Li-Ion Battery Studies at NASA/Goddard Space Flight Center

Leonine Lee and Gopalakrishna M. Rao

Power Systems Branch, Code 563
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
Content

- Background
- Test Program
- Test Batteries and Data
- Conclusions
- Acknowledgment
Background

• Why Lithium-Ion (Li-Ion)?
 – High specific energy
 – High energy density
 – Benign handling requirements compared to nickel chemistry

• NASA/Goddard Space Flight Center’s (GSFC’s) interest in Li-Ion batteries
 – Maturity of chemistry for use in commercial applications
 – Infuse Li-Ion technology into NASA missions in particular Goddard Space Flight Center’s Missions
Background – contn’d

• GSFC Concerns?
 - Geo-Synchronous-Orbit (GEO) solstice storage
 - Low-Earth-Orbit (LEO) and Low-Lunar-Orbit (LLO) cycle life
 - Cell balancing
 - Overcharge

• GSFC Concern Mitigation
 – Cell/Battery procurement program began in 2002
 ◦ Atomic Energy Authority Technology Battery Systems Ltd. (ABSL)
 ◦ Japanese Storage Yuasa Technology Ltd. (JSYTL)
 ◦ Quallion
 ◦ SAFT
 ◦ T/J Technologies Inc./A123 Systems
 ◦ Yardney Technical Products (YTP), Lithion
Test Program

• Real-time GEO
 - Temperature: 20 ± 10°C
 - Eclipse Period: 42/23 days, Discharge at 0.6 C for a maximum shadow period of 72 minutes (approx. 70% Depth-of-discharge [DOD]), Charge at C/20 to a battery voltage clamp with taper for the remainder of daily solstice duration
 - Solstice Period: 140/160 days, battery voltage maintained at a battery voltage clamp (~70% State-of-charge [SOC])
 - Prior to each eclipse season, the battery is charged up to 100% SOC using C/20 charge rate to a battery voltage clamp with taper
Test Program - contd.

- **LEO**
 - Temperature: $20 \pm 2\,^\circ\text{C}$
 - DOD: approx. 30 to 40%
 - Discharge: Constant current for 30/36 minutes
 - Charge: Constant current to a battery voltage clamp with taper (55/60 minutes)
Test Program - contd.

- **LLO**
 - Temperature: $20 \pm 2^\circ\text{C}$
 - DOD: 30 or 40% (minimum once a year 80%)
 - Discharge: Constant current for 48 minutes
 (120/160 minutes for 80% DoD)
 - Charge: Constant current to a battery voltage clamp
 with taper (65 minutes)
Test Program - contd.

- Cell Voltage Divergence
 - For small cells in series and parallel configuration
 - Both GEO and LEO profiles were executed in sequence
Test Batteries and Data

- Real-time GEO
- LEO
- LLO
- Cell Voltage Divergence
Real-time GEO

- ABSL
- JSYL
- Saft
- YTP
GEO: ABSL

- **Battery Description**
 - 80 Ah Battery
 - 8s64p Sony 1.5Ah cells
 - Actual capacity at the test start: 83 Ah for a 40 A discharge to 24 V

- **Test Parameters**
 - 24-hour orbit
 - Eclipse Regime
 - Charge at 4 A to 33.6 V clamp with a taper to the end of the charge period
 - 42 days eclipse
 - Max. DOD 72%
 - Max. DOD days 21-23
 - Discharge current 48 A
 - Solstice Regime
 - 140 days
 - Voltage clamp at 32.3 V (72% SOC)
 - Capacity checked and fully charged prior to commencement of each eclipse season
• Current Status
 - in eclipse season 7
 - Day 18, 68-minute eclipse period
 - End-of-discharge (EOD) 26.85 V
 - Actual capacity at the start of the 7th eclipse: 75 Ah
 - Min. battery voltage trend is shown in the following page
GEO: ABSL - contd.

