this chapter. However, we provide a brief discussion in order to give context 

for the MER MB results, and the reader is referred to the literature for additional details 

regarding the Mössbauer effect (e.g., Wertheim, 1964; Wegener, 1966; Greenwood and Gibb, 

1971; Bancroft, 1973; Gütlich et al., 1978; Hawthorne, 1988; Burns, 1993). 
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 The Mössbauer effect (also known as recoil-free nuclear gamma resonance absorption) is 

the recoil-free emission and absorption of gamma rays by nuclei. When the energies of emitting 

and absorbing nuclei are identical within the line width of the nuclear transition, the resonant 

absorption process can take place with a certain probability given by the Lamb-Mössbauer factor 

f. The f-factor (sometimes called the Debye-Waller factor) is large when the Mössbauer nuclei 

are bound in solid materials and have relatively low ground-state transition energies. Not all 

elements have suitable nuclear transitions. The isotope 57Fe (2.2% natural abundance) does have 

a suitable nuclear transition with an energy difference of 14.41 keV between ground and first 

excited states. An exact energy match between absorbing and emitting 57Fe nuclei would not 

occur, even if the f-factor is close to maximum (1.0), if the nuclei are in different electronic or 

magnetic environments or if their speciations (e.g., oxidation, coordination, and mineralogical 

states) are different. An exact energy match can be made, however, by systematically changing 

the energy of the emitted or absorbed gamma ray. In laboratory Mössbauer spectrometers, this 

“energy scanning” is normally accomplished using the Doppler effect, in which the emitter 57Fe 

nuclei are set in motion relative to the absorber whose position is fixed. 

 Energy level diagrams and corresponding Mössbauer spectra are shown schematically in 

Figure 1 for typical situations encountered in the 57Fe Mössbauer spectroscopy of geological 

materials. The source is chosen to have an “unsplit” 14.41 keV emission line to minimize the 

complexity of the MB spectra. A commonly used source and the one selected for the MER MB 

spectrometers is 57Co incorporated into rhodium metal foil (57Co(Rh)). The 57Co decays in part to 

the first excited state of 57Fe, which decays to the ground state with emission of the 14.41 keV 

gamma ray or ejection of an atomic electron. The number and position of absorber lines is 

determined by the symmetry and nature of the surroundings of the 57Fe nuclei. Only one line is 

obtained (Absorber 1) if no magnetic field is present and the electric field has cubic symmetry. 

For example, spinel ((Mg,Fe2+)Al2O4) is a geological material with a singlet Mössbauer 

spectrum. If the symmetry around the 57Fe nuclei is lowered so that an electric field gradient is 

present, the nuclear energy levels of the excited state are split so that doublet MB spectra are 

obtained (Absorber 2). Olivine ((Mg,Fe2+)2SiO4; hereafter denoted as Ol), pyroxene 

((Mg,Ca,Fe2+)SiO3; hereafter denoted as Px), and ilmenite (Fe2+TiO3; hereafter denoted as Ilm) 

are rock-forming minerals that are characterized by doublet MB spectra. In the presence of a 

magnetic field, both ground- and excited-state 57Fe nuclear energy levels are completely split, 
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and sextet MB spectra are obtained (Absorber 3). Hematite (α-Fe2O3; hereafter denoted as Hm), 

goethite (α-FeOOH; hereafter denoted as Gt), magnetite (Fe3O4; hereafter denoted as Mt), 

troilite (FeS), and kamacite (α-(Fe,Ni)0 alloy with <8% Ni; hereafter denoted as Kam) are 

geological materials characterized by sextet MB spectra. Magnetite actually has two sextets, one 

from Fe3+ in the tetrahedral site (tet-Fe3+) and one from Fe2+ + Fe3+ (denoted as Fe2.5+) in the 

octahedral site (oct-Fe2.5+). 

 Transmission measurement geometry, where the sample is located between source and 

detector, is implied by diagrams in Figure 1. The MB peaks project downward from the baseline 

(100% transmission) because the absorber in each case is located between the MB source and 

detector. For planetary exploration, however, backscatter measurement geometry, where source 

and detector are on the same side of the sample, is a better choice because sample preparation is 

not required. Backscatter geometry was adopted for the MER MIMOS II Mössbauer 

spectrometers (Klingelhöfer et al., 2003), and the instrument sensor head (Figure 2a) is simply 

placed in physical contact with martian surface targets by the robotic arm on the MER rovers. 

Contact is sensed by spring-loaded micro switches that close when the contact plate is depressed 

as the sensor head encounters the surface. The field of view is 1.5 cm (Figures 2a and 2h). In 

backscatter geometry, either the 14.41-keV γ-rays or the fluorescent Fe X-rays may be detected 

following excited-state decay. Only MB spectra derived from the resonantly scattered 14.41 keV 

γ-rays are discussed here. The peaks project upward from the baseline because the detected 

radiation is emitted from the sample, and in the case of resonance conditions the intensity of 

emitted radiation increases. MIMOS II includes an internal velocity calibration standard (α-Fe 

metal foil + Hm + Mt) measured in transmission geometry simultaneously with surface samples 

(Klingelhöfer et al., 2003). Fe-bearing phases in rock or soil substrates cannot be detected below 

~3 mm of basaltic air-fall dust for the 14.41 keV γ-rays (Morris et al., 2001; Klingelhöfer et al., 

2003), and thus brushing or grinding with each rover’s Rock Abrasion Tool (RAT) has often 

been critical in assessing the intrinsic Fe mineralogy at both landing sites. 

 The peak positions in MB spectra can be described by three parameters arising from 

hyperfine interactions between atomic electrons and the 57Fe nucleus: (i) the center shift relative 

to velocity zero, which is the sum of the isomer (or chemical) shift (δ) and the second order 

Doppler shift (SODS), a relativistic effect resulting from temperature differences between 

sample and source; (ii) the quadrupole splitting (ΔEQ); and (iii) the magnetic hyperfine field (Bhf) 
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(Figure 1). The value of δ is a relative number between two materials. To compare δ values, the 

parameter is referenced to a standard material, and, in keeping with standard practice, we use the 

center point of the spectrum of α-Fe metal foil for MER MB spectra. In terrestrial laboratories, 

the source is normally kept at ambient temperature. This produces a temperature dependence of 

the center shift  when the sample temperature is varied with respect to the source at ambient 

temperature. This temperature dependence is not relevant for MER MB measurements because 

the sample, source, and internal calibration standard are always at approximately the same 

temperature, as measured by temperature sensors in the contact plate and within the sensor head 

(Figure 2a; Klingelhöfer et al., 2003). The temperature of sample, source, and standard all track 

each other over the duration of a MB integration in response to the martian diurnal temperature 

cycle. The MER MIMOS II spectrometers measure temperature during MB experiments and 

record Mössbauer data as a function of temperature in intervals that are 10 K wide (Klingelhöfer 

et al., 2003). 

 The MB spectrum of a complex geologic material is a sum of MB subspectra from each 

distinct Fe site, i.e., sites characterized by different values of the MB parameters. A single Fe-

bearing phase can have one or more distinct sites. The subspectra are obtained from the 

measured MB spectrum using a least squares fitting procedure. The details of the fitting 

procedures for MER MB spectra are discussed by Morris et al. (2006a,b). Mineralogical 

assignments are made by comparing the subspectral MB parameters to MB parameters that have 

been compiled for known mineralogical compositions (e.g., Burns and Solberg, 1990; Burns, 

1993; McCammon, 1995; Stevens et al., 1998). However, there may be Fe-bearing phases on 

Mars that are unknown on Earth. Correlations of subspectral areas can also yield clues for 

mineralogical assignments (e.g., a positive correlation between two subspectral areas might 

imply that they are present in different sites in the same Fe-bearing phase). In any case, 

mineralogical assignments on the basis of MB data must be examined within the context of other 

MER chemical and mineralogical data (e.g., Gellert et al., 2004, 2006; Rieder et al., 2004; 

Christensen et al., 2004a,b; Ming et al., 2006; Yen et al., 2006) and what is known about the 

environment and geochemistry of Mars. 

 The percentage of total Fe associated with a specific Fe-bearing phase (Ax where ΣAx = 

100%) is determined by its subspectral area corrected for the recoil-free fraction (the f-factor) of 
57Fe in that phase. For MER, we use f(Fe2+)/f(Fe3+) = 1.21, independent of mineralogical 
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composition (De Grave and Van Alboom, 1991; Morris et al., 1995). Note that Ax is the 

percentage of total iron associated with a particular Fe-bearing phase and not the concentration 

of the Fe-bearing phase in a sample. Thus, for example, a sample can be 100% olivine as 

forsterite (Mg2SiO4) but have 0% olivine with respect to MB measurements because forsterite 

contains no Fe. 

 In summary, the information content of “Mössbauer mineralogy” is the oxidation and 

coordination states of Fe, the mineralogical composition of Fe-bearing phases, and the 

distribution of Fe among oxidation states, coordination states, and Fe-bearing phases. In practice, 

it is relatively straightforward to determine the Fe oxidation state (Fe3+/FeT) from MB data, but 

more challenging to assign specific mineralogical compositions to Fe-bearing phases. 

 

3. Identification and mineralogical assignment of Fe-bearing phases 

 The MB doublet (δ versus ΔEQ) and sextet (δ versus ΔEQ and δ versus Bhf) identification 

diagrams are shown in Figure 3 for MER MB data through sols 602 and 575 at Gusev crater and 

Meridiani Planum, respectively. The parameters were derived from fits of spectra that are the 

sum of individual spectra from temperature windows between 200 and 270 K (Morris et al., 

2006a,b). We give each Fe-bearing phase a generic name having the form FeXYZ, where X = Fe 

oxidation state, Y = D (doublet) or S (sextet), and Z = a sequence number for phases with the 

same values of X and Y. A total of 9 doublets and 5 sextets, corresponding to 12 distinct Fe-

bearing phases, were identified on Mars. We briefly summarize mineralogical assignments next. 

Additional details can be found in Morris et al. (2004, 2006,a,b), Klingelhöfer et al. (2004), and 

Clark et al. (2007).  

Doublets Fe2D1, Fe2D2, and Fe2D3 (Figure 3a) are assigned to octahedrally coordinated 

Fe2+ (oct-Fe2+) in olivine (Ol), pyroxene (Px), and ilmenite (Ilm), respectively, on the basis of 

comparison to MB parameters compiled in databases (cf., section 2). The assignments for Ol and 

Px are consistent with MER Mini-TES data (e.g., Christensen et al., 2004a). Although the MB 

parameters for Fe2D1 are consistent with Fe in Ol, an alternate assignment of Fe2+-bearing 

sulfate was made by Lane et al. (2004) for Fe2D1, implying that the Fe2D1 parameters are not 

specific for Ol. As discussed by Yen et al. (2005) and Morris et al. (2006a), the sulfate 

assignment is unlikely because of the aforementioned Mini-TES data, the observed decreasing 

AOl with increasing SO3 concentration, and, for rock interiors exposed by grinding with the RAT, 
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SO3 concentrations that are too low to accommodate all Fe from Fe2D1 as an Fe2+-bearing 

sulfate. Ilmenite was not detected by mini-TES, but samples that have Ilm as detected by MB 

also have higher TiO2 concentrations as detected by APXS (e.g., Gellert et al., 2004, 2006; Ming 

et al., 2006). Doublets Fe3D1, Fe3D2, and Fe3D4 (Figure 3c) are assigned to oct-Fe3+ in 

nanophase ferric oxide (npOx), an unidentified Fe3+ sulfate (Fe3Sulfate), and jarosite (Jar), 

respectively. The jarosite ((K,Na,H3O)(Fe,Al)3(SO4)2(OH,Cl)6 where Fe > Al and OH > Cl) 

assignment is made on the basis of the unusually high value of ΔEQ for that phase. The 

assignment of Fe3+-sulfate is based on the relatively high value of δ and S concentrations that are 

so high (SO3 ~ 31 wt.%) that they require nearly all cations to occur as sulfates. The npOx refers 

to a poorly crystalline or amorphous alteration product that can be any combination of 

superparamagnetic hematite and/or goethite, akaganeite (β-FeOOH), schwertmannite 

(~Fe8O8(OH)6SO4), ferrihydrite (5Fe2O3•9H2O), iddingsite (a low-temperature alteration product 

of olivine), and the nanometer-sized ferric oxide particles that pigment palagonitic tephra (e.g., 

Morris et al., 1993, 2000). NpOx can also incorporate anions (e.g., SO4
2- and PO4

3-) through 

specific chemical adsorption (e.g., Borggaard, 1983a,b; Cornell and Schwertmann, 1996; 

Myneni, 2000). The nature of npOx can change from place-to-place and time-to-time, in 

response to local conditions and processes. Thus, it is possible that the form of npOx on Mars is 

uncommon or not present on the Earth. 

