
Source of Acquisition
NASA Johnson Space Center

SITUATION AWARENESS OF ONBOARD SYSTEM AUTONOMY
debra Schreckenghostf'), Carroll ~hronesbery('', Mary Beth ~ u d s o n ")

"'~etrica, I012 Hercules, Houston, TX: USA 77058, ghost@ieee.org
'>'s&K Technologies, S&K Technologies, 201 Flint Ridge Plaza, Suite 102, IVebster, TX 77598,

c. thronesberyGJsc. nasa.gov, mhudson@sktcorp. corn

ABSTRACT automates system reconfiguration and routine fault
management. We use the Distributed Collaboration and

We have developed intelligent agent software for Interaction (DCI) System to develop the operations
onboard system autonomy. Our approach is to provide assistants that provide human services, including
control agents that automate crew and vehicle systems, situation summarization, event notification, activity
and operations assistants that aid humans in working management, and support for manual commanding of
with these autonomous systems. We use the 3 Tier autonomous systems.
control architecture to develop the control agent
seftware thst mtomates system reconfio1lr~tion D---. and In this nanpr Y-t" we describe how we use the DC! System
routine fault management. We use the Distributed to develop operations assistants that aid situation
Collaboration and Interaction (DCI) System to develop awareness of onboard autonomy by (1) detecting and

- . the operations assistants that provide human services,-- - - notifying users of important events as they occur, (2)
including situation summarization, event notification, logging these events chronologically so the user can
activity management, and support for manual
commanding of autonomous system. In this paper we
describe how the operations assistants aid situation
ziv'areiiess of the autonomous control agefits. We also
describe our evaluation of the DCI System to support
control engineers during a ground test at Johnson
Space Center (JSC) of the Post Processing System
(PPS) for regenerative water recovery.

inspect and review them well after they occur, and (3)
encapsulating complex event sequences as summary
events that can be decomposed down to the constituent
events, if needed. We also describe our evaluation of
the DCI System to support control engineers during a
ground test at JSC of the Post Processing System (PPS)
for regenerative water recovery.

2. LIFE SUPPORT SYSTEM AUTONOMY
1. INTRODUCTION

To achieve onboard autonomy, it is necessary to
Establishing a human presence in deep space will
require changing the way manned space operations are
conducted. Due to longer communication delays and
extended mission duration, NASA can no longer rely
on large teams on Earth to support astronauts round-
the-clock. As a result, astronauts must become more
independent from ground support. Autonomous crew
and vehicle systems enable such crew autonomy.

The use of system automation does not eliminate the
need for crew to interact with these systems, however.
The crew must maintain awareness of system events,
the actions taken by autonomous control, and the
health of automated systems. They must perform
periodic maintenance on system hardware. In cases
where control automation cannot resolve anomalies,
the crew must fix or workaround the problem.

We have developed intelligent agent software for
onboard system autonomy. Our approach is to provide
control agents that automate crew and vehicle systems,
and operations assistants that aid humans in working
with these autonomous systems. We use the 3T control
architecture to develop the control agent software that

provide control automation for crew and vehicle
systems that perform routine system reconfiguration
and fault management. We have used the 3T control
architecture [I] to develop such autonomous control
agents. The 3T architecture consists of the following
layers of parallel control processing:

Planner. a hierarchical task net planner that
coordinates automated control activities for the
hardware systems to ensure that resource and time
constraints are met. The Planner also re-plans
these activities when a task fails to complete or
events make activities no longer possible.
Sequencer. a reactive planner that dynamically
constructs operational procedures based on
situational context. The Sequencer decomposes
activities from the Planner into executable steps,
based on the current state of the system. The
Sequencer also monitors for anomalies and reacts
to them. When activities have been completed or
failed, the Sequencer informs the Planner.

0 Skill Manager. traditional closed loop control
modules for each effector and sensor. Activation
of these modules is coordinated by the Skill
Manager. The Skill Manager takes commands

Proc. 'ISAIRAS 2005 Conference : M~mich, Germany,
5-8 September 2005 (ESA SP-603, September 2005)

from the Sequencer and passes them to the correct
skills, as well as returning to the Sequencer the
results from commands executed by these skills.