- Measured Minimum Voltage
- Calculated Minimum Voltage
GEO: JSYTL I

- **Battery Description**
 - 100 Ah Battery
 - 4s
 - Actual capacity at the test start: 113 Ah for a 50 A discharge to 24 V

- **Test Parameters**
 - 24-hour orbit
 - Eclipse Regime
 - Charge at 5 A to 16 V (at battery 32 V) clamp with a taper to end of the charge period
 - 42 days eclipse
 - Max. DOD 72%
 - Max. DOD days 21-23
 - Discharge current 60 A
 - Solstice Regime
 - 140 days
 - Voltage clamp at 15.5 V (at battery 31 V) [70% SOC]
 - Capacity checked and fully charged prior to commencement of each eclipse season
GEO: JSYTL I-contd.

- Current Status
 - In solstice 7
 - EOD 14.47 V (at battery 28.54 V)
 - Actual capacity at the start of the 7th eclipse: 96 Ah
 - Max. cell voltage divergence 6 mV, no cell balancing circuitry
 - Min. battery voltage trend is shown in the following page
GEO: JSYTL I-contd.

JSB 100Ah GEO Test Pack (4-cell pack)
Minimum Pack Voltage at Max DOD (72%)
GEO: JSYTL II

- **Battery Description**
 - 100 Ah Battery
 - 8s
 - Actual capacity at the test start: 111 Ah for a 50 A discharge to 24 V

- **Test Parameters**
 - 24-hour orbit
 - Eclipse Regime
 - Charge at 5 A to 32 V clamp with a taper to end of the charge period
 - 23 days eclipse
 - Max. DOD 72%
 - Max. DOD day 13
 - Discharge current 60 A
 - Solstice Regime
 - 160 days
 - Voltage clamp at 31 V (70% SOC)
 - Capacity checked and fully charged prior to commencement of each eclipse season
GEO: JSYTL II-contd.

- Current Status
 - In solstice season 4
 - Actual capacity at the start of the 4th eclipse: 102 Ah
 - Max. cell voltage divergence 6 mV, no cell balancing circuitry
 - Min. battery voltage trend is shown in the following page
GEO: Saft

- **Battery Description**
- 80 Ah Battery
 - 2p8s 40 Ah cells
 - Actual capacity at the test start: 98 Ah for a 40 A discharge to 24 V
- **Test Parameters**
 - 24-hour orbit
 - Eclipse Regime
 - Charge at 4 A to 32.8 V clamp with a taper to the end of the charge period
 - 42 days eclipse
 - Max. DOD 72%
 - Max. DOD days 21-23
 - Discharge current 48 A
 - Solstice Regime
 - 140 days
 - Voltage clamp at 30.8 V (70% SOC)
 - Fully charged prior to commencement of each eclipse season
 - Capacity checked only after the 3rd solstice when max. cell voltage divergence exceeded 80 mV, the cell balancing circuitry then turned on at the beginning of the 4th eclipse
GEO: Saft - contd.

- Current Status
 - in solstice season 6
 - Actual capacity at the start of the 6th eclipse: 94 Ah
 - Max. cell voltage divergence 13 mV (eclipse 6)
 - Min. battery voltage trend is shown in the following page
GEO: Saft -contd.

SDO Battery Eclipse Overview

EODV = -0.043*SeasonNo + 28.092

$R^2 = 0.9732$
GEO: YTP

- **Battery Description**
 - 100 Ah Battery
 - 2s2p 50 Ah cells
 - Actual capacity at the test start: 118 Ah for a 50 A discharge to 24 V

- **Test Parameters**
 - 24-hour orbit
 - Eclipse Regime
 - Charge at 5 A to 8.2 V (at battery 32.8 V) clamp with a taper to end of the charge period
 - 42 days eclipse
 - Max. DOD 72%
 - Max. DOD days 21-23
 - Discharge current 60 A

Solstice Regime
- 160 days
- Voltage clamp at 7.7 V (at battery 30.8 V) [70% SOC]
- Capacity checked and fully charged prior to commencement of each eclipse season
GEO: YTP-contd.