Sextets Fe3S1, Fe2.5S1, Fe3S2, Fe3S3, and Fe0S1 are assigned to tet-Fe3+ in magnetite, 

oct-Fe2.5+ in magnetite, oct-Fe3+ in hematite, oct-Fe3+ in goethite, and Fe0 in kamacite, 

respectively (Figure 3b). The envelope for Hm data is large compared to the other sextet phases 

because Hm undergoes a magnetic transition (the Morin transition) within the martian diurnal 

temperature cycle (~180 to 300 K). For well crystalline and chemically pure hematite, this 

transition occurs at TM ~ 260 K, where ΔEQ < 0 for T > TM and ΔEQ > 0 for T < TM. For Hm with 

small particle sizes and/or with substitutional impurities like Al, the Morin transition occurs at 

lower temperatures and over a wider temperature interval (e.g., De Grave et al., 1983, 2002). 

Small-particle behavior and/or substitutional impurities are indicated for most martian hematites 

because ΔEQ < 0 mm/s at martian diurnal temperatues (Figure 3b and Morris et al., 2006a). 

In summary, 9 doublets and 5 sextets were identified in MER MB spectra through sols 

602 and 557 at Gusev crater and Meridiani Planum, respectively. Specific mineralogical 

assignments were made for 5 of 9 doublets (Fe2+ in Ol, Px, and Ilm; Fe3+ in npOx and Jar) and 



Morris and Klingelhöfer Chapter 15 9 

for all 5 sextets (Fe2.5+ and Fe3+ in Mt; Fe3+ in Hm and Gt; Fe0 in Kam). One doublet (Fe3D2) is 

associated with oct-Fe3+ in a sulfate, but we cannot assign a specific Fe3+-sulfate mineral. Two 

doublets (Fe2D4 and Fe3D5) are associated with chromite (Fe2+(Cr,Fe3+)2O4 where Cr > Fe3+; 

hereafter denoted as Chr), but this association would not have been possible to make without 

knowledge of high Cr concentrations in the sample from APXS measurements. We make no 

specific mineralogical assignment for the final doublet (Fe3D3), except that it results from a 

phase with oct-Fe3+. In Figure 4, we show MER MB spectra for samples that contain high 

proportions of each of the 14 doublets and sextets identified in 12 unique Fe-bearing phases. 

Average values of doublet and sextet MB parameters for individual Fe-bearing phases are 

summarized in Tables 1 and 2, respectively. 

 

4. Supergroup classification of MER rocks and soils 

In Figure 5, we show the frequency of occurrence of the unique 12 Fe-bearing phases for 

rocks and soils at Gusev Crater and Meridiani Planum. The histograms count only those 

occurrences in MB spectra where the abundance of Fe from an Fe-bearing phase is >10% (i.e., 

Ax > 10%). We counted all distinct measurements of the same target as separate occurrences. 

The total number of occurrences of each phase is indicated in the figure. 

Five phases have very limited occurrence in MER MB spectra. Chromite is present only 

in Gusev Columbia Hills rock sample Assemblee_Guryere. Fe3+-sulfate occurs only in two 

Gusev Columbia Hills soil analyses (Pasadena_PasoRobles and PasoRobles2_PasoLight1). 

Ilmenite is found in rocks and one soil in the Columbia Hills. Goethite is detected only in rocks 

from the Columbia Hills. Kamacite occurs only at Meridiani Planum in Heat Shield Rock and in 

the cobble sample Figtree_Barberton. 

The Fe mineralogical composition of rocks at Gusev crater is very different from those at 

Meridiani Planum (Figures 5a, 5c). Fe-bearing phases associated with igneous rocks (Ol, Px, Mt, 

Ilm, and Chr) are prevalent at Gusev crater. The Gusev rocks with Hm >10% and Gt >10% are 

confined to the Columbia Hills and do not occur on the plains. Rock analyses at Meridiani 

Planum are dominated by measurements of the ubiquitous high-S Burns formation (Rieder et al., 

2004; Grotzinger et al., 2005), which is an assemblage of Jar, Hm, and Fe3D3 with respect to Fe-

bearing phases (Morris et al., 2006b). The Hm occurs both within the Hm-rich spherules and 

within the matrix of sulfate-rich rock at particle diameters below the resolution of the MER 
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Microscopic Imager (Morris et al., 2006b). This result is consistent with Pancam multispectral 

imaging of the outcrop rocks (Bell et al., 2004b). The high number of pyroxene analyses at 

Meridiani Planum is inflated by the eight MB analyses of Bounce Rock, the most Px-rich sample 

measured at either MER site. 

Compared to rocks, the Fe mineralogical composition of soils at Gusev Crater and 

Meridiani Planum is less variable (Figures 5b and 5d), although Mt is relatively common 

compared to Hm at Gusev crater and vice versa for Meridiani Planum. This difference may 

reflect the prevalence at Gusev and apparent absence at Meridiani of Mt-bearing rocks, and the 

abundance of Hm-rich spherules at Meridiani Planum. We next consider the distribution of Fe-

bearing phases within individual rocks and soils and classify them into supergroups on the basis 

of chemistry and Fe mineralogy (Table 3). 

In order to do this classification, we take into account that two or more samples can have 

identical distributions of Fe among Fe-bearing phases and yet have different bulk elemental 

compositions. For example, two rocks can both have AOl = 40%, APx = 35%, AMt = 15%, and 

AnpOx = 10% but very different total Fe concentrations (FeT) if they have different proportions of 

phases that have virtually no Fe (e.g., plagioclase). We use parameters of the form AOlFeT/100 

(using olivine as an example) to classify soils and rocks into supergroups. The “100” in the 

denominator is necessary because AOl is a percentage. We calculate AOlFeT/100 in units of moles 

per 24 moles of oxygen plus chlorine (moles/24(O+Cl)) because stoichiometric information is 

directly accessible with molar concentration units. We use “24(O+Cl)” because 24 is evenly 

divisible by the sum of oxygen plus chlorine for many common geological materials (e.g., 

Fe2SiO4, FeSiO3, Fe3O4, Fe2O3, and FeTiO3). Note that this classification is based on both 

mineralogical (AOl, APx, etc. from MB) and elemental (FeT from APXS) data (Gellert et al., 

2004; Rieder et al., 2004; Morris et al., 2006a,b; Yen et al., 2006). 

We divided the rocks into four supergroups: Weakly Altered Basalt, Altered Low-S 

Rock, Altered High-S Rock, and Meteorite. The Meteorite supergroup consists of the two rocks 

from Meridiani Planum that have kamacite as an Fe-bearing phase (Heat Shield Rock and the 

cobble Barberton). We used plots of FeT and S as a function of four parameters having the form 

AxFeT/100 to classify the remaining MER rocks into supergroups (Figure 6). The parameter (AOl 

+ APx + AIlm + AChr + AMt)FeT/100 (equivalently AIgneousFeT/100) is the sum of Fe concentrations 

from igneous, rock-forming phases. Samples that plot on or near the y = x line in Figures 6a are 
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potentially unaltered samples. However, rocks with high concentrations of Fe from Ilm and Chr 

resulting from alteration of a precursor basalt with those minerals would also plot along this line, 

except at lower values of FeT because of removal of Fe (e.g., by leaching) from Fe-bearing 

phases that are susceptible to alteration (e.g., Ox and Px). We classify the group of rocks with 

high values of FeT (FeT > 1.2 moles/24moles(O+Cl)) and FeT ≈ AIgneousFeT/100 as “Weakly 

Altered Basalt” as shown in Figure 6a. Weakly Altered Basalt at Gusev crater has S = 0.28 ± 

0.15 moles/24(O+Cl) (SO3 = 2.5 ± 1.4 wt.%) and Fe3+/FeT = 0.24 ± 0.11. The values for S and 

SO3 exclude the rocks Peace and Alligator, which have a Mg-sulfate coating and/or cement 

(Ming et al., 2006) but are still Weakly Altered Basalt with respect to Fe-bearing phases. 

The parameters (AJar + AFe3D3 + AHm)FeT/100 and AHmFeT/100 are, respectively, the sum 

of Fe3+-bearing alteration products associated with the Burns formation and the Fe concentration 

from Hm. Altered High-S Rock from the Burns formation is distinguished from Altered Low-S 

Rock and Weakly Altered Basalt in Figures 6b and 6c. Weakly Altered Basalt and Altered Low-

S Rocks have S concentrations between 0 and ~1.5 moles/24(O+Cl) (equivalently, 0 to ~14.2 

wt.% SO3), and Altered High-S Rock has S concentrations greater than ~1.5 moles/24(O+Cl) 

(>14.2 wt.% SO3) (Figure 6c). Altered Low-S basalt has average S = 0.55 ± 0.21 

moles/24(O+Cl) (SO3 = 5.2 ± 2.0 wt.%) and Fe3+/FeT = 0.63 ± 0.18. In general, Altered High-S 

Rock has higher Hm concentrations than Altered Low-S Rock (Figure 6d). In Figures 6b, 6c, and 

6d, Weakly Altered Basalt plots on or near the y-axis. 

As shown in Figure 6c, some measurements of Burns outcrop targets have S 

concentrations less than ~1.5 moles/24(O+Cl), which is in the range for Altered Low-S Rock. 

The low S concentrations result from thin coverings of low-S Laguna Class soil (discussed 

below) that are “thick” with respect to APXS analysis and “thin” with respect to MB analysis 

(Morris et al., 2006b). All APXS measurements of outcrop surfaces exposed by the MER RAT 

have sulfur concentrations greater than 1.5 moles/24(O+Cl) (Figure 6c). Including only analyses 

of RAT-ground surfaces, Altered High-S Rock has average S = 2.27 ± 0.26 moles/24(O+Cl) 

(SO3 = 22 ± 3 wt.%) and Fe3+/FeT = 0.85 ± 0.03. 

For each rock supergroup, average values of the concentrations of Fe associated with Fe-

bearing phases (AxFeT/100), FeT and S concentrations, Fe3+/FeT, and number of targets with both 

APXS and MB analyses are summarized in Table 3. Individual rocks are classified according to 
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supergroup, APXS chemistry (e.g., Squyres et al., 2006; Ming et al.,2006), and MB mineralogy 

(Morris et al., 2006,a,b) in Table 4. 

We divided MER soils into three supergroups on the basis of Figure 7: Laguna Class 

(LC) supergroup, Paso Robles Class (PRC) supergroup, and Berry Class (BC) supergroup. Paso 

Robles Class soils have the lowest values of AIgneousFeT/100 (Figure 7a), and they have the 

highest S concentrations measured on Mars to date (Figures 6c and 7c). Paso Robles Class soils 

have average S = 3.17 ± 0.04 moles/24moles(O+Cl) (SO3 = 31.1 ± 0.1 wt.%) and Fe3+/FeT = 0.83 

± 0.05. Laguna Class soils plot near the y = x line in Figure 7a and thus (for soils) have the 

highest proportions of igneous rock forming minerals and are the least altered with average S = 

0.66 ± 0.24 moles/24moles(O+Cl) (SO3 = 6 ± 2 wt.%) and Fe3+/FeT = 0.29 ± 0.08. Comparison 

of Figures 6a and 7a shows that the Weakly Altered Basalt rock supergroup and the Laguna 

Class soil supergroup have comparable values of FeT and AIgneousFeT/100. Berry Class soils, 

which have values of AIgneousFeT/100 comparable to Laguna Class soils (Figure 7a), are 

distinguished by the high values of FeT and by high values of AHmFeT/100 (Figures 7a and 7d) 

that result from high concentrations of Hm-rich and Fe-rich spherules and their fragments 

(Morris et al., 2006b). Note that two Berry Class soils (circled in Figures 7a and at the left side 

of the ellipse enclosing the BC supergroup) are very similar and transitional to Laguna Class soil. 

