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Preliminary Assessment of Turbomachinery Codes 
 

Quamrul H. Mazumder, Ph.D. 
University of Michigan Flint 

Flint, Michigan 48502 

Introduction 
Flow inside multistage turbomachinery is a complex phenomenon due to unsteady flow phenomenon 

and complex passage configurations. Accurate prediction of the flow behavior requires careful 
consideration of the parameters that affects the flow field. Computational fluid dynamics (CFD) codes 
have been used by aerodynamicists to predict the flow behavior that requires significantly large 
computational memory space. With the advancement of computers, advanced CFD codes have been 
developed to analyze complex three-dimensional flow behavior in turbomachinery. At NASA Glenn 
Research Center, Cleveland, Ohio, a number of CFD codes have been developed and are being used to 
predict flow behavior inside compressors, turbines and fans. These state-of-the-art CFD codes use 
thermodynamic properties of fluid, Navier-Stokes equation and turbulence models to simulate flow 
behavior inside turbomachinery. 

Objective 
The objective of this report is to assess different CFD codes developed and currently being used at 

Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will 
consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be 
described separately in the following section with their current modeling capabilities, level of validation, 
pre/post processing, and future development and validation requirements. This report addresses only 
previously published applications and validations of the codes. However, the codes have been further 
developed to extend the capabilities of the codes. 

APNASA 

APNASA is a three-dimensional, steady-state, time-averaged Navier-Stoke code for multistage 
compressor analysis developed in 1985 at NASA Glenn Research Center by John Adamczyk. The 
averaging process is based on a sequence of mathematical filtering or averaging of Navier-Stokes 
equations, continuity equation, energy equation and equation of state resulting a system of equation for 
the governing flow behavior. The filtering operator used in the construction of the Reynolds averaged 
form of Navier-Stokes equation ensemble-averages consecutive samples of data taken over one shaft 
revolution (ref. 1). 

Three different averaging operators are applied to solve the Navier-Stokes equation. The first operator 
referred to as “ensemble averaging” used to eliminate the need to resolve, in details the structure of the 
turbulent flow that yields the Reynolds-averaged form of Navier-Stokes equation (ref. 2). The second 
operator is the time averaging operator that averages flow fields with respect to stator frame of reference 
and with respect to rotor frame of reference were used to define the flow fields in inside a multistage 
turbomachine. The third operator averages the out the passage to passage variations in the flow field 
considering the global effect of this variation on the flow field. 

The capabilities of this code includes prediction of interaction between stationary and rotating 
components of multistage turbomachinery (i.e., fan, compressor, turbine, etc.). The computational fluid 
dynamics code is a steady state; viscous solver for Navier-Stokes equation uses two equation turbulence 
model (k-ε). Variable thermodynamic and physical properties (cp, cv, γ) of fluids at different temperature 
are used during analysis.  
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As the code is written in FORTRAN 90, it can run in any computer with sufficient memory for the 
problem. APNASA is a stand alone CFD code with its own built-in grid generator, pre and post 
processors that eliminates the need for additional software to analyze a problem. 

The uniqueness of APNASA lies in its ability to model the aerodynamic effect of neighboring blade 
rows on a given blade row. It has been successfully used to simulate a number of geometries from 
commercial aero-engine companies (e.g., ref. 3) as well as NASA’s own research compressors 
(e.g., ref. 4). The code also allows modeling the flow injection or bleeding on blade surfaces and ending 
walls via surface boundary conditions (e.g., ref. 5). These bleed ports sometimes can significantly impact 
the aerodynamic performance of turbomachinery. APNASA has its own mesh generator which generates 
meshes consistent with the requirements of its average passage flow model. It also has its own post 
processor which generates aerodynamic performance on both one-dimensional and axisymmetric basis. 