- **Current Status**
 - In solstice season 6
 - Actual capacity at the start of the 6th eclipse: 113 Ah
 - Max. cell voltage divergence 90 mV (eclipse 6), no cell balancing circuitry
 - Minimum battery voltage trend is shown in the following page
YTP 50Ah GEO Test Pack (wired as 2P-2S 100Ah pack) Minimum Pack Voltage at Max DOD (72%)
LEO

- JSYTL
- Quallion
- Saft
- T/J Tech.
- YTP
Battery Description
- 100 Ah Battery
- 8s
- Actual capacity at the test start: 113 Ah for a 50 A discharge to 24 V

Test Parameters
- 93-minute orbit
- Charge at 43-52 A to 31.2 V for 13500 cycles and then 31.6 V clamp with a taper to end of the charge period of 57 minutes
- Discharge current 55 A for 36 minutes
- DOD 33%

Current Status
- Completed 18770 cycles
- EOD 28.15 V
- EOD voltage trend is shown in the following page
- Max. cell voltage divergence 90 mV around 13500 cycles, 50 mV after changing the charge voltage from 31.2 to 31.6 V, no cell balancing circuitry
- One capacity check was performed after the 1820th cycle: 104 Ah
LEO: JSYTL I-contd.

Graph showing JSB B-cell Pack LEO Cycling (GPM Tracking S/A Profile). Discharge: 33% DOD, 36 minutes. Charge: GPM Tracking S/A profile (43-52A), 57 minutes. 20°C.

End-of-Cycle Data (LEO Cycle Number) vs. Equivalent Cell Voltage (V). EOCV raised from: 31.2V to: 31.6V.
Battery Description
- 175 Ah Battery
- 8s
 - Actual capacity at the test start: 183 Ah for a 87.5 A discharge to 24 V

Test Parameters
- 93-minute orbit*
- Charge at 75 A to 31.2 V for 3600 cycles and then 31.6 V clamp with a taper to end of the charge period of 57 minute
- Discharge current 96 A for 36 minutes
- DOD 33%
 * 25% DOD, 60 A charge rate and 73 A discharge rate for the first 600 cycles

Current Status
- Completed 5138 cycles
- EOD 27.91 V
- EOD voltage trend is shown in the following page
- Max. cell voltage divergence 320 mV around 3600 cycles, 44 mV after changing the charge voltage from 31.2 to 31.6 V, no cell balancing circuitry
- One capacity check was performed after the 600th cycle: 104 Ah
- Open-circuit stand for 9 months due to system problem
LEO: JSYTL II-contd.

JSB 175 Ah Pack LEO Cycling (Std LEO Profile, 33% DOD)

Discharge: 33% DOD, 36 minutes, Charge: 75A, to 31.2V (3.9 V/cell), 60 minutes, 26°C

EOLV raised from: 31.2V to: 31.6V

Open Circuit, Charged (9 months)

End-of-Cycle Data (LEO Cycle Number)
LEO: Quallion I

- **Battery Description**
 - 3 Ah Battery
 - 3p8s Sony 1.5Ah cells
 - Actual capacity at the test start: 3.7 Ah for a 1.5 A discharge to 24 V

- **Test Parameters**
 - 90-minute orbit
 - Charge at 1.5 A to 32 V clamp with a taper to end of the charge period of 60 minutes
 - Discharge current 2.4 A for 30 minutes
 - DOD 40%

- **Current Status**
 - Completed 3400 cycles
 - EOD 27.21 V
 - EOD voltage trend is shown in the following page
LEO: Quallion I-contd.
LEO: Quallion II

- **Battery Description**
 - 6 Ah Battery
 - 6p8s Sony 1.5Ah cells
 - Actual capacity at the test start: 7.4 Ah for a 3 A discharge to 24 V

- **Test Parameters**
 - 90-minute orbit
 - Charge at 3 A to 32 V clamp with a taper to end of the charge period of 60 minutes
 - Discharge current 4.8 A for 30 minutes
 - DOD 40%
 - Removed one cell at 1000th cycle; to understand the performance of the battery with a failed cell

- **Current Status**
 - Completed 3400 cycles
 - EOD 27.02 V
 - EOD voltage trend is shown in the following page
LEO: Quallion II-contd.
LEO: Quallion III

- **Battery Description**
 - 9 Ah Battery
 - 9p8s Sony 1.5Ah cells
 - Actual capacity at the test start: 11.1 Ah for a 4.5 A discharge to 24 V

- **Test Parameters**
 - 90-minute orbit
 - Charge at 4.5 A to 32 V clamp with a taper to end of the charge period of 60 minutes
 - Discharge current 7.2 A for 30 minutes
 - DOD 40%
 - Removed one cell at 1000th cycle and another at 2000th cycle; to understand the performance of the battery with two failed cells

