NASA RFID Applications

Patrick W. Fink, Ph.D.

April 19, 2007
Contributors

- Patrick Fink, Ph.D.
- Timothy Kennedy, Ph.D.
- Anne Powers
- Yasser Haridi
- Andrew Chu
- Greg Lin
- Hester Yim
- Kent Byerly, Ph.D. (*Spatial Acuity*)
- Richard Barton, Ph.D.
- Michael Khayat, Ph.D.
- George Studor
- Robert Brocato (*Sandia National Laboratories*)

- Phong Ngo
- G. D. Arndt, Ph.D.
- Julia Gross
- Chau Phan
- David Ni, Ph.D.
- Richard Barton, Ph.D.
- John Dusl
- Kent Dekome
Outline

• Inventory management in space
 – Apollo, Space Shuttle, Space Station

• Potential RFID uses in a remote human outpost

• Ultra-Wideband RFID for Tracking

• Passive, wireless sensors in NASA applications
 – Micrometeoroid impact detection
 – Sensor measurements in environmental facilities

• E-textiles for wireless and RFID
Apollo Inventory Concept

Top level stowage drawing showing Command Module stowage layout

Sample table of items contained in modular container locations – used to layout vehicle and train crews on item locations

<table>
<thead>
<tr>
<th>Stowage location (a)</th>
<th>Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>Headrest pads</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Heel restraints</td>
<td>3 pair</td>
</tr>
<tr>
<td></td>
<td>Sleep restraint ropes</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sextant adapter for 16-mm camera</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Spotmeter</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Two-speed timer</td>
<td>1</td>
</tr>
<tr>
<td>A6</td>
<td>Carbon dioxide absorbers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Television monitor with cable and strap</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12-foot television cable with strap</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Television-camera bracket</td>
<td>1</td>
</tr>
</tbody>
</table>
Shuttle Inventory Concept (non-Transfer to ISS)

- Crew is provided hard copy of items listed by location (no part numbers, serial numbers, etc., provided)
- Crew also has the ability to look items up in laptop database, but often requests item locations from Mission Control

STS-109 MIDDECK STOWAGE

<table>
<thead>
<tr>
<th>FORWARD LOCKERS</th>
<th>MF14E</th>
<th>MF14H (Cont)</th>
<th>MF14K</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRED</td>
<td></td>
<td>Kits</td>
<td>Air Bottles</td>
</tr>
<tr>
<td></td>
<td>MF14G</td>
<td>Comm</td>
<td>Breaker Bar, 3/8 in</td>
</tr>
<tr>
<td>Clothing, CDR</td>
<td></td>
<td>Cables</td>
<td>Breakout Box</td>
</tr>
<tr>
<td>Clothing, CDR</td>
<td>MF14H</td>
<td>Comm, 4 ft</td>
<td>Filter, Waste Water Dump</td>
</tr>
<tr>
<td>MF14H</td>
<td></td>
<td>Mic, 14 ft</td>
<td>Kit, RMS D&C</td>
</tr>
<tr>
<td>Bags</td>
<td></td>
<td>Mic, Handheld (3)</td>
<td>Turnbuckles</td>
</tr>
<tr>
<td>Helmet Stowage (2)</td>
<td></td>
<td>VLHS (2)</td>
<td>MF14M</td>
</tr>
<tr>
<td>Inflight Stowage, Restraint (10)</td>
<td></td>
<td>FDF/F Bag, WVS</td>
<td></td>
</tr>
<tr>
<td>Jettison Stowage (10)</td>
<td></td>
<td>MF14M</td>
<td></td>
</tr>
<tr>
<td>Bungee, Adjustable (7)</td>
<td></td>
<td>MF14O</td>
<td></td>
</tr>
<tr>
<td>Canister, WCS (Coffee Can)</td>
<td></td>
<td>Food, Menu</td>
<td></td>
</tr>
<tr>
<td>Covers</td>
<td></td>
<td>MF14O</td>
<td>Food, Menu</td>
</tr>
<tr>
<td>HUD (4)</td>
<td></td>
<td>MF14O</td>
<td>Food, Menu</td>
</tr>
<tr>
<td>Parachute (7)</td>
<td></td>
<td>MF28E</td>
<td>Clothing, PLT</td>
</tr>
<tr>
<td>Hoses</td>
<td></td>
<td>MF28E</td>
<td>Clothing, PLT</td>
</tr>
<tr>
<td>Personal Hygiene</td>
<td></td>
<td>MF28G</td>
<td></td>
</tr>
<tr>
<td>WCS Canister</td>
<td></td>
<td>MF28G</td>
<td></td>
</tr>
</tbody>
</table>

(Reference STS-109 FDF Flight Supplement)
Current ISS Inventory Concept

- The Inventory Management System (IMS) is used to track items on the ISS
 - Handheld barcode reader is used by the crew for quick on-site updates
 - Data from the barcode reader may be passed to the onboard IMS database by RF or serial hardline connection to the laptop
 - Expedition 15 will use the new PDAs to access IMS and perform barcode scans.
 - IMS software application is used for complex updates
 - Manual crew entries into onboard database on laptop
 - Flight control team entries into ground database
 - Databases are synchronized by uplinking and downlinking “Delta Files”
Space Station RFID Test 2008