Berry Class soils have average S = 0.61 ± 0.07 moles/24moles(O+Cl) (SO3 = 5 ± 1 wt.%) and 

Fe3+/FeT = 0.60 ± 0.13. Comparison of Figures 7b and 7d shows that no soil has detectable Fe 

from Jar and Fe3D3. 

Average values of the concentrations of Fe associated with Fe-bearing phases 

(AxFeT/100), FeT and S concentrations, Fe3+/FeT, and number of targets with both APXS and MB 

analyses for each soil supergroup are summarized in Table 3. Individual soils are classified 

according to supergroup and APXS chemistry and MB mineralogy in Table 5 (after Morris et al., 

2006,a,b). 

Morris et al. (2006a) defined a Mineralogical Alteration Index (MAI = AAlteration = AnpOx 

+ AHm + AGt + AFe3Sulfate + AJar + AFe3D3) to describe the degree of alteration of Gusev crater 

rocks. The index, however, is not sensitive to alteration in situations like those for the 

Independence Class rocks, where alteration and subsequent leaching appear to have resulted in a 

net loss of Fe from relatively soluble phases (e.g., Ol and Px) and a resulting passive enrichment 

in Fe associated with less soluble phases (Ilm and Chr). Using data from Clark et al. (2007), the 
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values of MAI for the rocks Assemblee and Independence are 32 % and 43%, respectively. 

While these values are larger than those for Weakly Altered Basalt (MAI < 22%), they are very 

low compared to corresponding values for other heavily altered Columbia Hills rocks (e.g., 83%, 

88%, and 94% for Watchtower, Pequod, and Paros, respectively). One might instead consider 

using AAlterationFeT/100 as a measure of alteration because it explicitly takes in account both Fe 

from alteration phases and Fe loss from leaching. However, this is not a viable alternative 

because Weakly Altered Basalts and Independence Class rocks have comparable values of 

AAlterationFeT/100. 

A different way to look at the degree and type of alteration of MER samples is through 

plots of AIgneousFeT/100 versus AAlterationFeT/100 (Figure 8). The two solid lines at 2.24 and 1.80 

moles/24(O+Cl) are, respectively, the average values of FeT for Weakly Altered Basalt from 

Gusev crater and Meridiani Planum. Isochemical alteration of a basalt with FeT = AIgneousFeT/100 

= 2.24 (or 1.80) moles/24(O+Cl) and with AAlterationFeT/100 = 0.0 moles/24(O+Cl) as its initial 

composition proceeds down the FeT = 2.24 (or 1.80) moles/24(O+Cl) line toward the 

AAlterationFeT/100 axis. Incorporation of SO3 from acid-sulfate solutions or vapors to form sulfate-

bearing phases during alteration would result in rock compositions that plot to the left of the line. 

Thus, weakly altered Bounce Rock does not appear to be the precursor (by isochemical 

alteration) of the S-rich outcrop rocks at Meridiani Planum, even though both plot along the line 

with FeT = 1.80 moles/24(O+Cl) (Figure 8a). Incorporation of H2O or OH-1would not be detected 

because APXS analyses are calculated on an H2O-free basis. Alteration of a basalt with an initial 

composition FeT = AIgneousFeT/100 = 2.24 moles/24(O+Cl) in an open system with removal of all 

oxidized iron (e.g., by leaching) results in a composition on the AIgneousFeT/100 axis with a value 

between 0 and 2.24 moles/24(O+Cl). Independence Class rocks are thus likely case where 

leaching has been important (Figure 8a). Soils at Gusev crater and Meridiani Planum do not 

appear to be derived directly by isochemical alteration of Weakly Altered Basalt analyzed at the 

two landing sites (compare Figures 8a and 8b). 

In Figure 9 we use pie diagrams to show the average distribution of Fe in Fe-bearing 

phases for supergroups of rock (Weakly Altered Basalt, Altered Low-S Rock, and Altered High-

S Rock) and soil (Laguna Class soil, Paso Robles Class soil, and Berry Class soil) at Gusev 

Crater and Meridiani Planum. The percentages of Fe in Fe-bearing phases can be calculated from 

the data in Table 3. Average Weakly Altered Basalt at Gusev crater (Fe3+/FeT = 0.24) has nearly 
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equal proportions of Fe from Ol and Px (AOl + APx = 71%), nearly equal proportions of Fe from 

Mt and npOx (AMt + AnpOx = 27%) and possible minor Fe from Hm (1%). Bounce Rock is the 

only Weakly Altered Basalt at Meridiani Planum (Fe3+/FeT = 0.01), and it is essentially 

monomineralic pyroxene with respect to Fe-bearing phases (APx = 99%). Average Altered Low-

S Rock at Gusev crater (Fe3+/FeT = 0.63) has high proportions of Fe3+-only phases (npOx + Hm 

+ Gt = 57%) and much lower Ol + Px (AOl + APx = 30%) compared to average Weakly Altered 

Basalt. Altered Low-S Rock has not been analyzed at Meridiani Planum as of sol 557. Average 

Altered High-S Rock at Meridiani Planum (Burns formation outcrop rock; Fe3+/FeT = 0.85) is 

heavily dominated by Fe3+-only phases (Jar + Hm + Fe3D3 = 85%). Altered High-S Rock has 

not been detected at Gusev crater as of sol 602. 

Average Laguna Class soil is very similar at Gusev crater (Fe3+/FeT = 0.30) and 

Meridiani Planum (Fe3+/FeT = 0.28) in terms of the mineralogy and abundance of Fe from Fe 

bearing phases (Figure 9d). This suggests mixing, presumably by aeolian processes, on a global 

scale and/or similar precursor rocks on a global scale. Laguna Class soil is similar in 

mineralogical composition to Weakly Altered Basalt at Gusev crater. Average Paso Robles Class 

soil (Fe3+/FeT = 0.83) has high proportions of Fe from Fe3Sulfate (AFe3D2 = 65%) plus Hm (AHm 

= 14%) and silicates (AOl + APx = 16%). Paso Robles Class soil has not been detected at 

Meridiani Planum. Average Berry Class soil (Fe3+/FeT = 0.60) has high proportions of Fe from 

Hm (AHm = 44%) plus Fe from silicates (AOl + APx = 39%) and Mt and npOx (AMt + AnpOx = 

16%). Berry Class soil is likely a mechanical mixture of Hm-rich spherules (and their fragments) 

and Laguna Class soil. Setting AHm to 4% for Berry Class soil and recalculating to 100% gives a 

composition (AOl = 32%, APx = 37%, AMt = 5%, AnpOx = 23%, and AHm = 4%) that is nearly the 

same as the average for Laguna Class soil at Meridiani Planum (Figure 9d). Berry Class soil has 

not been detected at Gusev crater as of sol 602. 

 

5. Spatial distribution of rock and soil supergroups 

Together with the Fe3+/FeT ratio, the analysis locations for the four rock and three soil 

supergroups are shown in Figure 10 using sol number as a proxy for location. For Gusev crater 

(Figures 10a and 10c), Weakly Altered Basalt was analyzed on the Gusev plains (rocks 

Adirondack, MimiShoe, Humphry, Mazatzal, Route66, and Joshua) and on Husband Hill in the 

Columbia Hills (rocks Peace, Alligator, Backstay, and Irvine). All these rocks are float (i.e., 
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delivered to their present location rather than formed in place), except for Peace and Alligator 

which are outcrop rocks. Although Peace and Alligator are Weakly Altered Basalt according to 

MB analyses, they are enriched in Mg and S suggesting that they were invaded and cemented by 

Mg-sulfate solutions after formation (e.g., Squyres et al., 2006; Ming et al., 2006). The oxidation 

state (Fe3+/FeT) of Weakly Altered Basalt is largely controlled by magnetite. The rock Route66, 

with no detectable magnetite, has Fe3+/FeT = 0.07, and the rocks MimiShoe, Peace, and Irvine, 

which have significant concentrations of magnetite, have Fe3+/FeT = 0.30-0.43 (Morris et al., 

2006a). CIPW normative mineral calculations for Weakly Altered Basalt from APXS chemistry 

and MB Fe3+/FeT are discussed by McSween et al. (2004, 2006). Normative minerals represent 

the minerals that might crystallize if a rock cooled under equilibrium and anhydrous conditions. 

Altered Low-S Rock was analyzed throughout the Columbia Hills. For the most part, the 

rocks are outcrops (e.g., Wooly Patch, Clovis, and Ebenezer; Squyres et al., 2006). Clovis at 

West Spur has the highest measured concentration of goethite (AGt = 37%). Other Gt-bearing 

rocks with AGt > 10% are Ebenezer, Temples, Tetl, Uchben, Lutefisk, Champagne, Watchtower, 

Paros, and Pequod. Altered Low-S Rock tends to have higher values of Fe3+/FeT compared to 

Weakly Altered Basalt (0.87 and 0.94 for Clovis and Watchtower, respectively), but this is not 

always the case. For example, Altered low-S outcrop rocks Independence and Assemblee have 

low values of Fe3+/FeT (0.30 and 0.35, respectively) because the Fe associated with primary 

silicate minerals was removed (presumably by leaching), leaving the oxides Ilm and Chr (Clark 

et al., 2007). 

Laguna Class soil was analyzed throughout the Gusev Plains and the Columbia Hills 

(average Fe3+/FeT = 0.30) as undisturbed surface soils and as subsurface soils revealed by 

trenching or other rover wheel actions. The two Paso Robles Class soils were detected and 

analyzed on Husband Hill; they are very oxidized (Fe3+/FeT = 0.83). Paso Robles Class soil 

occurs in the subsurface, under a thin overburden of Laguna Class soil (see, e.g., Chapter 13 by 

Bell et al.). Thus, its overall geographic extent is unknown because it cannot be detected from 

martian orbit or by Spirit without disturbing the surface layer.  

For Meridiani Planum (Figures 10b and 10d), the rock population is dominated by 

Altered High-S Rock belonging to Burns Outcrop Class (the Burns formation). The Burns 

formation rocks are highly oxidized and have Hm-rich spherules dispersed throughout the S-rich 

rock. The spherules are popularly known as “blueberries” and have been interpreted to be 
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concretions (Squyres et al., 2004, 2006; Grotzinger et al., 2005). The oxidation state (Fe3+/FeT = 

0.85) and the Fe mineralogical composition of the outcrop (Figure 9c) actually pertain to 

“interspherule” regions, because spherules were not present in the MB analysis volume. No 

Altered Low-S Rock and only one Weakly Altered Basalt (Bounce Rock) have been identified 

by the Opportunity rover at Meridiani Planum through sol 557. An iron meteorite with kamacite 

(Heat Shield Rock) was analyzed, and Barberton is also a meteorite based on the presence of 

kamacite (Morris et al., 2006b). Bounce Rock, Heat Shield Rock, and Barberton are regarded as 

“erratics” within the part of Meridiani Planum explored to date by the rover. 

Laguna Class soil at Meridiani Planum (average Fe3+/FeT = 0.28) covers the surface of 

the Burns formations as aeolian bedforms (small ripples and dunes), except for areas of outcrop 

exposed by impact events (e.g., Eagle, Fram, and Endurance Craters) and in scattered exposed 

patches in shallow fractures and between bedforms. Berry Class soil, which is composed of 

basaltic clasts, spherules, and spherule fragments, primarily occurs as a lag deposit at ripple 

crests or in topographic lows. The cover of Laguna and Berry Class soils over the Burns 

formation masks its detection from martian orbit (e.g., Bell et al., 2004b; Arvidson et al., 2006). 

Berry Class soil is the source of the coarse-grained “grey” hematite first detected from martian 

orbit by the Mars Global Surveyor Thermal Emission Spectrometer (Christensen et al., 2000, 

2001) and is thus the mineralogical beacon that focused attention on Meridiani Planum as a MER 

landing site (e.g., Golombek et al., 2003). 