- **Current Status**
 - Completed 3400 cycles
 - EOD 26.99 V
 - EOD voltage trend is shown in the following page
LEO: Quallion III-contd.
LEO: Quallion IV

- **Battery Description**
 - 12 Ah Battery
 - 12p8s Sony 1.5Ah cells
 - Actual capacity at the test start: 14.7 Ah for a 6 A discharge to 24 V

- **Test Parameters**
 - 90-minute orbit
 - Charge at 6 A to 32 V clamp with a taper to end of the charge period of 60 minutes
 - Discharge current 9.6 A for 30 minutes
 - DOD 40%
 - Removed one cell at 1000th cycle, second at 2000th cycle and the third at 300th cycle; to understand the performance of the battery with three failed cells

- **Current Status**
 - Completed 3400 cycles
 - EOD 26.88 V
 - EOD voltage trend is shown in the following page
LEO: Quallion IV-contd.
LEO: Saft

- **Battery Description**
 - 80 Ah Battery
 - 2p8s 40Ah cells but 2p7s after 11000 cycles
 - Actual capacity at the test start: 98 Ah for a 40 A discharge to 24 V

- **Test Parameters**
 - 92-minute orbit
 - Charge at 44 A to 31.2 V up to 11000 cycles and then to 28 V clamp with a taper to end of the charge period of 56 minutes
 - Discharge current 44 A up to 11000 cycles and then 50 A for 36 minutes
 - DOD 33% up to 11000 cycles and then 38%
 - Cell balancing circuitry active

- **Current Status**
 - Test Anomaly: A cell pair developed an internal short at 11000th cycle, the battery was converted into a 2p7s configuration
 - Completed 14410 cycles
 - EOD 24.23 V
 - EOD voltage trend is shown in the following page
 - Max. cell voltage divergence 111 mV during discharge
LLEO: T/J Tech.

- **Battery Description**
 - 10 Ah Battery
 - 5p9s A123 2.2 Ah cells
 - Actual capacity at the test start: 11.5 Ah for a 5 A discharge to 24 V

- **Test Parameters**
 - 90-minute orbit
 - Charge at 4.4 A to 32.4 V clamp with a taper to end of the charge period of 60 minutes
 - Discharge current 8 A for 30 minutes
 - DOD 40%

- **Current Status**
 - Completed 2725 cycles
 - EOD 29.31 V
 - EOD voltage trend is shown in the following page
Battery Description
- 100 Ah Battery
- 2p2s 50 Ah cells
- Actual capacity at the test start: 117 Ah for a 50 A discharge to 6 V (at battery 24 V)

Test Parameters
- 93-minute orbit
- Charge at 43-52 A to 7.8 V (at battery 31.2 V) up to 12400 cycles and then 7.9 V (31.6 V) clamp with a taper to end of the charge period of 57 minutes
- Discharge current 55 A for 36 minutes
- DOD 33%

Current Status
- Completed 13440 cycles
- EOD 7.23 V (at battery 28.92 V)
- Max. cell voltage divergence 134 mV but decreased to 81 mV after charge voltage change from 7.8 to 7.9 V, no cell balancing circuitry
- EOD voltage trend is shown in the following page
LEO: YTP I-contd.
LEO: YTP II

- **Battery Description**
 - 200 Ah Battery
 - 8s
 - Actual capacity at the test start: 203.8 Ah for a 100 A discharge to 24 V

- **Test Parameters**
 - 90-minute orbit
 - Charge at 96 A to 31.2 V clamp with a taper to end of the charge period of 55 minutes
 - Discharge current 137 A for 35 minutes
 - DOD 40%

- **Current Status**
 - Completed 910 cycles
 - EOD 26.5 V
 - Thermal problem from the beginning of the testing, test chamber is now controlled at 5°C but the battery temperature is about 23°C
 - Max. cell voltage divergence 17 mV, cell balancing circuitry in active
 - EOD voltage trend is shown in the following page
LEO: YTP II-contd.
LLO: ABSL

- **Battery Description**
 - 60 Ah Battery
 - 8s48p Sony 1.5Ah cells
 - Actual capacity at the test start: 62 Ah for a 30 A discharge to 24 V

- **Test Parameters**
 - 32% DOD
 - 113-minute orbit
 - Charge at 27 A to 33.6 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 24 A for 48 minutes
 - 80% DOD
 - Once in every six months 225-minute orbit
 - Charge at 27 A to 33.6 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 18 A for 160 minutes
LLO: ABSL-contd.