GlennHT 

Glenn HT (ref. 6) is a multi-block steady-state Navier-Stokes fluid flow and heat transfer code that 
can predict the fluid flow and heat transfer characteristics in turbomachinery. The code has been used 
primarily for heat transfer applications such as internal cooling flow, film cooling flow, turbine blade tip 
heat transfer, and flow characteristics in blade tip regions. 

The overall methodology is based on three design choices: (1) Globally unstructured—locally 
structured multiblock grid system (2) finite volume discretization of the governing equations of fluid 
flow, and (3) an explicit, multistage time stepping scheme combined with multigrid convergence 
acceleration for marching solutions to steady state. GlennHT was derived from a computer code TRAF3D 
that has demonstrated effective finite volume discretization and multigrid convergence acceleration of 
flows in turbomachinery. 

The original version of GlennHT and TRAF3D used Baldwin-Lomax turbulence model that was later 
replaced by k-ω turbulence model in 1994. As the Baldwin-Lomax model requires length scale (distance 
from the wall), the model capabilities were limited in prediction of near-wall flow regions. The 
introduction of k-ω model eliminated the limitations of previous Baldwin-Lomax model and 
demonstrated computational efficiency and robustness in several turbomachinery applications. 

A separate module is used to handle the “management” of the blocks and communication between 
blocks in GlennHT. All operations on data in the block are performed by in separate subroutines that do 
not have any information about the neighboring blocks. The modularity of the multiblock grid system 
makes it easier to modify or experiment with the discretization and relaxation scheme. 

The unique capability of GlennHT is to analyze heat transfer characteristics of turbomachinery 
although the code is also capable of analyzing aerodynamics flow behavior in flow passages. The code 
was applied to a wide variety of turbine convective heat transfer problems including tip clearance flows, 
internal cooling passage flows, external turbine blade flows including film cooling. Examples of a few 
validations are described in the flowing paragraph. 

Flow and heat transfer analysis in rectangular holes with ribs and bleed holes using GlennHT was 
performed and compared with experimental data (ref. 7). The computational results of GlennHT showed 
reasonably good agreement with the experimental results that can be used in prediction of heat transfer in 
coolant passages. Blade tip heat transfer of a first stage large power generation turbine blade was 
analyzed in reference 8 and compared with both sharp edged and radiused edge blades. The 
computational results of blade tip heat transfer showed good agreement with the radiused edge blade than 
the sharp edged blade. Flow over the sharp edged blade tip showed separation and reattachment due to 
vorticity that was eliminated by using radiused edge.  

The code was recently developed to improve predictions in a broader range of flow problems. 
Conjugate heat transfer capability has been incorporated using boundary element method to allow 
simultaneous computation of fluid and solid heat transfer without requiring a solid volume grid (ref. 9). 
This capability was extended to layer solids to analyze turbine blades with thermal barrier coating and 
solids with variable thermal conductivity. Some of the other development efforts currently being 
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undertaken include incorporation of Reynolds Stress model, automatic topology generation, incorporation 
of unsteady flow capability. 

H3D 

A pressure-based solver for incompressible and compressible three-dimensional Navier-Stokes 
equation for turbomachinery. This CFD code uses two-equation k-ε turbulence model, RANS, unsteady 
Reynolds Averaged Navier-Stokes, and Large Eddy Simulation models.  

For the Large eddy simulation, a standard dynamic model is used for the sub grid stress tensor 
(ref. 10). 

A study was conducted to compare the numerical output of H3D program where the governing 
equations were solved in non orthogonal curvilinear coordinate system by applying higher order 
discretization schemes for the convection terms to reduce the numerical diffusion (ref. 11). An algebraic 
Reynolds stress model modified for the stream line curvature was used in the study. Comparison of the 
analysis with experimental data showed satisfactory agreement in predicting: three-dimensional viscous 
flow behavior inside turbine blade passages, boundary layer separation and attachment locations, 
secondary flow characteristics, and local pressure loss. 