 

6. NpOx, S, and Cl in martian soil and dust 

 We discussed earlier the assignment of the oct-Fe3+ doublet Fe3D1 to npOx, which is a 

generic name for a poorly crystalline (probably X-ray amorphous) alteration product with 

oct-Fe3+ as the Fe cation. The concentration of Fe from npOx (AnpOxFeT/100) in Laguna Class 

and Berry Class martian soils is highly variable (Figure 11), ranging from ~0.2 moles/24(O+Cl) 

at one extreme (e.g., samples BearPaw_Panda, and Crumble_Almonds at Gusev Crater) to ~0.8 

moles/24(O+Cl) at the other extreme (e.g., samples Desert_Gobi, Bighole_RS2, and Wymper at 

Gusev Crater and MontBlanc_LesHauches, Pergatory_Track2, and BigDig_HemaTrench1 at 

Meridiani Planum). Undisturbed (by rover wheels) surface soils that are bright (high albedo) in 

Pancam observations (Bell et al., 2004a) and have high dust signatures according to mini-TES 

(Christensen et al., 2004) characteristically have high values of AnpOxFeT/100 (e.g., samples 
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Desert_Gobi, Wymper, MontBlanc_LesHauches, and Pergatory_Track2). Disturbed soils (except 

Paso Robles Class soil) and undisturbed soils that are dark and have low dust signatures 

characteristically have low values of AnpOxFeT/100 (e.g., sample BearPaw_Panda). These 

associations imply that martian dust, in addition to being bright and fine grained, has high 

concentrations of npOx, perhaps higher than for any soil that has been analyzed by MB to date 

(Morris et al., 2006a,b).  

In Figure 11a, we plot the concentration of S as a function of AnpOxFeT/100 for Laguna 

and Berry Class soils (after Yen et al., 2005; Morris et al., 2006a,b). We also include analyses 

for two thick dust coatings on the Gusev crater rock Mazatzal (samples Mazatzal_NewYork and 

Mazatzal_Oregon) (Morris et al., 2006a). The solid line is the linear least squares fit of the data 

excluding the two analyses of subsurface soils from the Boroughs trench. The trench analyses 

were excluded because they have anonymously high concentrations of Mg and S, indicating the 

presence of a Mg-sulfate that is not present in the other soils (Wang et al., 2006a). Figure 11b is 

the corresponding plot for Cl, and the solid line is the linear least squares fit for all the data. The 

equations for the fits are given in Figure 11. 

 A simple explanation of the data in Figure 11 is that the soils are binary mixtures of two 

endmembers. One endmember, which has the lowest concentrations of AnpOxFeT, S, and Cl, is the 

composition represented by the y-intercepts of the linear least squares fits (AnpOxFeT/100 = 0.0 

moles/24(O+Cl)), i.e., 0.37 and 0.12 moles/24(O+Cl) for S and Cl, respectively. The second 

endmember is an altered soil having concentrations of S, Cl, and AnpOxFeT/100 extrapolated 

along the least-squares lines to a value of AnpOxFeT/100 greater than 0.84 moles/24(O+Cl), the 

highest value observed for that parameter. The upper limit for AnpOxFeT/100 is FeT, which is ~2.0 

moles/24(O+Cl) for Laguna Class soil at Gusev crater (Figure 7a). The corresponding upper 

limit concentrations for S and Cl are 1.6 and 0.36 moles/24(O+Cl), respectively. The molar S/Cl 

ratio depends on AnpOxFeT/100, ranging from 3.1 for AnpOxFeT/100 = 0 moles/24(O+Cl) to 4.4 for 

AnpOxFeT/100 = 2.0 moles/24(O+Cl). 

The slopes in Figure 11 give molar S/(AnpOxFeT/100) and Cl/(AnpOxFeT/100) ratios (0.62 

and 0.12, respectively) that are potentially characterizing parameters for npOx. Molar S/Fe ratios 

for typical terrestrial ferric sulfates are 0.13 to 0.25 for schwertmannite, 0.67 for jarosite, 1.5 for 

binary Fe-sulfates (Fe2(SO4)3•nH2O), and 1.3 for ferricopiapite (Fe4.67(SO4)6(OH)2•20H2O). 

Although the observed value of the S/Fe molar ratio for npOx is comparable to the value for 
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jarosite, we believe that the correspondence is a coincidence and not causative evidence for 

jarosite because (a) the quadrupole splitting (average ± 1σ) for npOx in soils is too low (0.91 ± 

0.07 mm/s) compared to 1.20 ± 0.02 mm/s for Meridiani Planum jarosite (Morris et al., 2006b); 

(b) the molar S/Fe and Cl/Fe ratios are actually upper limits; and (c) reflectivity spectra do not 

provide a mineralogical constraint for jarosite. With regard to (b), the previous discussion 

assumes that all S and Cl are associated with npOx. The actual S/Fe and Cl/Fe ratios for npOx 

would be lower in a scenario where npOx and one or more S- and Cl-bearing and Fe-free phases 

are formed contemporaneously in fixed proportions during weathering. With regard to (c), 

multispectral Pathfinder IMP and MER Pancam visible to near-IR data (0.40 – 1.1 μm) and 

hyperspectral OMEGA near-IR data (1.0 - 2.5 μm) for martian bright regions show a relatively 

featureless ferric absorption edge extending from ~0.40 to ~0.75 μm and relative constant 

reflectivity from ~0.75 to 2.5 μm. These spectral characteristics imply npOx and not a jarosite-

like phase (e.g., Morris et al., 2000; Bell et al., 2000, 2004; Bibring et al., 2006). According to 

Bibring et al. (2006), the absence of detectable spectra features near 1.4, 1.9, and 2.1-2.4 μm in 

OMEGA spectra imply that the surface material in martian bright regions (dust or bright soil) is 

anhydrous. Specifically, a spectral feature associated with the Fe-OH vibration of jarosite (or any 

other phase with the Fe-OH functional group) was not detected, although the presence of a 

spectral feature near 3 μm implies that some H2O/OH must be present (e.g., Yen et al., 1998). 

Would we expect to find surface deposits of dust (bright soil) with AnpOxFeT/100 = FeT? 

That is, might there be a high-albedo soil with npOx as the only Fe-bearing phase, with Fe, S, 

and Cl concentrations of ~2.0, 1.6, and 0.36 moles/24(O+Cl), and with a featureless ferric 

absorption edge at visible wavelengths? Although possible, such an occurrence is unlikely based 

on MB spectra of atmospheric dust collected by the MER permanent magnets, which revealed Fe 

from Ol, Px, and Mt, as well as npOx, in the airborne dust (e.g., Goetz et al., 2005). 

 

7. Mineralogical evidence for aqueous activity on Mars 

 Although the MER Mössbauer spectrometers are not directly sensitive to either the H2O 

molecule or to the hydroxide anion (OH-1), they did identify two Fe bearing phases that have 

OH-1 as a part of their structure and thus did provide direct mineralogical evidence for aqueous 

activity on Mars. First, goethite (α-FeOOH) is present at Gusev crater in a series of outcrop 

rocks (Clovis Class) on Husband Hill (Morris et al., 2006a). The rock Clovis has the highest Gt 
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concentration (AGt ~37%). The detection of Gt in multiple outcrop rocks implies an extensive 

occurrence at Husband Hill in particular, and perhaps in the Columbia Hills in general. And 

second, jarosite ((K,Na,H3O)(Fe,Al)3(SO4)2(OH,Cl)6, where Fe > Al and OH > Cl) is present 

throughout Meridiani Planum in the S-rich outcrop (Burns formation) (Morris et al., 2006b). The 

jarosite concentration is remarkably constant throughout the Burns formation (AJar ~29%). Both 

Gt and Jar yield ~10 wt.% H2O upon dehydroxylation, so that Clovis and the Burns formation 

have the equivalent of ~1 to 2 wt.% H2O based on just their Gt and Jar contents, respectively. On 

the basis of elemental data and mineralogical compositions constrained by MB data, Clark et al. 

(2005) estimated that the Burns formation might have the equivalent of ~6 to 20 wt.% H2O 

overall. 

 The jarosite detection is also important because its formation is constrained to acid-

sulfate environments (pH < 4 at room temperature (e.g., Dutrizac and Jambor, 2000; Stoffregen 

et al., 2000). Under hydrothermal conditions, jarosite can form at pH = 1 to 2, and hematite 

instead of goethite is the favored hydrolysis product (Stoffregen et al., 2000). The alteration of a 

basaltic precursor resulting in the S-rich Burns formation could have occurred under oxidizing, 

acid-sulfate conditions provided by interactions with acid-sulfate (possibly hydrothermal) waters 

(Burns, 1988; Burns and Fisher, 1990; McLennan et al., 2005) and/or condensation of SO2-rich 

volcanic emanations (Clark and Baird, 1979; Settle, 1979; Banin et al., 1997). Jarosite is a 

known product of alteration of basaltic/andesitic precursors in association with acid-sulfate 

volcanic activity on the Earth (e.g., Johnson, 1977; Morris et al., 1996, 2000; Bishop et al., 

1998). Interestingly, on Mauna Kea volcano (Hawaii), small Hm-rich spherules are also found in 

S-rich basaltic material (Morris et al., 2005). 

 Other evidence based on Fe mineralogical compositions point to aqueous activity. The 

Independence Class rocks (Independence and Assemblee) have a Fe2+ mineral assemblage that is 

atypical for unaltered igneous rocks (AIlm + AChr > AOl + APx). This result, plus their low FeT 

concentrations (<1.0 moles/24(O+Cl); Figure 6a), suggests dissolution of Ol and Px and 

subsequent leaching of Fe. The residual rock has an elemental composition that suggests the 

presence of the phyllosilicate montmorillonite or its compositional equivalent (Clark et al., 

2007). The high concentration of Fe3+ sulfate in Paso Robles Class soil and its bulk elemental 

composition point to alteration of basaltic precursors under acid-sulfate and oxidizing conditions. 

Additional evidence for aqueous alteration in the Columbia Hills is developed in more detail by 
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Ming et al. (2006, 2007; also see Chapter 23), and further details and models for the aqueous 

alteration history of Meridiani Planum are described by McLennan et al. (2005), Grotzinger et 

al. (2005), Squyres et al. (2005), Knauth et al. (2005), McCollom and Hynek (2005a,b), and 

Zolotov and Shock (2005). Also see Chapter 24. 

 

8. Mineralogical and oxidation state diversity during isochemical alteration 

 The Watchtower Class rocks on Husband Hill in the Columbia Hills of Gusev crater are a 

group of chemically similar but mineralogically diverse outcrop rocks (Squyres et al., 2006; 

Ming et al., 2006; Morris et al., 2006a). The mineralogical diversity of their Fe-bearing phases is 

shown in Figure 12. When available, we used APXS and MB analyses for surfaces brushed or 

ground by the RAT. The values of AIgneousFeT/100 range from 0.78 moles/24(O+Cl) for 

Keystone, the least oxidized rock (Fe3+/FeT = 0.43), to 0.08 moles/24(O+Cl) for Paros, the most 

oxidized rock at Gusev Crater (Fe3+/FeT = 0.94). Keystone has ~63% of its iron from primary 

igneous phases (Px, Ol, Ilm, and Mt) and Paros has only ~6%. 

 How can such extreme diversity in mineralogical composition and oxidation state be 

achieved relatively isochemically? However, the presence of goethite in most of the rocks 

implies aqueous alteration. The nearly constant chemical composition implies low water to rock 

ratios to prevent or minimize chemical fractionation by transport of elements as dissolved 

species in aqueous solutions. A terrestrial example of isochemical alteration resulting in 

mineralogical and oxidation state diversity can be found in the 230 m thick, 55 km diameter melt 

sheet of the Manicouagan impact structure (Quebec, Canada) (Floran et al., 1976, 1978; Simonds 

et al., 1978; Morris et al., 1995). There are no statistically significant vertical, horizontal, or 

radial differences in the regional chemical composition of the melt sheet (Floran et al., 1978), 

and yet the mineralogical diversity of Manicouagan impact melt rocks is as extreme as for 

Watchtower Class rocks. Considering just Mössbauer mineralogy (Morris et al., 1995), the 

values of Fe3+/FeT for Manicouagan rocks range from ~0.32 to ~0.92 for rocks whose Fe-bearing 

phases are dominated by Px and by Hm + npOx, respectively. Oxidative alteration of 

Manicouagan impact melt rocks is considered to have occurred after the impact event by 

(hydrothermal) interaction with oxidizing vapors and/or fluids while the rocks were still hot but 

below solidus temperatures (~915° C) (Floran et al., 1978; Simonds et al., 1978). For example, 

petrographic studies of Manicouagan and West Clearwater Lake (also in Quebec, Canada) 
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impact melt rocks show that Hm forms by oxidative (subsolidus) alteration of primary 

titanomagnetite, mafic minerals, and Fe-bearing glass (Floran et al., 1978; Phinney et al., 1978). 

