NASA/Haughton-Mars Project
2006 Lunar Medical Contingency Simulation
Devon Island, Nunavut, Canadian High Arctic

Richard A. Scheuring, DO, MS
Lead Flight Surgeon
Constellation Program
NASA-Johnson Space Center
NASA/Haughton-Mars Project 2006
Lunar Medical Contingency Simulation

• Mission Purpose/Overview

• HMP as a Moon/Mars Analog

• Simulation objectives
 – Procedure
 – Results

• Discussion
 – Lessons Learned

• Forward work
Lunar Medical Contingency Simulation

• **Purpose**
 – Evaluate hardware, systems and integration with other elements in an operational scenario to develop medical requirements for lunar surface operations
NASA/HMP 2006 Lunar Medical Contingency Simulation

• Mission Overview
 – The operational scenario simulated a lunar EVA by three suited crewmembers
 • One crewmember (EV1) sustains incapacitating injuries requiring extraction from sloped terrain
 – This effort represents the first evidence-based medical contingency simulation in a lunar analog environment
 – Low fidelity simulation
Background research: Medical Contingency Simulation

- Historical data review
- Apollo Medical Operations Summit 7-9 June 2006
- Risk factors for injuries on the lunar surface
 - Navigation into craters >20-26° slope
 - Rover activities
 - CDR vs. LMP
 - Falling from a height
 - Ladder
 - Rim of a crater
Devon Island as Analog
Why is Devon Island a good Moon/Mars Analog?

- **Extreme Environmental Conditions**
 - Devon Island is set in the Polar Desert of the High Arctic.
 - Cold climate. Frozen subsurface. High UV flux (Summer only).

- **Relevant Geologic Features & Biological Attributes**
 - Haughton Crater is relatively large & exceptionally well preserved.
 - Cold Climate (Fluvial, Glacial, & Periglacial) Geological Features.
 - Microbial Niche Habitats

- **Remote & Isolated**
 - Arctic Island.

- **No or Limited Infrastructure & Resources**
 - HMP Research Station is only infrastructure.
 - Moon/Mars-Relevant Surface Operations.
Haughton Crater as Moon Analog
23 km-class Polar Impact Craters

Shackleton Crater at the South Pole of the Moon is 19 km in diameter and might present H₂O ice in surrounding shadowed zones. It is a prime candidate site for human exploration. Haughton Crater, also ~ 23 km in size, is by far the best preserved impact structure of its class on Earth and is located in a H₂O ground ice–rich rocky desert. Haughton may be the best overall scientific and operational analog for lunar craters such as Shackleton.
Haughton Impact Crater

EVA Med Evac Sim Site

~3 Km

HMP Base Camp “LSAM”

Photo courtesy of HMP 2006/P. Lee

Objectives: Medical Contingency Simulation

1. Develop an effective management strategy for a planetary EVA medical/field contingency

Photo courtesy of HMP 2006/N. Wilkinson
Procedure: Medical Contingency Simulation

- Scenario
 - EV1 is conducting LSA in the crater when the call comes from CEV (ISS) that a SPE has been detected
 • Sustains a lower extremity injury
 • Blunt abdominal trauma
 - Plausible event
 • Stabilization and transfer of an ill or injured crewmember will require dedicated resources and training
Results: Medical Contingency Simulation

• The management strategy for dealing with crew injury was established
 – A number of areas were identified that will need refinement
• Field medical assessments are possible but limited
• A physician CMO greatly reduced the dependence on the console flight surgeon and back room support
• Acute radiation sickness?
 – Immediate erythematic response, possible G.I. prodromal symptoms within hours of exposure
Results: Medical Contingency Simulation

- This was the first opportunity to apply the Space Radiation Analysis Group (SRAG) simulation tool into an integrated simulation
 - Demonstration of tool functionality for evaluation of exploration radiation operational rules
- Real time events facilitated a realistic dialog between SRAG/Surgeon/Flight
- The crew did not understand the full impact of the SPE from MCC-Houston
 - No active dosimetry was available on the surface
Objectives: Connectivity

2. Demonstrate the ability to communicate between multiple international control centers, the CEV (ISS), and the EVA crew while conducting EVA operations on an extra-planetary surface.
Results: Connectivity

- Real-time delivery of audio/visual and BIOMED data across multiple centers was achieved.
- Integration between radio systems and network infrastructure was successful – a unique first.
Results: Connectivity

• Loss of communications for EV2 not planned.
 – Scenario very realistic in the context of a SPE. Need to develop 'Loss of Communication' protocol for medical contingencies during planetary EVA

• Communications blackouts occurred
 – Primarily between suit and network infrastructure
 • Full multi-layer network communications re-initializing caused extensive times of no end-to-end connectivity
Objectives: Extraction of Ill/Injured Crewmember

3. Demonstrate the ability to conduct field (possibly high-angle) rescue operations for an incapacitated EVA crewmember on an extra-planetary surface
Procedure: Extraction of Ill/Injured Crewmember

- The slope angle varied from 16 degrees at the point of patient loading to 21 degrees mid-slope
- Standard mountain rescue equipment was used
- Technique used was different than what had been worked out in the procedures
 - The winch was anchored to the front bumper of the HUMVEE via nylon webbing straps.