To evaluate the cavitation inception, a numerical study was conducted to investigate the flow field 
near blade tip of a ducted propeller (ref. 12). Due to Unsteady flow behavior near the blade tip section, a 
large eddy simulation was applied. A local low pressure core was observed when the tip leakage vortex is 
stretched and twisted as the tip leakage vortex from the adjacent blade interacts with the shed vortices in 
the rotor wake region. Comparison of the LES analysis with experimental data shows good qualitative 
agreement. 

To improve the understanding of the flow mechanism that leads to the onset of short length scale 
rotating stall in a transonic compressor, a numerical and experimental investigation was conducted 
(ref. 13). As the rotor operates near stall, the flow field becomes unsteady due to oscillation of tip 
clearance vortices and their interactions with the shocks in the passages. The measured data agreed with 
the H3D analysis that the unsteady behavior due to tip clearance vortex oscillation is much larger than 
those of purse shock only. 

The code has been used to develop concept of swept rotor for high speed fan/compressor stages 
jointly with the General Electric Aviation and the U.S. Air Force. The code has been extensively applied 
to study flow and cavitation characteristics in pump stages in the current Space Shuttle Main Engine and 
future space engine development programs. 

The code has been successfully applied to develop a very high-pressure-ratio centrifugal compressor 
stage. Calculated unsteady flow field in a single stage centrifugal compressor agrees well with the 
experimental data obtained at the DLR, Germany. 

TURBO 

An implicit finite volume code uses Reynolds-Averaged Navier-Stokes equation solver for 
turbomachinery. The CFD code uses multiblock structured grid with arbitrary block connectivity. It 
focuses on unsteady flow behavior caused by the relative motion between blade rows in a multi-stage 
turbomachines. A two equation (k-ε) turbulence model in rotating frame is used in the code. Convective 
fluxes are evaluated by the high resolution Roe scheme and a sliding interface is applied to capture the 
time-accurate relative motion between blade rows (Wang). A real gas model is used to account for 
temperature variation where the specific heat coefficient is a function of temperature.  

The capabilities of TURBO includes unsteady multiple blade row calculation, flutter simulation, 
hybrid grid topology, real gas and perfect gas models used in the analysis.  

A preprocessor, GUMBO (Graphical Unstructured MultiBlock Omnitool) is used for blocking, block 
connectivity, and boundary condition information input to TURBO. 
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TURBO was used to study the interaction effects of reflective waves between blade rows in a 
transonic turbine stage (ref. 14). Wake blade analysis and coupled stage analysis showed that wake blade 
analysis captures the incident waves into a blade row but does not capture the effect of waves that are 
reflected between blade rows. Whereas, the stage analysis captured the relevant physical interactions 
including reflective waves. The analysis results showed good agreement with the experimental data 
demonstrating incident waves to be the dominant contributor to unsteadiness on the blade. TURBO was 
also used to demonstrate the feasibility of stall inception and flow control computations of the NASA 
Stage 35 compressor with a full annulus. 

Experimental validation of predicted flow in a transonic compressor with an IGV row was performed 
in reference 15 using TURBO. The Euler grid refinement studies showed over prediction of IGV steady 
surface pressures while underpredicting the magnitude of the unsteady component, primarily the trailing 
region of the grid. Although the rotor-IGV simulation exhibited good qualitative agreement, there were 
quantitative differences in viscous prediction due to grid limitations. Grid refinement is expected to 
improve the predictions by TURBO to match experimental data. 

SWIFT 

A multiblock, steady state, three-dimensional CFD code for analysis of flows in turbomachinery. 
Using explicit finite difference techniques, this code solves thin layer Navier Stokes equation. SWIFT is a 
multiblock three-dimensional version of RVC3D which is a quasi- three-dimensional Navier Stokes code 
for analysis of blade to blade flows in turbomachinery. The multiblock capabilities include C-grid around 
the blades and H-grid in upstream, O-grid in hub or tip clearance region and mixing plane between rows. 
It can be used for linear cascades or annular blade rows with or without rotation. Typical applications 
includes linear cascades, axial compressors and turbines, isolated blade rows, centrifugal and mixed flow 
impellers, radial diffusers, pumps and ducts.  