The 3T architecture has been used extensively to
control life support systems during ground tests of
hardware for regenerative water recovery [2] and air
revitalization [3]. The layered architecture is used to
handle the uncertainty inherent in complex domains
like life support. The three layers execute in parallel,
with bi-directional communication between the layers.
Control commands flow down through the layers and
feedback Bows back up through the layers to close the
control loop. Each layer is designed to take safe action
should communication with other layers be lost. If a
command fails at any level, a repair action can be
initiated (e.g., re-planning at the deliberative level,
selection of an alternative sequence at the reactive
level). Each layer operates at a different time constant,
allowing high speed controllers at the low level of the
architecture -to operate in ~ parallel with the slower.
deliberative algorithms at the high level. The time
constants for control of life support are 1 second for the
Skill Manager, 30 seconds for the Sequencer, and a
few minutes for the Planner, Each layer also abstracts
task and state info-nation differently, with information
becoming more abstract as you move up the layers.
The abstractions for control of life support are
activation of individual effectors for the Skill Manager,
sequencing of groups of effectors (i.e., procedures) for
the Sequencer, and scheduling of procedures to manage
resources (i.e., potable water, oxygen) for the Planner.

3. AGENTS FOR SITUATION AWARENESS

3.1 DCI System

The DCI System was developed to aid distributed
human teams in working with autonomous control
systems. DCI provides each person in the team with a
personal agent, called a Liaison Agent. Each Liaison
Agent provides services to help its user in maintaining
situation awareness of control autonomy, and in
conducting manual activities and coordinating them
with autonomous activities. To aid situation awareness,
the DCI system provides the following capabilities:

Data Monitoring and Event Detection. monitor
heterogeneous data sources to discern when data
values indicate a meaningful or significant change
in system state or health has occurred,
Event Notification. decide which team members
should be notified about events, and notify them
based on team protocols specifying how and when
personnel in different roles should communicate,
Situation Summarization. analyze and interpret
sets of events to aid crew in understanding of what
happened during a situation.

To aid activity coordination, the DCI system provides
the following capabilities:

Automated Activity Planning. build activity
plans for the team that achieve team objectives and
adjust these plans in response to situation changes
or manual input,
Tracking Activity Execution. use telemetry, user
state: and information from the user to assess the
completion status of planned activities,
Command Authorization. coordinate activities
not in the plan with planned activities to ensure
concurrent activities do not interfere with each
other or with actions taken by control autonomy,
Procedure Support (in work). provide the team
with electronic procedures and track the execution
of steps in these procedures, with an emphasis on
support for joint human-automation procedures.

The Liaison Agent mnintains a mode! of its uscr's
activities, location, and roles in the team that helps
customize these services for the needs of each team
member. Figure 1 illustrates the DCI architecture.

Figure 1. DCI Architecture

In this paper we describe DCI support for situation
awareness. For additional information on the DCI
System, see Schreckenghost, et al. 141.

3.2 Data Monitoring and Event Detection

The DCI System provides two Data Monitoring and
Event Detection capabilities: the Event Detection
Assistant (EDA) and the Complex Event Recognition
Architecture (CERA) [5, 61. EDA implements limit
sensing and triggered events predicated on simple
conditionals. CERA implements detection of situations
consisting of sets of events organized temporally and
hierarchically. EDA can provide input to CERA.

The Event Detection Assistant provides a library of
pattern matching functions implemented in Java. It
monitors telemetry data from hardware systems as well
as more abstracted information computed by software
systems such as EDA or the 3T control agent. For
example, EDA receives all Caution and Warning
events detected by the 3T control agent, identifies the
events designated as critical, and exports this subset of
events to the DCI users. When the event pattern is
observed in the monitored data, EDA generates an
XML message describing the observation. The event
XML message consists of the following: (1) ID, (2)
timestamp, (3) category, (4) subject, (5) urgency, (6)
importance, (7) body, (8) sender, (9) receivers, and
(10) response time. Most of these fields can be further
decomposed. The content of the event is expressed in
the body. The body always has a text block and may
have the following additional information: (1) agent or
domain, (2) notification category, (3) changed user
state value, or (4) situation structure. The contents of
the message are specified using the following
ontologies that can be extended to new domains of
application:

Domain: physical system the event refers to
. EventType: the format of the event content
Notification: Caution & Warning classificatioii

These XML-formatted events are exported from EDA
using CORBA event channels.