- Current Status
 - Completed 7200 cycles, of which 3 were 80% DOD
 - EOD 28.15 V for 32% DOD
 - EOD 23.6 V for the last 80% DOD
 - EOD voltage trend is shown in the following page
 - One capacity check was performed after the 6975th cycle: 50Ah
LLO: ABSL-contd.
• **Battery Description**
 - 50 Ah Battery
 - 8s
 - Actual capacity at the test start: 55 Ah for a 25 A discharge to 24 V

• **Test Parameters**
 - 40% DOD
 - 113-minute orbit
 - Charge at 22 A to 31.2 V up to 2500 cycles and then 31.6 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 25 A for 48 minutes
 - 80% DOD
 - Once in every six months 225-minute orbit
 - Charge at 22 A to 32 V for 1st and 32.4 V for 2nd, respectively, clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 15 A for 160 minutes
LLO: JSYTL-contd.

- Current Status
 - Completed 6850 cycles, of which 2 were 80% DOD
 - EOD 27.49 V for 32% DOD
 - EOD 25.8 V for the last 80% DOD
 - Max. cell voltage divergence 64 mV around 3000th cycle, changing charge clamp voltage from 31.2 to 31.6 V reduced the value to 39 mV, low temperature excursion to 10 and 30°C increased the value to 100 mV, no cell balancing circuitry
 - EOD voltage trend is shown in the following page, note 10°C and 30°C testing for 30 days, respectively
LLO: JSYTL-contd.
LLO: Quallion

- **Battery Description**
 - 15 Ah Battery
 - 8s
 - Actual capacity at the test start: 14.1 Ah for a 7.5 A discharge to 24 V

- **Test Parameters**
 - 32% DOD
 - 113-minute orbit
 - Charge at 7 A to 31.6 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 6 A for 48 minutes
 - 80% DOD
 - Once in every month 185-minute orbit
 - Charge at 7 A to 32.8 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 6 A for 120 minutes
LLO: Quallion-contd.

- Completed 7000 cycles, of which 17 were 80% DOD
- EOD 28.16 V for 32% DOD
- EOD 26.02 V for the last 80% DOD
- Max. cell voltage divergence 145 mV, no cell balancing circuitry. EOD voltage trend is shown in the following page
LLO: Quallion-contd.
LLO: Quallion-contd.
A typical Voltage Recovery during normal cycling after the 80% DOD.
LLO: Saft

- **Battery Description**
 - 40 Ah Battery
 - 8s
 - Actual capacity at the test start: 49 Ah for a 20 A discharge to 24 V

- **Test Parameters**
 - 42% DOD
 - 113-minute orbit
 - Charge at 23 A to 31.2 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 21 A for 48 minutes
 - 80% DOD
 - One 225-minute orbit
 - Charge at 23 A to 32.8 V clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 12 A for 160 minutes
LLO: Saft-contd.

- Current Status
 - Completed 6790 cycles, of which 1 was 80% DOD
 - EOD 27.86 V for 42% DOD
 - EOD 27.76 V for the last 80% DOD
 - Max. cell voltage divergence 63 mV (during charge), no cell balancing circuitry
 - EOD voltage trend is shown in the following page
• **Battery Description**
 - 50 Ah Battery
 - 4s
 - Actual capacity at the test start: 58 Ah for a 25 A discharge to 24 V

• **Test Parameters**
 - 40% DOD
 - 113-minute orbit
 - Charge at 22 A to 15.8 V (at battery 31.6 V) clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 22 A for 48 minutes
 - 80% DOD
 - Once in every six months 225-minute orbit
 - Charge at 22 A to 16.4 V (at battery 32.8 V) clamp with a taper to end of the charge period of 65 minutes
 - Discharge current 15 A for 160 minutes
LLO: YTP-contd.