SWIFT uses Cartesian coordinate system with rotations about x-, y-, and z-axes to solve the Navier 
Stokes equation. Using the thin layer assumption, stress and viscous terms are neglected but all cross 
channel viscous terms are retained. SWIFT uses central differencing scheme with artificial viscosity, H-
CUSP upwind method or AUSM and upwind scheme. The turbulence models used are Baldwin-Lomax 
(algebraic), Cebeci-Smith (algebraic), Wilcox’s k-ω (two-equation) or Wilcox’s k-ω plus Mentor SST 
models. 

Using variable time step and implicit residual smoothing accelerated convergence is attained. The 
pre-processor used for grid generation are TCGRID and are stored in PLOT3D format. The solutions are 
in text format that can be graphically displayed using PLOT3D. The code is written in FORTRAN 90 and 
therefore, a FORTRAN 90 compiler is required to run the program.  

SWIFT has been used for analysis and design of fan, turbine blades and turbine end wall heat transfer 
(refs. 16 to 19). 

TRVC3D and TRVCQ3D 

These codes are specialized versions of RVC3D and RVCQ3D that were modified to account for 
factors typically not included in turbulence models. The modifications are important when laminar flow is 
present. In addition to transition start and length models, relaminarization, and freestream turbulence 
effects on laminar flow are modeled. The effects of surface roughness on both heat transfer and losses 
have been investigated. The work has been primarily focused on heat transfer, but blade row losses have 
also been investigated.  

Both TRVC3D and TRVCQ3D used C-grids exclusively. For improved orthogonality, non-matching 
grid spacing is used along the C-grid cut line. The quasi- three-dimensional version, TRVCQ3D, has 
algebraic and the k-ω two equation turbulence models. The fully three-dimensional code, TRVC3D, has 
only algebraic turbulence models, (Baldwin-Lomax and Cebeci-Smith). There is no grid in the clearance 
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region, and only a primitive clearance model is used. The boundary condition for the C-grid in the 
clearance region equates suction and pressure side static pressures to allow flows in the clearance region. 

Results from the three-dimensional code for rotor geometry with tip clearance are given in 
references 20 to 22 show comparisons with data for two-dimensional calculations for smooth and rough 
surfaces. 

Summary and Recommendation 
A number of different CFD (computational fluid dynamics) codes have been developed and used at 

NASA Glenn Research Center to evaluate turbomachinery aerodynamics and thermal performance 
(table 1). These codes have unique capabilities and were developed by one or a group of individual 
researchers at Glenn Research Center. Several of these codes are research codes having sparse 
documentation, making it challenging for other potential users to understand the code methodology and/or 
run the code for flow analysis. The usage of these research codes can be drastically improved with proper 
documentation. One recommendation to improve the current situation is for each code developer to 
develop a comprehensive user manual and train new users about the code to a level that the new users are 
capable of performing analyses with these codes. Potential future work is to evaluate the capabilities of 
commercial CFD codes and to compare them to NASA codes for simulation accuracy of turbomachinery 
aerodynamics and heat transfer.  

 
TABLE 1.—SUMMARY OF TURBOMACHINERY CODE ASSESSMENT 

 APNASA GlennHT H3D TURBO SWIFT 
Code 
methodology 

Compressible, 
steady state, 
Navier-Stokes 
code (RANS) 

Compressible 
unsteady Navier-
Stokes, Multi-stage 
Runge-Kutta 
(explicit), 
Multigrid method, 
Finite volume, 
Central 
differencing, 
Artificial 
dissipation, 2nd 
order accuracy 

Pressure–based, 
steady and unsteady 
Navier-Stokes 
solver over all speed 
regime. 