In laboratory experiments, Straub et al. (1991) produced nanophase Hm as the alteration product 

of pyroxene under similar oxidative and subsolidus conditions. 

Although the Watchtower Class rocks are located in Gusev impact crater, the evidence is 

equivocal as to whether they are actually a product of target homogenization (by the impact 

event), crystallization of the impact melt, and subsequent isochemical alteration in a manner 

analogous to Manicouagan impact melt rocks. The important implication of Manicouagan for 

alteration processes on Mars is that hydrothermal subsolidus alteration as a regional process can 

occur isochemically, resulting in the formation of rocks with diverse mineralogical compositions 

and Fe oxidation states. 

 An important generalization from Watchtower Class rocks and Manicouagan impact melt 

rocks is that mineralogical interpretations based solely on chemical data (such as from CIPW 

normative calculations) are equivocal. Recognizing this, Clark et al. (2007) inferred the presence 

of montmorillonite or its compositional equivalent for an endmember composition derived using 

chemical mixing models for the highly-altered Independence Class rocks (Independence and 

Assemblee) in the Columbia Hills. In fact, mini-TES data for the same rocks are not consistent 

with the presence of phyllosilicates like montmorillonite (Clark et al., 2007). Similarly, Wang et 

al. (2006b) used chemical mixing models to infer the presence of the phyllosilicate kaolinite in 

the Columbia Hills rock Wooly Patch. In the absence of corroborative mineralogical data, this 

assignment is also equivocal. 

 

9. Magnetic properties of martian soil and rock 

 The magnetic properties experiments on the Viking Landers, the Mars Pathfinder rover, 

and the two MER rovers have shown that martian soil and dust has a strongly magnetic 

component (e.g., Hargraves et al., 1979; Madsen et al., 1999; Bertelsen et al., 2004; Goetz et al., 

2005; also see Chapter 16). Pre-MER estimates for the saturation magnetization of bulk martian 

soil were 1to 4 Am2/kg (Morris et al., 2001; Madsen et al., 2003). The Viking and Pathfinder 

mission teams concluded that the strongly magnetic component was maghemite (γ-Fe2O3) 

produced as a weathering product (e.g., Hargraves et al., 1979; Posey-Dowty et al., 1986; 

Madsen et al., 1999). Other phases advocated pre-MER as the strongly magnetic component 
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included (titano)magnetite as a product of igneous activity (Morris et al., 1990, 2001), 

titanomaghemite as a product of igneous activity and subsequent titanomagnetite oxidation 

(Coey et al., 1990), and δ-δ′-FeOOH assemblages (Burns, 1980a,b; Towe, 1980) and nanophase 

hematite (Morris et al., 1989) as products of weathering. 

 The identification of magnetite in surface rocks and soils by the MER MB instruments 

firmly establishes that oxide as one and perhaps the dominant strongly magnetic component on 

the martian surface. The concentration of Fe from magnetite (AMtFeT/100) is shown as a function 

of FeT in Figure 13. The horizontal dashed lines are the values of the saturation magnetization 

(Js) as a function of Mt concentration using 92 Am2/kg for bulk magnetite. The samples with the 

most magnetite are the rocks Peace and Irvine on Husband Hill (Js ~ 4 Am2/kg). The range of Js 

for Laguna Class soil is ~0.4 to 1.2 Am2/kg, which is at the low end of the range estimated by the 

magnetic properties experiments. 

 

10. Summary. 

 The Mössbauer spectrometers on the MER rovers Spirit and Opportunity have provided 

detailed information on the mineralogical composition and spatial distribution of Fe-bearing 

phases on opposite sides of Mars at Gusev crater and Meridiani Planum. As of sol 602 at Gusev 

crater and sol 557 at Meridiani Planum, a total of 12 Fe-bearing phases were identified, and 

mineralogical assignments were made for 10 of them: olivine, pyroxene, and ilmenite as Fe2+-

bearing phases; nanophase ferric oxide, jarosite, hematite, and goethite as Fe3+-bearing phases; 

magnetite and chromite as Fe2+-and Fe3+-bearing phases; and kamacite as an Fe0-bearing phase. 

An octahedrally-coordinatedFe3+-sulfate phase was identified, but a more specific assignment 

could not be made. Another unidentified oct-Fe3+ phase (Fe3D3) appears to be associated with 

jarosite. These phases occur within four rock supergroups (Weakly Altered Basalt, Altered Low-

S Rock, Altered High-S Rock, and Meteorite) and three soil supergroups (Laguna Class soil, 

Paso Robles Class soil, and Berry Class soil). 

The Fe from igneous minerals (olivine, pyroxene, ilmenite, chromite, and magnetite) is 

primarily associated with Weakly Altered Basalt, which occurs primarily as float and 

occasionally as outcrop rocks in Gusev crater, and with Laguna Class (basaltic) soil that is 

ubiquitous at both MER landing sites. Altered Low-S Rock occurs as outcrop and float rocks in 

the Gusev Columbia Hills. Compared to Weakly Altered Basalt, these rocks have minor to 
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undetectable Fe from olivine and significant concentrations of Fe from npOx, hematite, and 

goethite. Altered High-S Rock is the ubiquitous outcrop rock at Meridiani Planum (the Burns 

formation), with jarosite, hematite, and Fe3D3 the important Fe-bearing phases. Berry Class soil, 

which is composed of Hm-rich spherules, spherule fragments, and basaltic clasts, occurs at 

Meridiani Planum primary as lag deposits on ripple crests. Paso Robles Class soil, which has 

high concentration of an Fe3+-bearing sulfate (not jarosite), occurs as subsurface deposits at 

isolated locations in the Columbia Hills. It is possible that this soil class is significantly more 

widespread, but hidden from view by overlying Laguna Class soil except when churned up by 

rover wheels. 

On the basis of MER MB spectra, the strongly magnetic mineral (titano)magnetite is 

present in Laguna Class soil and in both Weakly Altered Basalt (e.g., Adirondack Class and 

Irvine Class) and Altered Low-S Rock (e.g., Clovis Class) at Gusev crater. This result is direct 

mineralogical evidence that the strongly magnetic phase in martian soil and dust is 

predominantly magnetite formed as a result of igneous processes and not, as generally advocated 

pre-MER, maghemite (γ-Fe2O3) formed during alteration processes. 

The Fe mineralogy provides abundant evidence for aqueous alteration on Mars. The most 

compelling evidence is the identification of two Fe-bearing minerals (jarosite and goethite) that 

have hydroxide as a part of their crystal structure. Both minerals yield ~10 to 12 wt.% H2O when 

dehydroxylated. It is difficult to estimate the regional extent of the goethite occurrence, because 

there has been no observed spectral signature for the mineral and no associated morphological 

unit discernable from orbital observations. This situation is not the case for the jarosite-

containing Burns formation. On the basis of hematite detections and morphological observations 

from martian orbit, the Burns formation is laterally extensive (~105 km2; Christensen et al., 

2001) with a thickness of ~600 m (Hynek et al., 2002). Jarosite at Meridiani Planum and 

Fe3Sulfate at Gusev crater are evidence for aqueous processes under acid-sulfate conditions on a 

planetary scale. 

The basaltic bulk chemical composition of the Burns formation and of the highly altered 

rocks in the Columbia Hills (calculated to a chemical composition with S = Cl = 0) suggests that 

the alteration occurred at low water-to-rock ratios to prevent or minimize removal of soluble 

components by leaching (isochemical alteration). The exception to this observation is the 

Independence Class rocks on Husband Hill, which show evidence of aqueous leaching on the 
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basis of low Fe concentrations and anomalously high concentrations of ilmenite or chromite. The 

Wishstone Class rocks are evidence that isochemical alteration can result in mineralogical 

diversity, implying variable local conditions but still low water-to-rock ratios. 
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Table 1. Average Mössbauer parameters δ and ΔEQ (210-270 K) for MER doublet spectra 

Name Cationa Assignment Locationb Type 
δc 

(mm/s) 
ΔEQ 

(mm/s) Nd 
        
Fe2D1 oct-Fe2+ Olivine GC Rock 1.16±0.02e 3.00±0.04e 26, 26 
Fe2D1 oct-Fe2+ Olivine GC Soil 1.15±0.02 2.98±0.03 26, 26 
Fe2D1 oct-Fe2+ Olivine MP Rock 1.15±0.02 3.01±0.02 1, 1 
Fe2D1 oct-Fe2+ Olivine MP Soil 1.15±0.02 3.00±0.03 18, 18 
        
Fe2D2 oct-Fe2+ Pyroxene GC Rock 1.16±0.02 2.17±0.10 59, 54 
Fe2D2 oct-Fe2+ Pyroxene GC Soil 1.15±0.02 2.12±0.04 28, 26 
Fe2D2 oct-Fe2+ Pyroxene MP Rock 1.15±0.02 2.22±0.04 10, 10 
Fe2D2 oct-Fe2+ Pyroxene MP Soil 1.15±0.02 2.13±0.02 17, 17 
        
Fe2D3 oct-Fe2+ Ilmenite GC Rock 1.07±0.02 0.80±0.06 7, 8 
Fe2D3 oct-Fe2+ Ilmenite GC Soil 1.05±0.02 0.79±0.02 1, 1 
        
Fe2D4 tet-Fe2+ Chromite GC Rock 0.92 1.26 n/af 
        
Fe3D1 oct-Fe3+ npOx GC Rock 0.37±0.02 0.92±0.09 55, 57 
Fe3D1 oct-Fe3+ npOx GC Soil 0.38±0.02 0.86±0.06 18, 25 
Fe3D1 oct-Fe3+ npOx MP Rock 0.34±0.02 0.84±0.17 3, 3 
Fe3D1 oct-Fe3+ npOx MP Soil 0.38±0.02 0.88±0.03 16, 17 
        
Fe3D2 oct-Fe3+ Fe3Sulfate GC Soil 0.43±0.02 0.58±0.05 2, 2 
        
Fe3D3 oct-Fe3+ None MP Rock 0.37±0.02 0.62±0.03 46, 46 
        
Fe3D4 oct-Fe3+ Jarosite MP Rock 0.37±0.02 1.20±0.02 46, 46 
        
Fe3D5 oct-Fe3+ Chromite GC Rock 0.35 0.53 n/af 

aOct = octahedral; tet = tetrahedral. 
bGC = Gusev crater; MP = Meridiani Planum. 
cδ is measured with respect to metallic Fe foil at the same temperature as the sample. 
dN = number of analyses used in average calculation for δ and ΔEQ, respectively. 
eUncertainty is the larger of the measurement uncertainty and the standard deviation of the average. 
fn/a = not applicable. Values of δ and ΔEQ were constrained to values for chromite during the fitting 

procedures (Morris et al., 2006a) 
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Table 2. Average Mössbauer parameters δ, ΔEQ, and Bhf (210-270 K) for MER sextet spectra 

