Evaluation of Li/CF$_x$ Cells For Aerospace Applications

Hari Vaidyanathan
Lockheed Martin Technical Operations
COMSAT Technical Services
Clarksburg, MD 20871
And
Gopalakrishna M. Rao
NASA/Goddard Space Flight Center
Power Systems Branch, Code 563
Greenbelt, MD 20771
Contents

• Objectives
• Background
• Cell Description
• Results
• Conclusions
Objectives

Characterize Li/CF\textsubscript{x} Cells for

- Capacities at various discharge rates (C/10, C/5 and C/2) and temperatures (50, 20, 0, -10 and -30°C)
- Six-month storage at -10 and -30°C for AA, and at 20 and 50°C for C Cells, respectively
Background

- Panasonic commercialized Li/CF$_x$ cell technology in mid. 1970
- A promising primary battery for Aerospace applications such as Exploration missions, Launch vehicles, Tools and many more
 - Wide operation temperature range
 - Low self-discharge
 - High specific energy
- CF$_x$ cathode material has a theoretical specific energy of 2260 Wh/Kg
 - Specific energy however achieved as of now is only 10% of theoretical value unless used at a very low rate of C/1000
 - Research both at Government Labs and Industries is currently in progress to improve the performance
Cell Description

- Quallion Li/CF$_x$ 2.5 Ah AA and 6.5 Ah C cells
- Hermetically sealed cylindrical cells
- Li metal as anode
- CF$_x$/acetylene black as cathode
- Lithium tetrafluoroborate in Propylene carbonate and dimethoxyethane solvent as electrolyte
Cell Description-Contd.
#9 - AA cell and #10 - C Cell
Results

AA cells

<table>
<thead>
<tr>
<th>Cell ID</th>
<th>Temperature, °C</th>
<th>Discharge rate, A</th>
<th>Capacity, Ah to 2.0 V to 0 V</th>
<th>Mid-dis Voltage, V</th>
<th>EOD Temp, °C</th>
<th>Specific Energy Wh/Kg</th>
<th>Energy Density Wh/L</th>
<th>Specific Power W/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.5</td>
<td>2.00</td>
<td>2.49</td>
<td>2.401</td>
<td>46</td>
<td>399.3</td>
<td>659.3</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>2.5</td>
<td>0</td>
<td>0.12</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>1.25</td>
<td>1.81</td>
<td>1.88</td>
<td>2.266</td>
<td>80</td>
<td>284.0</td>
<td>470.0</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>0.25</td>
<td>2.00</td>
<td>2.64</td>
<td>2.447</td>
<td>34</td>
<td>434.9</td>
<td>712.7</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>1.25</td>
<td>1.69</td>
<td>2.24</td>
<td>2.280</td>
<td>60</td>
<td>339.7</td>
<td>563.4</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>1.25</td>
<td>0.13</td>
<td>0.13</td>
<td>-</td>
<td>76.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>1.25</td>
<td>1.12</td>
<td>1.63</td>
<td>2.123</td>
<td>33.3</td>
<td>231.7</td>
<td>382.5</td>
</tr>
<tr>
<td>10</td>
<td>-30</td>
<td>0.5</td>
<td>1.14</td>
<td>1.63</td>
<td>2.174</td>
<td>15.5</td>
<td>236.8</td>
<td>390.9</td>
</tr>
</tbody>
</table>

*storage test for six months
EOD = End-of-discharge
Results - Contd.