- Current Status
 - Completed 6790 cycles, of which 2 were 80% DOD
 - EOD 13.98 (at battery 27.96 V) for the 40% DOD
 - EOD 13.29 (at battery 26.58 V) for the last 80% DOD
 - Max. cell voltage divergence 291 mV, no cell balancing circuitry
 - EOD voltage trend is shown in the following page
Cell Voltage Divergence: ABSL

- **Battery Description**
 - 6 Ah Battery
 - 8s4p Sony 1.5Ah cells
 - Actual capacity at the test start: 5Ah for a 3 A discharge to 24 V
 - 1 KHz impedance at the beginning 122 mohms

- **Test Parameters**
 - LEO, 93-minute orbit, charge at 3 A to 33.6 V with a taper to end of the charge period of 57 minutes, discharge current 3 A for 36 minutes, DOD 30%
 - GEO, 24-hour orbit, eclipse regime - charge at 0.3 A to 33.6 V clamp with a taper to the end of the charge period, 42 days eclipse, max. DOD 72%, discharge current 3.6 A, and solstice regime - 140 days, voltage clamp at 32.3 V (72% SOC), fully charged prior to commencement of each eclipse season
 - 900 LEO cycles followed by one real time GEO is one set
 - Capacity and impedance checked prior to staring each set
Cell Voltage Divergence : ABSL -contd.

- Current Status
 - Completed three sets (2700 LEO cycles and 3 real time GEO eclipse solstice), and the capacity and impedance now are 3.8 Ah and 198 mohms
 - Max. cell voltage divergence for LEO 30% DOD is about 8 mV and for GEO 72% DOD is about 60 mV, appears to depend on the actual SOC
 - Estimated max. cell voltage divergence at 24 V now is 75 mV
 - Capacity fade and impedance increase correlate with the prediction
 - Cell voltage divergence with battery voltage trend is shown in the following page
Cell Voltage Divergence: ABSL - contd.

String Divergence against Battery Voltage

- String 1 1st eclipse
- String 2 1st eclipse
- String 3 2nd eclipse
- String 4 1st eclipse
- Linear (String 3 2nd eclipse)

- String 1 2nd eclipse
- String 2 2nd eclipse
- String 3 3rd Eclipse
- String 4 2nd eclipse
- String 1 3rd Eclipse
- String 2 3rd Eclipse
- String 3 1st eclipse
- String 4 3rd Eclipse

Battery Voltage (V)

Voltage (mV)
Conclusions

- Goddard Space Flight Center has "Pioneered" the rechargeable secondary battery design, test, infusion, and on-orbit battery management among NASA installations for over the last four decades

- Li-Ion Batteries from **Atomic Energy Authority Technology Battery Systems Ltd., (ABSL),** Japanese Storage Yuasa Technology Ltd. (JSYTL), Quallion, SAFT, **T/J Technologies Inc./A123 Systems,** Yardney Technical Products (YTP)/ Lithion have been designed and tested for aerospace application
 - Emerging technology for future NASA missions
 - Completed up to three years of real time GEO, LEO and LLO cycles
 - Max. cell voltage divergence in ABSL battery using Sony cells appears to depend on the actual SOC
 - ST - 5, a four-month mission that was launched in 3/06, was our first technology demonstration in space and the first application of ABSL batteries in America
 - Calipso, a three-year LEO mission that was launched in 4/06, was our first battery infusion into our mission
The battery technology is baselined for Themis (ABSL), SDO (ABSL), LRO (ABSL), IBEX (Yardney) GPM (?) and MMS (?) spacecraft; SDO and LRO batteries are the largest of the ABSL batteries that have ever flown.

MARS (Spirit and Discovery) (8/03), ST-5 (3/06) and Calipso (4/06) spacecraft with Li-Ion batteries are now launched, and Themis is scheduled for launch in January 07; these batteries’ ground handling and in-orbit performance will provide valuable experience. The lessons learned will be implemented in the future cell/battery designs, battery ground handling, and the onboard battery management.
Acknowledgment

- Mr. D. Curzon, ABSL, for conducting ABSL batteries testing
- Mr. J. David, NSW, for conducting JSB, Quallion, T/J Technologies and YTP batteries testing
- Dr. R. Staniewicz, Saft, for conducting Saft batteries testing
- Mr. D. Sullivan, GSFC, for conducting JSB and YTP batteries testing