The Complex Event Recognition Architecture (CERA)
automatically constructs summaries of events that
develop over time or that have complex relationships
among them (e.g., cascading events after a failure). To
detect complex events, CERA compares incoming data
such as telemetry or computed data to conditions in
pre-built Event Dejnitions defined by system experts.
The Event Definition consists of two parts: the pattern
that must hold true in the data and the action that is
performed on completion of the pattern. Patterns
consist of conditions and the temporal relationships
among them. Conditions are defined as either (1)
logical relations on incoming data (atomic events), or
(2) an encapsulation of collections of events as a more
abstracted event. Temporal relations in patterns
include conjunction (ALL operation), disjunction
(OneOf operation), ordered sequence (InOrder
Operation), and Allen's temporal interval relations 171.
The primary action executed on completion (i.e., upon
recognition of a pattern) is signalling the consequences
of event recognition. These consequences include (1)
notification that the event occurred, and (2) notification
that side effects occurred. The consequences of
recognition can be determined during execution by
including logical branching based on data bindings.
For example, if a lamp relay is > 0, the recognizer
would signal "(confirm-lamp-on true)" otherwise it
would signal "(confirm-lamp-on false)".

An example of a CERA recognizer to detect the startup
of the PPS is shown below. In this example, the pps-
startup-event is recognized when three encapsulated
events are signalled in an ordered sequence. When the
event completes, it signals that the event has occurred
(i t . , (pps-startup complete))

(define-recognizer (pps-startup-event)
(pattern

'(in-order
(transition-air-and-water-flow started)
(confirm-u\,-lampl-on true)
(increasinginput-air-fli)>v irue)))

(on-complete
(start end bindings data pattern)
(biding-translate () bindings

(store-and-signal-event '(pps-startup complete) start end pattern
"PPS Startup" "Startup, PPS system start."))))

Encapsulation into abstracted events results in
hierarchy among events. For example, the event pps-
startup-event encapsulates a pattern on 3 sub-events:
(1) transition air and water flow started, (2) confirm uv
lamp1 on: and (3) increasing input air flow true. Each
of these events has a separately defined recognizer.
Because complex events can unfold in more than one
way, Event Definitions can encode more than one
event pattern as a valid indicator that a situation has
occurred. For example, a safing situation for the PPS
requires observing either low input air flow or low
water pressure, but not both. CERA will capture which
of these events was observed in a given situation.

When constituent events are recognized, they are
exported to the Notification Services of the Liaison
Agents of all DCI users. Similar to the EDA, an XML-
formatted message is exported over a CORBA event
channel when an event is recognized. The content of
these messages comply with the formats and the
ontologies described previously.

The message formats and ontologies we have described
constitute a standard interface definition and
communications protocol for passing events to DCI
users. This interface and protocol can be used to
integrate new Data Monitoring and Event Detection
capabilities with the DCI System. Adding events from
new domains requires (1) encoding messages in an
XML format recognized by DCI, (2) extending the
domain ontologies used in the interface definition for
the new events if needed, and (3) exporting encoded
messages over a CORBA event channel. We have
used this interface and protocol to integrate DCI with
the Intelligent Briefing Response Assistant (IBRA), an
XML rule-based system developed by SKT, Corp. [S].

3.3 Event Notification

Once events are detected by the Data Monitoring and
Event Detection hnctions just described, they are
passed to the Liaison Agents of the DCI system. Each

Liaison Agent provides a Notification Service to
ensure its user receives the right information at the
right time to perform his or her job. The Notification
Senrice receives all events and compares them to
notification rules (called Notice Spec~jkations) that
encode the operational protocols for human
communication used in mission training [9]. Each
Notice Specification consists of (1) a Notice Condition
that defines patterns in the content of an event that
must match for the event to be passed to the user, and
(2) a j\Jotice Directive that defines what presentation
medium to use and how urgently and emphatically to

and (3) archive - the notice can be viewed at any time.
Using urgency information in the incoming event, the
focus of attention is assigned one of the follou,ing
values: (1) ShiftToPrimary - the notice should be
presented emphatically to the user to focus attention on
it, (2) ShiftToSecondary - the notice should be
presented such that the user is aware of the notice but
not distracted by it: and (3) NoShift - the notice should
be presented with no special emphasis (i.e., put in
background). The Notice Directive also assigns one or
more presentation modalities to the event from the set
of possible modalities. The assignment of modality

inform its user of events that are passed. Notice
Specifications are encoded as XML rules.