Implicit finite 
volume time 
marching, high 
order Roe’s 
scheme, Newton's 
method of solution 
and Gauss-Seidel 
iteration for matrix 
inversion. 

Explicit Runge-
Kutta 
Central 
differences or 
AUSM+upwind 

Level of 
fidelity 

Steady, viscous, 
three-
dimensional, 
multistage 

High fidelity three-
dimensional 
solutions 

Steady, unsteady 
RANS, LES, 
isolated or multi 
stage 
turbomachinery 

High fidelity three-
dimensional 
unsteady Reynolds 
Averaged Navier-
Stokes solver, 
second order in 
time and third 
order in space. 

High 

Turbulent 
model 

Two equation k-ε 
model 

k-ω two-equation 
model 

Two-equation or 
LES with dynamic 
subgrid stress 
model. 

k-ε (CMOTT 
extension) and low 
Re k-epsilon 
models. 

Baldwin-
Lomax 
Cebeci-Smith 
k-ω 

Pre-processor MMESH, APG GridPro, GUI Own grid generator Mesh generation 
code, GUMBO, 
and interpolation 
code. 

TCGRRID grid 
generator 

Post-processor Built-in own post 
processor 

GUI, Tec plot, 
Field view 

Fast GUMBO, Visual 3, 
and application-
specific user-
developed 
specialized code. 

Any 
commercial 
CFD 
visualization 
package 
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TABLE 1.—Concluded. 
Unique 
features 

Simulates a blade 
passage 
embedded in a 
multistage 
environment 

General multiblock 
capability, Near-
Wall modeling for 
heat transfer 

Incompressible and 
compressible flows. 
RANS and LES. 

Multi-block, 
parallel, 3D, 
unsteady Navier-
Stokes solver, real 
gas model, tip 
clearance model. 

Fast, easy to 
use, handles 
linear cascades, 
gridded tip 
clearances, 
multistage 
calculations 
distributed to 
over 200 users. 

Capabilities Steady, 
aerodynamic 

Convective heat 
transfer and 
aerodynamics for 
general 
geometries, 
conjugate heat 
transfer, unsteady 
flows 

Steady and 
unsteady. 
Isolated blade row 
or multiple blade 
rows. 

Capable of solving 
multi-stage axial 
turbo machineries, 
blade fluttering in 
fans, and flow 
injection flow 
control of 
compressors. 

axial and radial 
turbines, 
fans, 
compressors, 
and pumps 

Validations 
performed in 
turbo 
machinery 
(Show a list of 
validations) 

Hub leakage 
effect on Rotor 
37, Low speed 
axial compressor, 
GE90, several 
other commercial 
and military 
geometries 

Tip clearance 
flows 
Internal coolant 
passage flows 
Film-cooled 
turbine flows 
Turbine 
aerodynamics 

Compressor, 
turbines, centrifugal 
machines, pumps, 
submarine 
propellers, 
compressor and 
turbine stages, pump 
stages. 

NASA Rotor 35, 
Stage 35, and 
UEET 2.5 Stage 
POC compressor 

Rotors 33, 
35,37, 67 Stage 
35 
SSME turbine 
Goldman 
cascade 
DLR turbine 
Low speed 
centrifugal. 
Used to design 
Supersonic 
Through flow 
Fan and 
Trailing Edge 
Blowing Fan 

Future 
development 
needs 

Multiblock 
capability to 
handle 
complicated 
geometries (e.g, 
centrifugal flow 
path with splits, 
etc.) 

Multi-blade-row 
turbine unsteady 
flow capability 
General interface 
capability 

Further refinement 
and validation of 
LES and DNS for 
turbomachinery 
flows. 

Improve turbulence 
model, heat 
transfer capability, 
parallel efficiency, 
and needs code 
integration with 
WIND. 

Splitters 
axisymmetric 
capability 
for far field 
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