- Objectives:
 - flight certify a commercial RFID interrogator and tags
 - demonstrate RFID inventory of crew items and office supplies at bag and item level

ISS Shampoo with tag

Time Domain Signal (tag on shampoo)
Pulses contain ID code
RFID – Lunar Outpost

- High probability applications
 - Inventory management
 - Crew supplies (e.g., personal items, office supplies, clothing)
 - Food, medicine
 - Real-Time Localization
 - EVA tools, equipment
 - Monitoring/verifying inter-habitat supply transfers
 - “Boneyard” inventory
 - Real-time access to surplus parts

- Smart tag and other potential applications
 - Monitor tool exposure limits and provide warnings (e.g., temperature extremes, shocks)
 - Storage of calibration information on sensors, LRUs
 - Passive tag tracking

Example: passive COTS tag with 64 bit ID code, temperature and range telemetry
Active UWB RFID for Tracking Applications

- Evaluate UWB-RFID system Sapphire DART
- Customize the system and enhance the tracking performance
UWB Precision Tracking

- Laboratory test configuration for Sapphire DART
• UWB TDOA high resolution proximity tracking for robonaut
 – Theoretical analysis and simulation for TDOA proximity applications
 – Lab tests show sub-inch tracking resolution
 Passive, Wireless Sensors

- Where possible, no-batteries
- Reduces wire, crew time, certification costs, weight, power, and size
- Numerous conceivable applications

64-bit SAW-based COTS RFID tag

AirGATE Technologies / CTR tag

8-bit SAW-based COTS RFID tag

Potential applications for wireless ice sensor system

Passive sensor arrays (enlarged)

Interrogator

Ice sensor
Antennas for HF SAW Sensor System

- 70 MHz SAW-based sensors
 - G. Studor (JSC), R. Brocato (SNL), et al
- Key advantage: integrates existing sensor types into passive, wireless system
- Targeted application: micrometeoroid impact detection
- Requires efficient, miniaturized antennas
HF Antennas

- **Significant size reduction of the antenna**
 - Half-wave dipole (0.5λ₀, 2.14m)
 - Miniaturized spiral-loaded slot antenna & ground plane (0.07λ₀ x 0.11λ₀, 0.3m x 0.46m)

- **Habitat walls are electrically conductive**
 - Cannot use wire antenna directly against conducting wall
 - Integration of miniaturized HF antenna with habitat walls
 - E-textile antennas

EIGER Simulation
HF Passive Sensor Antennas

- Miniature Spiral-Loaded Slot Antenna

Prototype 4
(45.7cm x 30.5cm x 0.32cm)

2.5% BW Gain > -5dBi
Habitat Module Interrogator-to-Tag Coupling

- Coupling between two 70MHz antennas
 - Received power levels at different locations in the mockup
 - Model effects of blockage with equipment in habitat module
NASA Use of 2.4 ISM SAW-Based RFID

Courtesy AirGATE Technologies

Courtesy RFSAW, Inc.
RF Collision Avoidance Methods

- Spatial diversity through adaptive digital beamforming

- Chamber A: Vacuum and Thermal Cycle Testing of Flight Hardware
- Objective: replace wired thermal and pressure sensors with wireless sensors
 - Reduces setup time between vehicle configuration changes
- Stage: feasibility assessment
- Thermal limit cold side: 20K
- Applications for vibration and acoustic facilities are also being explored

Approximate dimensions
Environmental Facility Wireless Sensors

- Adaptive interrogation of wireless temperature and pressure sensors
- Goals: $T_{\text{low}} = 20\,\text{K}$; 1000s of T-sensors; 100s of P-sensors

JSC Chamber A
(Vacuum & Thermal Cycle)

72-Element, S-Band, Adaptive, Digital Beamforming for Tag Interrogation
Antenna System Approach

• No active sensor system elements inside the chamber

• Adaptive digital beamforming offers many design degrees of freedom
 – The system can learn optimal channel weighting coefficients prior to commencement of tests

• Interrogator aperture:
 – Small transmit aperture - attempt to minimize transmit directivity
 – Large receive aperture – high directivity for spatial diversity

• Additional collision avoidance obtained through:
 – polarization division and code division
Small Transmit Aperture for Broad Illumination
• Digital samples on each receive element

• Beams are formed digitally
 – number of simultaneous beams limited only by external processors

• All tags within transmit beam are read by multiple, simultaneous receive beams
Example of Spatial Diversity: Schelkunoff array

Chamber Simulation Tag 5

8 Element Schelkunoff Array
Patch width = 4.14 cm
Substrate thickness = 0.445 cm
Element spacing: $d = 0.62 \lambda$

0 10 15 30 45 60 75 90
-15 -30 -45 -60 -75 -90

-20 -25 -30 -35 -40 -50 -60 -70 -80 -90
Beamforming and Temperature Sensor Demo

AirGATE Technologies / CTR tag + slot antenna
Conductive fabric circuits and antennas can be manufactured in an art-to-part process (e.g., see NASA MSC-24332, DARPA efforts).

Performance can be indistinguishable from conventional counterparts for many circuits, including RF/microwave circuits and antennas:
- Equiangular spiral
- Microstrip patch antennas
- Quadrature hybrid coupler