The Notice Condition is used to filter incoming
notices. This condition is represented as a set of
pattern-matching triplets. related by conjunctive and
disjunctive logical operators. Each triplet consists of
(1) aproperty of a notice. (2) a matchingfinction. and
(3) the value to match against. The property of a notice-
identifies a content field in the notice. The value to
match against identifies the desired value for this

can be conditionalized on whether the user is online to
the DCI System or not (what we call user presence).
For the current DCI system, modalities include (1)
display in the Notice Viewer if the user is logged into
DCI, (2) queue for display in the Notice Viewer when
the user logs into DCI at a later time; (3) email to the
user, and (4) page the user. Events that match a notice
specification are passed with assigned latency, focus of
attention, and modalities to the user interface for
presentation to the user. An example of a Notice
Directive is shown in Figure 2.

content field in the notice. The matching function
defines the type of comparison performed between the
property a ~ d the matching value. To ensure Notice
Conditions are extensible to the concepts and language
of a new domain, a property corresponds to an
ontology and a matching value correspond to a field
within this ontology. These ontologies describe
features of the incoming event (e.g., alarm or alert) as
well as states of the user (e.g., roles, location). The
matching functions defined for the Notification Service
include string comparisons, ordinal comparisons,
integer comparisons, and ontological comparisons that
allow us to consider hierarchies of abstraction. An
example of a Notice Condition to detect when the
category of an incoming notice is "comms" is shown
below:

<Condition>
<AtomicMatch>
<PropertyName>EventCategory</PropenyName>
<MatchingFunnion>OntologySubClassOrEqualWatc~ngFunction~
<InstanceToMatch>

<OntologyEntry>
<OntologyName>EventCategoryOntoIogySOntologyName>
<OntologyValue> Event.DomainEvent.LileSupportEvent.Comms

SOntologyValue>
<iOntologyEnhy>

</LnaanceToh$atch>
qAtomicMatcb

</Condition>

The Notice Directive is used to annotate an event with
information needed to present the event to the user. It
assigns the latency tolerated in notifying the user and

Figure 2. Example of Notice Directive

This directive will shift the user's attention
immediately to the incoming notice. If the user is
online to DCI, it will use the DCI GUI for notification.
If the user is offline, it will use a pager for notification
and queue the message for viewing in the DCI GUI.

how emphatically the user's focus of attention should
be shifted to the event. Using urgency information in The Notification Service uses an XML pattern matcher
the incoming event, the latency is assigned one of the
following values (1) immediate - the notice should be

to compare these rules to incoming data. When the
Notice Condition matches, the Notice Directive is

presented to the user without delay, (2) deferred - the
notice should be presented to the user when available,

applied to annotate the notice for presentation. When
more than one Notice Specification matches, the

Notification Service combines the directives of the
matching specifications by (1) applying the most
salient assignment for both latency and focus of
attention, and (2) combining all modalities. The
Notification Service is implemented using Java: with
ontology-based pattern matching for notice routing
based on VESPR [8]: an XML rule-based system built
using JES, the Java implementation of the CLIPS rule-
based system developed at NASA.

This annotated notice from the Notification Service is
passed to the User Interface Service (UIS) for
presentation. The UIS uses latenc). focus of attention,
and modality to construct the user notification. For
notices that are displayed using the DCI user interface,
the UIS builds and maintains a persistent model of the
user interface state, permitting users to view events
long after they have been received. For notices that are
emailed or paged, the UIS formats and sends these
notices. Examples of how the user interface
management software uses these saliency annotations -

include (1) determining the degree of emphasis when
displaying a notice (interrupting or peripheral) or (2)
assigning the urgency codes to pager messages.

when a user's ro!es chacge, the information needed to
perform his or her job changes. The Liaison Agent
uses its knowledge of user roles and location to
determine which specifications are applicable at any
time. It will load the applicable Notice Specifications
whenever its user receives a changed role assignment.

Because Notice Specifications are based on standard
operational protocols for communication, they should
be defined and managed by the organization managing
the human team (e.g., Crew Office for astronauts). It is
possible for users to customize their notification by
defining Individual Notice Preferences, but these
personal rules are not permitted to compromise or
override the rules defined by the organization.