C Cells

<table>
<thead>
<tr>
<th>Cell ID</th>
<th>Temperature, °C</th>
<th>Discharge rate, A</th>
<th>Capacity, Ah to 2.0 V</th>
<th>Capacity, Ah to 0 V</th>
<th>Mid-dis Voltage, V</th>
<th>EOD Temp, °C</th>
<th>Specific Energy Wh/Kg</th>
<th>Energy Density Wh/L</th>
<th>Specific Power W/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>3.25</td>
<td>4.78</td>
<td>6.84</td>
<td>2.143</td>
<td>113</td>
<td>355.1</td>
<td>502.9</td>
<td>168.7</td>
</tr>
<tr>
<td>4</td>
<td>-10</td>
<td>1.3</td>
<td>2.48</td>
<td>4.16</td>
<td>2.084</td>
<td>36</td>
<td>208.8</td>
<td>297.2</td>
<td>65.3</td>
</tr>
<tr>
<td>5</td>
<td>-10</td>
<td>3.25</td>
<td>2.38</td>
<td>4.55</td>
<td>2.016</td>
<td>63</td>
<td>223.6</td>
<td>314.7</td>
<td>159.7</td>
</tr>
<tr>
<td>6</td>
<td>-10</td>
<td>0.65</td>
<td>2.21</td>
<td>3.53</td>
<td>2.07</td>
<td>12</td>
<td>177.4</td>
<td>250.5</td>
<td>32.7</td>
</tr>
<tr>
<td>7</td>
<td>-10</td>
<td>6.5</td>
<td>0</td>
<td>0.02</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3.25</td>
<td>3.93</td>
<td>6.22</td>
<td>2.082</td>
<td>104</td>
<td>313.8</td>
<td>444.3</td>
<td>164.0</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>1.3</td>
<td>6.37</td>
<td>7.76</td>
<td>2.429</td>
<td>90.2</td>
<td>457.7</td>
<td>647.1</td>
<td>76.6</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>6.5</td>
<td>0</td>
<td>0.71</td>
<td>-</td>
<td>122</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3.25</td>
<td>0</td>
<td>0.60</td>
<td>-</td>
<td>130.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Storage test for six months EOD = End-of-discharge
Results - contd.

Discharge Profiles at C/10 Rate

- "C" cell at -10°C
- "AA" cell at 20°C
- "C" cell at 50°C

Voltage (V) vs. Normalized Capacity (actual/rated)
Results - contd.

Discharge Profiles at C/5 Rate

Normalized capacity (actual/rated) vs Voltage (V) graph showing different discharge profiles at various rates and temperatures for different cells.
Results - contd.

Discharge Profiles at C/2 Rate

Normalized capacity (actual/rated) vs. Voltage (V)
Results - contd.

Variation of C/2 Capacity with Temperature

- Temperature (°C)
- Normalized Capacity (actual/rated)
Results - contd.

Variation of Capacity at 20°C with discharge rate
Results - contd.

Variation of mid-discharge Voltage with Temperature

Voltage (V)

Mid-discharge

Temperature (°C)

-40 -30 -20 -10 0 10 20 30

2.50 2.40 2.30 2.20 2.10 2.00
Results - contd.

Discharge Temp Profiles at C/5 Rate

Temperature (°C)

Normalized capacity (actual/rated)
Results - contd.

Discharge Temperature profiles at C/10 Rate

Normalized Capacity (actual/rated)
Results - contd.

Discharge Temperature profiles at C/2 rate

Temperature (°C)

Normalized capacity (actual/rated)
Results - contd.

Variation of open-circuit voltage during storage

Cell Voltage (V)

Storage Time (weeks)
Results - contd.

Variation of Impedance during Storage

-30°C
-10°C
20°C
50°C

Cell Impedance (mohms) vs. Storage Time (weeks)
Conclusions

- Capable of performing at C/2 rate or less from -10°C to 50°C
- Temperature increased to 113°C at the end of C/2 discharge
- The C cells delivered the maximum energy of 457.7 Wh/Kg at C/5 rate at 50°C and the AA cells yielded 434 Wh/Kg at C/10 rate at 20°C
- The rate capability and low temperature performance depends on the cell size
- Further work should include environmental, self-discharge, and safety studies to qualify for the Aerospace application of the technology
Acknowledgment

The authors thank Quallion for providing the cells and NASA- Goddard Space Flight Center for sponsoring this work.