Name Cationa Assignment Locationb Typeb 
δc 

(mm/s) 
ΔEQ 

(mm/s) 
Bhf 
(T) Nd 

         
Fe0S1 Fe0 Kamacite MP Rock 0.00±0.02e 0.00±0.02e 34.7±0.8e 2, 2, 2 
         
Fe2.5S1 oct-Fe2.5+ Magnetite GC Rock 0.64±0.02 0.00±0.02 46.9±0.8 1, 1, 1 
         
Fe3S1 tet-Fe3+ Magnetite GC Rock 0.31±0.02 0.06±0.02 50.1±0.8 1, 1, 1 
         
Fe3S2 oct-Fe3+ Hematite GC Rockf 0.38±0.02 -0.13±0.07 52.2±0.8 27, 31, 31 
Fe3S2 oct-Fe3+ Hematite GC Rockg 0.37±0.02 0.18±0.12 53.3±0.8 12, 13, 13 
Fe3S2 oct-Fe3+ Hematite GC LC-Soilh 0.36±0.02 -0.12±0.05 52.3±0.8 5, 5 ,5 
Fe3S2 oct-Fe3+ Hematite GC PRC-Soilf,i 0.39±0.02 -0.16±0.05 51.3±0.8 1, 1 ,1 
Fe3S2 oct-Fe3+ Hematite GC PRC-Soilg,i 0.36±0.02 0.05±0.02 53.3±0.8 1, 1 ,1 
Fe3S2 oct-Fe3+ Hematite MP Rockj 0.36±0.02 -0.05±0.06 51.9±0.8 41, 41, 41 
Fe3S2 oct-Fe3+ Hematite MP BC-Soilk 0.36±0.02 -0.16±0.05 52.4±0.8 17, 17, 17 
         
Fe3S3 oct-Fe3+ Goethite GC Rock 0.38±0.02 -0.17±0.03 35.5±0.8 3, 3, 3 

aOct = octahedral; tet = tetrahedral. 
bGC = Gusev crater; MP = Meridiani Planum. 
cδ is measured with respect to metallic Fe foil at the same temperature as the sample. 
dN = number of analyses used in average calculation for δ, ΔEQ, and Bhf, respectively. 
eUncertainty is the larger of the measurement uncertainty and the standard deviation of the average. 
fAverage of all sextets with ΔEQ < 0 mm/s. Includes data from one and two Hm sextet fits. Two Hm sextets are 

required to fit spectra that contain subspectra from Hm above and below the Morin transition (e.g., PotOfGold at 
Gusev crater (Morris et al., 2006a). 

gAverage of all sextets with ΔEQ > 0 mm/s. Includes data from one and two Hm sextet fits. 
hLaguna class soil. 
iPaso Robles class soil. 
jAltered High-S Rock (Burns formation). 
kBerry Class soil. 
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Table 3. Average concentration of Fe from individual Fe-bearing phases (AxFeT/100) in supergroups of Gusev crater and Meridiani Planum rock and soil. 
 Gusev Crater  Meridiani Planum 

 Weakly 
Altered 
Basalt 

Altered 
Low-S 
Rock 

Altered
High-S 
Rock 

Laguna
Class Soil

Paso 
Robles 

Class Soil
Berry 

Class Soil  

Weakly 
Altered 
Basalt 

Altered
Low-S 
Rock 

Altered 
High-S 
Rock 

Laguna
Class 
Soil 

Paso 
Robles 

Class Soil
Berry 

Class Soil
Σ(AxFeT/100) = FT; units = moles/24(O+Cl)a 

AOlFeT/100 0.85±0.34b 0.10±0.12 -- 0.66±0.10 0.13±0.08 --  0 -- 0.03±0.02 0.72±0.14 -- 0.62±0.13
APxFeT/100 0.74±0.14 0.37±0.21 -- 0.63±0.08 0.19±0.06 --  1.78±0.11 -- 0.24±0.06 0.83±0.13 -- 0.71±0.19
AIlmFeT/100 0.00±0.01 0.04±0.06 -- 0.01±0.03 0 --  0 -- 0 0 -- 0 
AChrFeT/100 0 0.01±0.03 -- 0 0 --  0 -- 0 0 -- 0 
AMtFeT/100 0.39±0.27 0.15±0.13 -- 0.16±0.04 0.11±0.01 --  0 -- 0 0.13±0.02 -- 0.11±0.11
AnpOxFeT/100 0.23±0.10 0.44±0.19 -- 0.41±0.14 0 --  0.01±0.02 -- 0.03±0.17 0.43±0.18 -- 0.44±0.11
AFe3SulfateFeT/100 0 0 -- 0 1.35±0.17 --  0 -- 0 0 -- 0 
AFe3D3FeT/100 0 0 -- 0 0 --  0 -- 0.34±0.04 0 -- 0 
AJarFeT/100 0 0 -- 0 0 --  0 -- 0.51±0.06 0 -- 0 
AHmFeT/100 0.03±0.03 0.28±0.21 -- 0.05±0.04 0.31±0.25 --  0 -- 0.63±0.08 0.09±0.04 -- 1.62±0.79
AGtFeT/100 0 0.18±0.20 -- 0 0 --  0 -- 0 0 -- 0 
FeT 2.24±0.22 1.56±0.38 -- 1.91±0.11 2.07±0.40 --  1.80±0.09 -- 1.75±0.10 2.21±0.18 -- 3.49±0.60
Sc 0.28±0.15d 0.55±0.21 -- 0.68±0.24 3.17±0.04 --  0.06±0.01 -- 2.27±0.26 0.64±0.11 -- 0.61±0.07

Other Parameters 
Fe3+/FeT 0.24±0.11 0.63±0.18 -- 0.30±0.07 0.83±0.05 --  0.01±0.01 -- 0.85±0.03 0.28±0.09 -- 0.60±0.13
Ne 15 35 0 24 2 0  3f 0 20g 10 0 13 

aMB and APXS data from Morris et al. (2006,a,b), Gellert et al. (2004), Rieder et al. (2004), and Yen et al. (2006). Pie diagrams showing distribution of Fe among 
Fe-bearing phases (values of Ax) are shown in Figure 9. 

bAverage concentration and 1σ standard deviation of the average. 
cExcludes analyses of undisturbed surfaces when analyses of RAT-brushed or RAT-ground surfaces are available. 
dExcludes Peace and Alligator, which have a Mg-sulfate cement (Ming et al., 2006) but are Weakly Altered Basalt with respect to Fe-bearing phases. 
eNumber of targets with both MB and APXS data. 
fAll analyses are for Bounce Rock. S concentration is from one analysis of a RAT-ground surface; uncertainty is measurement uncertainty. 
gIncludes only analyses for RAT-ground surfaces. 
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Table 4. Classification, target name, location, oxidation state (Fe3+/FeT), and AIgneous of rocks at Gusev crater and 
Meridiani Planum. 

Rock Name Classa Subclassa Mössbauer Target Nameb Locationc Fe3+/FeT

AIgneous

(%) 
Rock Supergroup: Weakly Altered Basaltd 

Adirondack Adirondack -- A034RR0 (Adirondack_Blue) GC Pl 0.16e 93f 
Humphrey Adirondack -- A060RR0 (Humphrey Heyworth2) GC Pl 0.15 93 
Mazatzal Adirondack -- A084RR0 (Mazatzal_Brooklyn) GC Pl 0.10 95 
PaperBack Adirondack -- A076RU0 (PaperBack_Appendix) GC Pl 0.23 80 
Route66 Adirondack -- A100RB (Route66_SoHo) GC HH 0.07 93 
Backstay Backstay -- A510RB0 (Backstay_Scuppler) GC HH 0.23 82 
Bounce Rock Bounce Rock -- B067RR0 (BounceRock_Case) MP Pl 0.00 100 
Irvine Irvine -- A602RU0 (Irvine) GC HH 0.36 90 
Alligator Peace -- A385RB0 (Alligator_Jambalaya) GC HH 0.31 86 
Peace Peace -- A379RR0 (Peace_Justice2) GC HH 0.37 86 
Joshua Other Rock Joshua A150RU0 (Mohave_Joshua) GC Pl 0.26 87 
MimiShoe Other Rock Joshua A042RU0 (MimiShoe_Lace) GC Pl 0.43 77 

Rock Supergroup: Altered Low-S Rockd 
Clovis Clovis Clovis A218RR0 (Clovis_Plano) GC WS 0.84 17 
Ebenezer Clovis Clovis A233RR0 (Ebenzer_Ratchit2) GC WS 0.83 31 
Lutefisk Clovis Clovis A303RB0 (Lutefisk_Roe) GC WS 0.65 49 
Temples Clovis Clovis A269RU (Temples_Dwarf) GC WS 0.74 33 
Tetl Clovis Clovis A275RU0 (Tetle_Clump) GC WS 0.70 47 
Uchben Clovis Clovis A288RR0 (Uchben_Koolik) GC WS 0.79 31 
Wooly Patch Clovis Wooly Patch A200RR0 (WoolyPatch_Mastadon) GC WS 0.61 50 
Assemblee Independence -- A568RU0 (Assemblee_Gruyere) GC HH 0.37 91 
Independence Independence -- A542RS0 (Independence_Penn2) GC HH 0.25 32 
BreadBox Other Rock PotOfGold A176RU0 (Breadbox_Sourdough) GC WS 0.47 58 
Fork Knox Other Rock PotOfGold A166RU0 (FortKnox_Goldbar) GC WS 0.52 49 
Keel Davis Watchtower Keel A486RB0 (Keel_Davis) GC HH 0.73 25 
Keel Reef Watchtower Keel A483RU0 (Keel_Reef) GC HH 0.64 43 
Keystone Watchtower Keystone A472RB0 (Keystone_Haunch) GC HH 0.43 57 
Paros Watchtower Watchtower A493RB0 (LarrysLookout_Paros) GC HH 0.94 4 
Pequod Watchtower Watchtower A498RU0 (Pequod_Ahab) GC HH 0.88 6 
Watchtower Watchtower Watchtower A418RR0 (WatchTower_Joker) GC HH 0.83 14 
Champagne Wishstone -- A358RR0 (Champagne_RAT2) GC HH 0.45 56 
WishingWell Wishstone -- A350RU0 (WishingWell_Dreaming) GC HH 0.41 63 
Wishstone Wishstone -- A336RR0 (Wishstone_Chisel) GC HH 0.40 62 
PotOfGold Other Rock PotOfGold A173RR0 (HanksHollow_PotOfGold) GC WS 0.62 39 
StringOfPearls Other Rock PotOfGold A178RU (StringOfPearls_Pearl) GC WS 0.43 59 

Rock Supergroup: Altered High-S Rockg 
Blackcow Burns Outcrop -- B308RR0 (Blackcow_Wharenhui) MP-End 0.81 19 
Bylot Burns Outcrop -- B196RR0 (Bylot_Aktineq3) MP-End 0.85 15 
Diamond Jenness Burns Outcrop -- B179RR0 (DiamondJenness_Holeman3) MP-End 0.88 12 
Escher Burns Outcrop -- B219RR0 (Escher Kirchner) MP-End 0.84 16 
Flatrock Burns Outcrop -- B045RR0 (FlatRock_Mojo2) MP Eag 0.85 25 
Guadalupe Burns Outcrop -- B035RR0 (Guadalupe_King3) MP Eag 0.90 10 
IceCream Burns Outcrop -- B548RR0 (IceCream_Onescoop) MP Pl 0.87 13 
Inuvik Burns Outcrop -- B188RR0 (Inuvik_Tuktoyaktuk) MP-End 0.84 16 
Lionstone Burns Outcrop -- B108RR0 (LionStone_NummaNewNormal) MP-End 0.86 14 
Kentucky Burns Outcrop -- B144RR0 (Kentucky_CobbleHill) MP-End 0.84 16 
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Table 4. Continued 
Rock Name Class Subclass Mössbauer Target Name Location Fe3+/FeT AIgneous

Mackenzie Burns Outcrop -- B183RR0 (Mackenzie_Campbell2) MP-End 0.84 16 
Manitoba Burns Outcrop -- B152RR0 (Manitoba_Grindstone) MP-End 0.82 19 
McKittrick Burns Outcrop -- B032RR0 (McKittrick_MiddleRAT_ MP Eag 0.87 13 
Millstone Burns Outcrop -- B163RR0 (Millstone_Drammensfjord) MP-End 0.78 22 
Ontario Burns Outcrop -- B150RR0 (Ontario London) MP-End 0.81 19 
Pilbara Burns Outcrop -- B088RR0 (Pilbara_Golf) MP-Frm 0.90 10 
Tennessee Burns Outcrop -- B1400RR (Tennessee_Vols) MP-End 0.85 15 
Virginia Burns Outcrop -- B148RR0 (LayerC_Virginia) MP-End 0.82 18 
Yuri Burns Outcrop -- B404RR0 (Yuri_Gagarin) MP Pl 0.92 8 