Once notices are received by the User Interface
Service, they are available to be viewed in the DCI
user interface. DCI provides a toolbar that is displayed
whenever the user logs into his or her agent. The user
can access notices from the toolbar by clicking on the
Notice icon to access to the Notice Viewer. When
urgent or important notices arrive, the Notice icon will
change appearance and an audible beep is annunciated.
From the Notice Viewer the user can view all notices
passed by the Liaison Agent for it user. Notices are
grouped into the following categories: (1) domain -
notices about the control software and the hardware it
controls, (2) group - notices about the changes in
location, activity, and roles of each person in the
operations team, and (3) From ARIEL - notices to the
user fiom his or her Liaison Agent. There is a tab for

accessing notices in each category. Additionally. there
is an ALL tab where every notice passed by the Liaison
Agent can be viewed. Notices in a tab are shown as a
list, sorted chronologically. Each notice in a list is
annotated with the following information:

time received: time the notice was received by the
Liaison Agent; notices are sorted using this time
subject: short description of the notice contents
category: corresponds to notice format and sender

e location: user location when notice was received
mode: other modalities used to notify the user; if
the user is paged, a "P" is displayed in this field

This information can be viewed from the list of notices
in a tab. Selecting a notice from this list shows the
contents of the notice in the window at the bottom of
the viewer. A notice contains the information below:

time: time the event occurred
event: short description of the event
details: body of the notice message
importance: criticality of information in the notice
urgency: how quickly to inform the user

Additionally, some notices contain a button that can be
used to launch a Situation Viewer showing the details
of a related situation captured by CERA. Figure 3
shows an example of the Notice Viewer display.

Details Saietfroniigurahon PPS system sale
tmpa!ianre LOW
UrQency L W

Figure 3. Notice Viewer Display

3.4 Situation Summarization

Situation summaries are needed to assist the crew and
ground experts in developing an understanding of the
events comprising a complex situation after these
events have occurred and evidence of these events is
no longer observable in system state. This can include
nominal situations such as system mode
reconfiguration requiring multiple state changes (e.g.,
startup) or complex configuration changes (e.g.,
restringing a power distribution node). It also can
include off-nominal situations, such as system failures
or crew repair sequences.

One wa) the DCI System supports situation
summarization is to provide the ability to inspect the
data anal) ses and interpretation performed by CERA
and to relate these analyses to the underlying data that
supports them. The DCI Situation Viewer displays the
analyses as a hierarchical set of events with temporal
relations among them. These events include both the
actions taken by automation or humans and the
associated system changes that these actions effect
(e.g., command a flow valve open and observe a rise in
flow rate through the valve). A summary of the
situation can be attained by viewing the top level of the
event hierarchy (see figure 4). In this example, we see
that safing the PPS consists of first observing air and
water flow are halted, next confirming the Ultraviolet
(UV) lamps are turned off, then observing a drop in
either the input air flow or the input water pressure.

9 Han Aa andwater Flow (17Nov04 15 07 - 1 7 N m 4 15 07)
9 Transltlon
G d PPS02 Concentrator Feed Pump Relay On (17NovO4 15 07)
0 PPS 0 2 Concentrator Feed Pump RelayOff(l7Nov04 15 07)

-0 C o l r m WLamps OR (17Nov04 15 08)
Q Oneor
-a 2 < $? c , r l L z , z

I * d Decreaslne Inputwater Pressure (17tlov04 1508)

Figure 4. Top Level of Event Hierarchy

To clarify details about particular events or to get more
information about how an event occurred, the user can
drill down into the hierarchy (see figure 5). These
details include an indication of which events in the
hierarchy were observed in this case (shown in black
text) and which events in the hierarchy were not
observed in this case (shown in grey text). Showing
the events that were observed in relation to all the
events that might have been observed reminds the user
of how the system can operate and aids the user in
comparing similar situations occurring at different
times. In this example, reviewing the event details
reveals that all three W lamps have been confirmed
off. It also reveals that the 0 2 concentrator feed pump
was observed turning off to indicate that air and water
flow is halted. Finally, it reveals that a drop in input
water pressure occurred first for this situation.

An atomic event at the bottom of the hierarchy is
associated with the data set used to detect the event.
The data values that triggered the primitive event are
captured. Additionally, the set of parameter values
observed over the period of time when the situation
occurred are available for inspection. This data set can
be viewed as a plot, as a table, or as a set of summary

statistics (i.e., minimum, maximum, average value).
Figure 6 shows a data plot supporting the conclusion
that decreasing input water pressure was observed first.
A closer look at this data reveals that input water
pressure dropped below 1.4 at 15:OO while the input air
flow dropped below 200 around 7 minutes later.