Photo courtesy of HMP 2006/R. Scheuring
Results: Extraction of Ill/Injured Crewmember

- An anchor to provide stable support for the winch is considered key to the success of the technique.
- Litter design promoted build up of dirt at the head making extraction difficult.
- The leg splint effectively immobilized the limb.
- The technique of assisting the injured crew member into the litter was effective.
Objectives: Traverse navigation

4. Develop management strategy for off-nominal rover traverse navigation
Results: Traverse navigation

- Predetermined waypoints called to the multiple MCC’s in UTM worked very well for simulation purposes
Objectives: EVA Contingencies

5. Develop response plan for unexpected EVA suit/navigation traverse contingencies

Apollo EVA suit concerns
- Puncture
- Visor – Fogging, Scratches (A17)
- Consumable usage
Procedure: EVA Contingencies

• Increased suit O_2 utilization
 – Suit leak vs. increased metabolic rate?
 • Occurred during LSA at work station #1
 • Occurred following injury event at work station #2

• An algorithm for predicting metabolic rate from sensor parameters was developed for the sim
 – This allowed for accurate diagnosis
 – However, often there was no suit consumables data available or it was limited and not coming in quickly enough

Photo courtesy of HMP 2006/N. Wilkinson
Procedure/Results: Traverse contingency

- Course deviation during traverse back to habitat
 - The flight controllers were able to quickly and accurately detect course changes and re-route the EVA crewmembers to the desired route
Objectives: Telemedicine

6. Demonstrate the ability to conduct remote patient medical diagnosis of an ill/injured EVA crewmember using telemedicine (including ultrasound) techniques
Results: Telemedicine

- Standard telemedicine protocol followed
 - Ultrasound FAST exam
- The video quality of the U/S was poor
 - However, this hardware capability has been tested and proven in previous analog simulations
- Having a physician CMO was disorientating to the flight controllers
 - Dependence on MCC-H console support was markedly reduced during real-time operation
- MCC-H unable to provide info on EV1’s radiation dose
Objectives: Student Familiarization and Training with MCC Operations

7. Familiarize students with mission control center operations; communications protocols; flight controller responsibilities

8. Students are to have an interactive role functioning as back room flight controllers for EVA, ECLS, Surgeon, SRAG and Traverse- with responsibilities to work issues real-time with the ExPOC-designated front room controllers
Discussion

• How realistic was the 1g analog scenario to a 1/6g Lunar environment?

Video courtesy of NASA
Discussion

• The sim rescue (extraction from a > 20 degree slope) on Earth **generally requires 4-6 litter bearers and at least 4 additional** personnel for anchor establishment and haul system operation.

• The evacuation would have greatly benefited from establishing the anchor prior to its need by decreasing the overall time from injury to rover.
Discussion

- The extraction method and technique practiced at HMP was not the recommended choice due to schedule and budget constraints.
 - The recommended method was to have a wheeled litter or cart to evacuate the astronaut up the slope.

Photos courtesy of HMP 2006/R. Scheuring
Discussion

• Radiation Monitoring
 – Reliable SPE prediction capability is nonexistent
 – Real-time event severity uncertain

• Countermeasures
 – Radioprotectant drugs may have been used in the field but does not target all tissues and no metrics for efficacy
 – EVA suit shields only low-kinetic-energy events; must seek shielding immediately. Vehicle/habitat shielding almost always highly to moderately effective.
Discussion

• ISS operational rules were used for event definition, but clearly rules specific to CEV translunar or lunar operations will need to be developed and assessed.
Discussion

• Presence of physician CMO had significant impact on the outcome of the simulation
 – “A physician crewmember would increase the comfort level among the crewmembers and can be cross-trained to do other activities”
 Apollo Med Ops Recommendation

Photo courtesy of HMP 2006/N. Wilkinson
Discussion

• Psychological/Crew dynamics
 – 24 hours of sunlight
 – Physiological factors
 – Work schedule
 – Limited resources
 – Timeline constraints of working with multiple centers
Lessons Learned

- Participation of sim specialists at Devon would be beneficial
- Extensive pre-season fully integrated tests of the communication systems would have quickly identified the connection problems
- The team as a whole needs to be aware of the complexity of the simulation problems
- Series of sims should be planned with increasing complexity
- First develop medical requirements without additional contingencies then stack up failures
- Participation of sim specialists at Devon would be beneficial
- The team as a whole needs to be aware of the complexity of the simulation
- Extensive pre-season fully integrated tests of the communication systems
Forward Work

• Develop a strategic plan for testing hardware, procedures, and integration with other elements for each analog site

• Establish improved sensor requirements for metabolic assessment

• The metabolic rate algorithm is under refinement / development to be used for future EVAs

• Radiation Health Working Group
 – Real-time space weather monitoring is crucial
 – EVA requires active dosimetry for immediate response of unshielded crew
 – Develop flight rules to define threshold values to direct crew response on the lunar surface
 – Ground Support needs to develop real-time response models of potential mission & medical impacts and report these to flight director and flight surgeon
Forward Work

• HMP 2007 Lunar Med Contingency Sim Goals
 – Develop the radiation hazard mitigation strategy
 – Continue investigation of field rescue systems
 – In-suit testing of metabolic rate algorithm

• Pre-sim development
 – Communications/connectivity
 – Radiation gaps in knowledge
 • In-suit dosimetry
 – BIOMED development and integration
 – Extraction equipment/technique
Conclusion

- The simulation scenario performed at Devon gave us the experience and perspective to move forward with developing lunar surface medical operations requirements.

Photo courtesy of NASA
NASA/HMP 2006 Lunar Medical Contingency Simulation Team

Photo courtesy of HMP 2006/R. Scheuring
Questions?

Injured Lunar Astronaut. Painting by Pat Rawlings

Photo courtesy of HMP 2006/N. Wilkinson/P. Lee