Rock Supergroup: Meteorited 
Barberton Meteorite -- B121RU0 (FigTree_Barberton2) MP End 0.06 83 
Heat Shield Rock Meteorite -- B351RB0 (SpongeBob_Squidward) MP Pl 0.06 0 
aRock classes Gusev crater from Squyres et al. (2006), except for Independence Class. Rock subclass from for Gusev 

crater from Morris et al. (2006a). 
bTarget naming convention: Mwwwxyz (Feature-name_Target-name). M =A for MER-A (Gusev Crater) or B for MER-B 

(Meridiani Planum); www = sol number that data product was returned to Earth. For integrations covering multiple 
sols, the sol of the first returned data product is used. x = R (rock) or S (soil); y = U (undisturbed), D (disturbed), T 
(trench), B (RAT-brushed surface), R (RAT-ground surface), S (scuff of rock surface by rover wheel), or G (RAT 
grindings); z = 0 by default; z = 1, 2, 3… for multiple analyses of the same target on the same sol. For MxxxSTz, z = 
1, 2, 3… with increasing number corresponding to increasing depth. Alphanumeric strings before parentheses are 
unique target identifiers. 

cGC = Gusev crater; Pl = Plains; WS = West Spur; HH = Husband Hill; MP = Meridiani Planum; Eag = Eagle Crater; End 
= Endurance Crater. 

dIncludes only the first target for a rock in the order RAT-grind (RR), RAT-brushed (RB), and undisturbed (RU) 
eUncertainty = ±0.03. 
fAIgneous = AOl + APx + AIlm + AChr + AMt. Note that AIgneous = (1.0 – MAI), where MAI = Mineralogical Alteration Index (Morris 

et al., 2006a). 
gIncludes only targets of Burns Outcrop exposed by RAT-grinding. 
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Table 5. Classification, target name, location, oxidation state (Fe3+/FeT), and AIgneous of soils at Gusev crater and 
Meridiani Planum. 

Soil Name Subclassa Mössbauer Target Nameb Locationc Fe3+/FeT

AIgneous

(%) 
Soil Supergroup: Laguna Class Soila 

Auk Panda B237SB0 (Auk_AukRAT) MP End 0.20d 84e 
BearPaw Panda Panda A073SD0 (BearPaw_Panda) GC Pl 0.25 84 
Big Hole May Fly Boroughs A113ST1 (BigHole_MayFly) GC Pl 0.26 82 
Big Hole RS2 Boroughs A114ST2 (Bighole_RS2) GC Pl 0.44 62 
Brians Choice Liberty B056SU0 (BlackForest_BriansChoice) MP Eag 0.27 78 
Coffee Liberty A281SD0 (TakeABreak_Coffee) GC WS 0.31 78 
Cookie Cutter Gobi A182SU0 (CookieCutter_Shortbread) GC WS 0.38 71 
Conjunction Gobi A260SD0(Conjunction_Disturbance) GC WS 0.31 75 
Crumble Panda A459SU0 (Crumble_Almonds) GC HH 0.21 84 
Cutthroat Gobi A122SD0 (Cutthroat_Owens) GC Pl 0.34 75 
Dahlia Panda B165SU0 (Millstone_Dahlia) MP End 0.20 83 
Desert Gobi Gobi A069SU0 (Desert_Gobi) GC Pl 0.36 70 
FineSoil Panda B038SU0 (FineSoil_Paydirt) MP Eag 0.22 83 
First Soil Gobi A014SU0 (FirstSoil) GC Pl 0.29 75 
Goldfinger Panda A167SU0 (Goldfinger_Jaws) GC WS 0.26 82 
Hells Kitchen Boroughs A141ST2 (Boroughs_HellsKitchen) GC Pl 0.42 65 
Hema Trench Bottom Gobi B025ST2 (BigDig HemaTrench1) MP Eag 0.48 55 
Hema Trench Wall Gobi B026ST1 (BigDig_HemaTrenchWall2) MP Eag 0.32 72 
Jeffs Choice Liberty B078ST1 (DogPark_JeffsChoice) MP Pl 0.27 78 
Laguna Hollow Floor Panda A049ST2 (LagunaHollow_Floor3) GC Pl 0.23 84 
Laguna Hollow Trout Liberty A047SU0 (LagunaHollow_Trout1) GC Pl 0.30 76 
Laguna Hollow Wall Panda A050ST1 (LagunaHollow_WallMIonly) GC Pl 0.23 83 
Left of Peanut Liberty B367ST1 (TrenchSite_LeftOfPeanut) MP Pl 0.27 77 
Les Hauches Gobi B060SU0 (MontBlanc_LesHauches) MP Eag 0.39 65 
Liberty Liberty A479SU0 (Liberty_Bell) GC HH 0.25 79 
McDonnell Liberty B123SU0 (HillTop_McDonnell) MP End 0.28 77 
Mazatzal Flats Liberty A077SU0 (MazatzalFlats_Soil1) GC Pl 0.30 79 
Meringue Liberty B055SU0 (Meringue_MBone) MP Eag 0.24 80 
Merlot Panda B011SU0 (Merlot_Tarmac) MP Eag 0.22 82 
Mill Basin Boroughs A140ST1 (Boroughs_MillBasin) GC Pl 0.36 69 
Mimi Tracks Panda A043SD0 (MimiTracks_Middle) GC Pl 0.27 78 
Mount Hillyer Liberty A135SD0 (MountHillyer_HorseFlats) GC Pl 0.26 80 
Paso Dark Liberty A426SD0 (PasoRobles2_PasoDark) GC HH 0.27 80 
Penny Panda A342SD0 (Penny_DS1) GC HH 0.22 84 
Rocknest Panda B246SU0 (Rocknest_VoidMod) MP End 0.21 84 
Scruffy Panda B373SD0 (Trench_Scruffy) MP Pl 0.21 83 
Shreaded Panda A158SD0 (Shreaded_Dark4) GC WS 0.22 83 
Waffel Flats Gobi A110SU0 (WaffelFlats_Soil1) GC Pl 0.40 75 
Yams Liberty A316SD0 (Yams_Turkey) GC WS 0.30 76 

Soil Supergroup: Paso Robles Class 
Paso Light -- A429SD0 (PasoRobles2_PasoLight1) GC HH 0.79 24 
Paso Robles -- A401SD0 (Pasadena_PasoRobles) GC HH 0.86 17 
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Table 5. Continued 

Soil Name Subclass Mössbauer Target Name Location Fe3+/FeT

AIgneous

(%) 
Soil Supergroup: Berry Class 

Aegean Crest Moessberry B073SU0 (Seas_AegeanCrest) MP Pl 0.76 30 
Berry Stop Moessberry B097SU0 (BerryStop_LeahsChoice) MP Pl 0.63 40 
Berry Survey Moessberry B222SU0 (BerrySurvey_Cluster3) MP End 0.64 37 
Cavair Nougat B369SU0 (TrenchRipple_Cavair_Tweaked) MP Pl 0.45 60 
Cleo Moessberry B063SU0 (Whitestreak_Cleo3) MP Pl 0.67 36 
Freckles Nougat B017SU (BerryFlats_Freckles) MP Eag 0.46 54 
Fred Ripple Moessberry B091RU0 (PhotoTIDD_FredRipple) MP Pl 0.66 39 
Hematite Slope Nougat B023SU0 (HematiteSlope_Hema2) MP Eag 0.39 65 
Jack Russell Moessberry B080SU0 (DogPark_Jack Russell) MP Pl 0.64 36 
Mayberooz Moessberry B420SU0 (Ripple Mayberooz) MP Pl 0.66 34 
Mobarak Moessberry B415SU0 (MattsChoice_Mobarak) MP Pl 0.61 40 
MoessBerry Moessberry B048SU0 (BerryBowl_MoessBerry) MP Eag 0.79 21 
Mud Pie Nougat B054SU0 (MudPie_Coconut2) MP Eag 0.30 75 
Munter Nougat B062SU0 (BlackPatch Munter) MP Pl 0.40 66 
Norooz Moessberry B419SU0 (Ripple_Norooz) MP Pl 0.65 35 
Nougat Nougat B090SD0 (PhotoTIDD_Nougat) MP Pl 0.40 65 
Nullarbor Moessberry B084SU0 (Nullarbor_GreatSandy) MP Pl 0.70 33 
Panaluu Moessberry B052SU (Goal5WorkVolume_Panaluu) MP Eag 0.78 28 
Purgatory Nougat B509SD0 (Purgatory_Track2) MP Pl 0.49 55 
Recovery Soil Moessberry B445SU0 (RecoverySoil_Cure) MP Pl 0.63 39 
Ripple Crest Moessberry B368SU0 (TrenchRipple_RippleCrest2b) MP Pl 0.75 25 
Vanilla Nougat B053SU0 (Goal3Field_Vanilla) MP Eag 0.35 70 

Unclassified Soil 
Doubloon Doubloon A502SU0 (Pequod_Doubloon) GC HH 0.38 66 
aSoil classes and subclasses from Morris et al. (2006a,b). 
bSee Table 4 footnote for target naming convention. 
cGC = Gusev crater; Pl = Plains; WS = West Spur; HH = Husband Hill; MP = Meridiani Planum; Eag = Eagle Crater; 

End = Endurance Crater. 
dUncertainty = ±0.03. 
eAIgneous = AOl + APx + AIlm + AChr + AMt. Note that AIgneous = (1.0 – MAI), where MAI = Mineralogical Alteration Index 

(Morris et al., 2006a). 
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Figure Captions. 

 

Figure 1. Energy level diagrams for 57Fe for the cases of singlet, doublet, and sextet transmission 

Mössbauer spectra, schematic representation of the corresponding MB spectra and equations 

used for calculation of MB parameters δ, ΔEQ, and Bhf, and representative geologic materials. 

MER MB spectra are measured in backscatter geometry, so the MB spectra are emission peaks 

(i.e., essentially the inverse of the typical laboratory transmission geometry spectra shown here). 

For MER instruments (Klingelhöfer et al., 2003), δ is measured with respect to the center point 

of the spectrum of metallic Fe foil at approximately the same temperature as the sample. For 

peak centers in units of mm/s and Bhf in units of tesla (T), the constant in the formula Bhf = 

(constant)(v6-v1) equals 3.101. 

 

Figure 2. Images for the MIMOS II Mössbauer spectrometer and selected surface targets for MB 

analysis at Gusev crater and Meridiani Planum. Image identifications are given in the figure. 

Pancam images were downloaded from http://pancam.astro.cornell.edu/ (Bell et al., 2006) (a) 

Approximate true color image of Spirit’s Instrument Deployment Device (IDD) showing the 

sensor head of the MIMOS II Mössbauer spectrometer. The hole in the contact plate (1.5 cm 

diameter) defines the field of view for the instrument. The contact plate has a temperature sensor 

for measurement of martian surface temperatures. Note the small patch of soil adhering to the 

contact plate. (b) Approximate true color image showing hole ground by the RAT in Burns 

Outcrop Class rock McKittrick. The hole diameter is ~4 cm. MB spectra from the hole are shown 

in Figures 4h and 4i. (c) Approximate true color image showing the RAT brush “mosaic” on the 

Adirondack class rock Route66 at Gusev crater. MB spectrum is shown in Figure 4a. (d) 

Approximate true color image showing spherules in the “Blueberry Bowl” at Eagle crater, 

Meridiani Planum. MB spectra were obtained from a spherule-free region of the outcrop rock 

and from the spherules that collected in the bowl (sample B048SU0 (BerryBowl_MoessBerry) in 

Figure 4l). (e) Approximate true color image showing a RAT brush mosaic and a RAT hole in 

the Clovis Class rock Clovis (samples A213RU0,  A215RB0, and A218RR (Clovis_Plano) in 

Figure 4k) at West Spur in Gusev crater. (f) False color image showing trench dug with rover 

wheels through a ripple on the plains at Meridiani Planum south of Endurance crater. MB spectra 

were obtained for soils at the ripple crest (Berry Class soil; similar to sample A415SU0 
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(MattsRipple_Mobarak) in Figure 4m), ripple trough (Berry Class soil), and trench bottom 

(Laguna Class soil). Note that the contact plate creates a “noseprint” in soft soil. (g) 

Approximate true color image showing a trench dug with rover wheels on the northwestern flank 

of Husband Hill. As shown by the noseprints, MB spectra were obtained on the “white” soil 

(Paso Robles Class soil) and on the “dark” soil (Laguna Class soil). The white soil MB spectrum 

is similar to sample A401SD0 (Pasadena_PasoRobles) in Figure 4g. (h) Microscopic Imager 

(MI) image showing MB noseprint for sample B060SU0 (MontBlanc_LesHauches) in the fine-

grained deposit of dust just below the downwind lip of Eagle crater. The spectrum is similar to 

sample A069SU0 (Desert_Gobi) in Figure 4e. 

 

Figure 3. Fe-bearing phase identification diagrams for doublet (a and c) and sextet (b and d) 

spectra acquired at Gusev crater (GC) and Meridiani Planum (MP). Generic names have the form 

FeXYZ where X = Fe oxidation state, Y = D (doublet) or S (sextet), and Z = a sequence number 

for phases with the same values of X and Y. Phase assignments are given in parentheses (Ol = 

olivine, Px = pyroxene, Ilm = ilmenite; Chr = chromite; npOx = nanophase ferric oxide; 

Fe3Sulfate = ferric sulfate; Jar = jarosite; Mt = magnetite; Hm = hematite; Gt = goethite; Kam = 

kamacite). Chr has two doublets (Fe2D4 and Fe3D5), and Mt has two sextets (Fe2.5S1 and 

Fe3S1). One Fe-bearing phase (Fe3D3) was not assigned a mineralogical composition. The large 

range in values of ΔEQ for Hm results from a magnetic transition (the Morin transition at ~260 K 

for pure, well-crystalline bulk hematite) that occurs within the martian diurnal temperature range 

(~180 to300 K). The isomer shift (δ) is measured with respect to the center point of the spectrum 

of metallic Fe foil at nominally the same temperature as the sample temperature. 

 

Figure 4. Mössbauer spectra from the MER MIMOS II instruments that have high proportions of 

Fe from each of the 14 identified MB doublets and sextets: (a) Fe2D1 (Ol) in Adirondack class 

rock Route66; (b) Fe2D2 (Px) in rock Irvine; (c) Fe2D3 (Ilm) in Wishstone class rock 

Wishstone; (d) Fe2D4 and Fe3D5 (Chr) in Independence class rock Assemblee; (e) Fe3D1 

(npOx) in Laguna class undisturbed soil sample Desert_Gobi; (f) Fe3D1 (npOx) in Watchtower 

Class rock LarrysLookout; (g) Fe3D2 (Fe3Sulfate) in Paso Robles Class soil sample 

Pasadena_PasoRobles; (h) Fe3D3 (unassigned) and Fe3D4 (Jar) in Burns Outcrop Class; (i) 

same as (h) except MB spectrum was acquired over a narrow velocity range; (j) Fe2.5S1 and 
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Fe3S1 (Mt) in Peace Class rock Peace; (k) Fe3S3 (Gt) in Clovis Blass rock Clovis; (l) Fe3S2 

(Hm) in Berry Class undisturbed soil sample BerryBowl_Moessberry; (m) Fe3S2 (Hm) in Berry 

Class undisturbed soil sample MattsRipple_Mobarak; and (n) Fe0S1 (Kam) in Heat Shield Rock. 

All MB spectra are the sum of spectra for temperatures between 200 and 270 K. Sample naming 

convention is Uwwwxyz, where U = A for Gusev crater or U = B for Meridiani Planum, www = 

sol number, x = R (rock) or S(soil), y = U (undisturbed), D (disturbed), B (RAT brush), or R 

(RAT grind), and z = 0, 1, 2, … as appropriate to keep sample names unique (usually, z = 0). 

The y-axis is TC/BC – 1.0, where TC = total counts and BC = baseline counts. The maximum 

value of TC/BC – 1.0 for each spectrum is given in the figure as (TC/BC – 1.0)MAX. 

 

Figure 5. Histograms for number of MB analyses having >10% Fe from each of the 12 Fe-

bearing phases for rocks (a and c) and soils (b and d) at Gusev crater (a and b) and Meridiani 

Planum (c and d). The numbers above each non-zero column refer to the number of MB analyses 

where the Fe percentage from an Fe-bearing phase is >10% (upper) and the total number of MB 

analyses where the Fe percentage from an Fe-bearing phase is >0% (lower). 

 

Figure 6. Diagrams for assignment of MER non-meteorite rock samples to supergroups (Weakly 

Altered Basalt, Altered Low-S Rock, and Altered High-S Rock). (a). FeT versus AIgneousFeT/100, 

where AIgneous = AOl + APx + AIlm + AChr + AMt. Weakly Altered Basalts are distinguished from 

altered rocks by high values of FeT and FeT ~ AIgneousFeT/100 (dashed line with labeled “y = x”). 

Independence Class rocks (Ind. Class), having FeT ~ AIgneousFeT/100 and low FeT, are Altered 

Low-S Rocks. (b). FeT versus (AJar + AFe3D3 + AHm)FeT/100. Altered High-S Rocks are 

distinguished from Altered Low-S Rocks, because Jar, Fe3D3, and Hm are the dominant Fe-

bearing phases in the former but not in the latter (c). S versus (AJar + AFe3D3 + AHm)FeT/100. 

Altered High-S Rocks have S concentration greater than ~1.5 moles/24(O+Cl) (equivalently, 

~14.2 wt.% SO3). Outcrop surfaces not exposed by grinding with the RAT (open square 

symbols) tend to have low concentrations of S because the analysis volumes include 

contributions from soil and dust coatings that have low-S concentrations. (d) FeT versus 

AHmFeT/100. High concentrations of Fe from Hm are found in rocks from both Gusev crater and 

Meridiani Planum. 
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Figure 7. Diagrams for assignment of MER soil samples to supergroups (Laguna Class soil, 

Paso Robles Class soil, and Berry Class soil). (a). FeT versus AIgneousFeT/100. Soils form into 

Laguna Class (LC), Paso Robles Class (PRC) and Berry Class (BC) supergroups, except for two 

BC soils that have LC affinities. (b). FeT versus (AJar + AFe3D3 + AHm)FeT/100. BC soils are 

distinguished from LC soils. (c). S versus (AJar + AFe3D3 + AHm)FeT/100. The three soil 

supergroups form into different regions. LC and BC supergroups have S concentrations within 

the range for Altered Low-S Rock (Figure 6c). PRC soils at Gusev crater have the highest S 

concentrations measured on Mars. (d) FeT versus AHmFeT/100. Soils do not have detectable 

concentrations of Jar and Fe3D3 (compare with (b)). 

 

Figure 8. Plots of AIgneousFeT/100 versus AAlterationFeT/100 for (a) rock and (b) soil at Gusev 

crater (GC) and Meridiani Planum (MP). Solid lines correspond to FeT = 2.24 and 1.80 

moles/24(O+Cl). Weakly Altered Basalts (Wk. Alt. Basalt) plot near the upper left corner of (a). 

Assuming that all unaltered martian rocks have FeT > 1.0 moles/24(O+Cl) and AAlterationFeT/100 

~ 0 moles/24(O+Cl), compositions that plot on the y-axis of (a) with FeT < 1.0 moles/24(O+Cl) 

are rocks altered in an open system without retention of Fe-bearing alteration products. 

Independent Class (Ind. Class) rocks, for example, are examples of rocks that show evidence for 

alteration in an open system. Samples that plot along a line of constant FeT (e.g., FeT = 2.24 and 

1.80 moles/24(O+Cl)) are only potentially related by isochemical alteration (on an H2O-free 

basis), because all elemental concentrations must be considered to validate isochemical 

alteration. For example, in (a), Bounce Rock (BR) and MP S-rich outcrop rocks plot along the 

line with FeT = 1.80 moles/24(O+Cl) but are not related by isochemical alteration because of 

differences in major element chemistry (e.g., Rieder et al., 2004). 

 

Figure 9. Pie diagrams showing the average values (1σ standard deviation in parenthesis) of Fe 

from Fe-bearing phases (Ax, where x = Ol, Px, Ilm, Chr, Mt, npOx, Fe3Sulfate, Fe3D3, Jar, Hm, 

and Gt) for rock and soil supergroups at Gusev crater (as of sol 602) and Meridiani Planum (as of 

sol 557): (a) Weakly Altered Basalt, (b) Altered Low-S Rock, and (c) Altered High-S Rock for 

RAT-ground surfaces, (d) Laguna Class soil, (e) Paso Robles Class soil, and (f) Berry Class soil. 

Altered High-S Rock and Berry Class soil are not present at Gusev crater and Altered Low-S 

Rock and Paso Robles Class soil are not present at Meridiani Planum. The distribution of Fe 
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from Fe-bearing phases for Gusev crater Weakly Altered Basalt (a) is very similar to that for 

Laguna Class soil (e), except the latter has more Fe from npOx. The meteorite supergroup (not 

shown), whose distinguishing characteristic is kamacite as an Fe-bearing phase, includes two 

rocks from Meridiani Planum (Heat Shield and Barberton) and no rocks from Gusev crater. The 

average concentrations of Fe associated with iron bearing phases (AxFeT/100) are given in Table 

3. 

 

Figure 10. Supergroup membership of rock and soil analyses and Fe3+/FeT as a function of sol 

number for Gusev crater (a and c) and Meridiani Planum (b and d). Sol number is used a proxy 

for location, and general location names are shown in the figures. The Weakly Altered Basalts 

are Adirondack (Ad), Mimi Shoe (MS), Humphrey (Hu), Mazatzal (Mz), Route66 (R66), Joshua 

(Jo), Peace (Pe), Alligator (Al), Backstay (Bs), Irvine (Ir), and Bounce Rock (BR). The 

significant range in Fe3+/FeT for Weakly Altered Basalt results from variable contributions from 

magnetite which has Fe3+/FeT = 0.67 for the stoichiometric composition (Fe3O4). The Altered 

Low-S Rocks are Wooly Patch (WP), Clovis (Cl), Ebenezer (Eb), Wishstone (Ws), Champagne 

(Ch), Watchtower (Wt), Pharos (Ph), Pequod (Pq), Independence (In), and Assemblee (As). 

Barberton (Bt) and Heat Shield (HS) rocks are meteorites at Meridiani Planum. 

 

Figure 11. Molar concentrations of (a) S and (b) Cl versus the molar concentration of Fe from 

npOx (AnpOxFeT/100) for Laguna and Berry class soils and two analyses of thick dust coatings on 

the Gusev crater rock Mazatzal. The solid lines are linear least squares fits, excluding the 

subsurface Boroughs trench (Bo Trench) samples in (a). The slopes of the lines are upper limits 

for the molar ratios of S/Fe (0.62) and Cl/Fe (0.12) for npOx (see text). Specific soil samples 

labeled on the graph are Crumble_Almond (CA), BearPaw Panda (BP), Desert_Gobi (DG), 

Boroughs_MillBasin and Boroughs_HellsKitchen (Bo), MontBlanc_LesHauches (ML), 

Lambert_Whymper (LW), BigHole_RS2 (RS2), Purgatory_Track2 (PT), and 

BigDig_HemaTrench1 (BH). 

 

Figure 12. Pie diagrams showing Fe mineralogical compositions for Watchtower Class rocks 

Methusela, Jibsheet, Watchtower, Pequod, and Paros in the Gusev Columbia Hills. These rocks 

likely have undergone isochemical alteration under low water-to-rock ration conditions because 
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they have similar chemical compositions but diverse mineralogical compositions (AIngeousFeT/100 

= 0.78 to 0.08) and Fe oxidations states (Fe3+/FeT = 0.43 to 0.94). 

 

Figure 13. AMtFeT/100 versus FeT for Gusev crater (blue symbols) and Meridiani Planum (red 

symbols) rock (squares) and soil (circles) samples. The solid line refers to AMtFeT/100 = FeT. 

The horizontal dashed lines correspond to values for the saturation magnetization using 92 

Am2/kg for stoichiometric bulk magnetite. Named rocks are Irvine (Ir), Peace (Pe), MimiShoe 

(MS), Alligator (Al), Tetle (Tt), and Joshua (Jo). 
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