B Inorder
7 Han Air and Water Flow (17Nov04 15:07 - 17Nm4 15:07)

9 Transition
8 a PPS 0 2 Conceltrator Feed Pump Relayon (17Nov04 15:07)

8 Parameter
PPS 02 con-~d Pmp Relay= I (17Nav04 15:07)

p a PPS 0 2 Concentrator Feed Pump RelayOff(17Nov04 1'207)
p Paramaer

PPS 0 2 Con-Fd Pmp Relay= 0 (17Nov04 15:07)
? I¶ coniirm WLampsOff(t7tdovOS 15:08)

? And
D PPS W ialiliri ReiW=B i ' l i i i ~ d i 4 'iS:Dirj

Cg PPS ~ ~ a m p 2 &lay= o (17Nov04 15:08)

Cg PPS uv ~ a m p 3 ~ e t w = o (17NovD4 15:08)
9 OtleM

- v

B Parameter
Cg PPS lnputpres c 1.4 (17Nov04 15:08)

Figure 5. Expanded Event Hierzrchy

Figure 6. Data Indicating Input Pressure Drop

Another way the DCI System supports situation
summarization is to provide a chronologically ordered
list of events in the Notice Viewer. These events can
come from a variety of sources, including the 3T
control agent, CERA, EDA, and operations personnel.
Since the notices that are passed to the user depend
upon the user's assigned roles, this set of events
represents a view of the system customized to the
user's job. From the notices in Figure 3, the user can
determine that DCI was restarted and the WRS test
started near 6pm Monday. The system shutdown at

541 the next morning when the feed tank was empty
(WRS WCO), then was restarted at 7:04 AM.

DCI provides the Event Logger for reviewing notices
that have been cleared from the Notice Viewer but
have been archived. The user loads archived notices
from either database or file. The loaded notices are
grouped into a tab, so you can compare notices from
different archives. Notices are sorted chronologically
and shown in a list much like the Notice Viewer.
Selecting a notice from the notice list shows its content
in the window below. To aid searching the archive for
pal-ticular notices, the user can enter the following
types of filters: (1) time regions, (2) strings in the
subject field, and (3) notice categories. The Event
Logger uses these filters either (1) to show all notices
that match the filter, or (2) to show all notices that do
not match the filter.

4. RELATED WORK

The DCI System has developed adaptive strategies for
filtering and routing notices to a distributed user group
based on the users' roles in that group. This differs
from other notification research that addresses the
needs of ~ndividuals without considering their group
memberships [lo. 1 I]. The DCI approach using notice
specification most closely resembles Bradshaw's use of
ontology-based notification policies in the KaOS
system [12]. Commercial notification software such as
Stirling Systems Group JobMon and Bear Mountain
Software's Topper address remote notification via
paging uslng static routing specifications. DCI
provides for dynamic notice routing by using it's
knowledge of user roles and location to adjust what
notices are sent to a user and what notification
mechanism is used (e.g., pager, email, etc.).

DCI supports situation awareness with high level
summaries that describe important state changes and
anomalies. On demand, user's can view the evidence
for these conclusions about state and the specific
actions of humans and automation that affect them.
This approach is consistent with Endsley's definition
of situation awareness as "the perception of the
elements in the environment within a volume of time
and space, the comprehension of their meaning and the
projection of their status in the near future" [13].

5. EVALUATION OF THE DCI SYSTEM

The Crew and Thermal Systems Division (CTSD)
performs ground-based testing of regenerative water
recovery systems in the Water Research Facility
(WRF) at JSC. It consists of a waste water collection
facility, a water analysis laboratory, and the hardware
systems used to regenerate water. One such system is
the PPS. A ground test of the PPS was conducted at

JSC from January 2004 to January 2005 to evaluate the
effectiveness of different bed substrate configurations
in removing trace inorganic salts and a set of
Ultraviolet (UV) lamps in removing trace organic
carbon in recycled \+ater. The PPS hardware is
automated using the 3T control agent described
previously. Similar to the way crew will interact with
automated systems. control engineers are on-call for
routine PPS maintenance and to resolve PPS problems
the automation cannot fix. These engineers perform
other duties than control engineering most of the time.
Each week a different control engineer is assigned to
fulfil the Prime role, ~vhich makes him responsible to
handle all problems with the PPS. In addition to the
Prime: there is a Backup engineer, who handles issues
when Prime is not available, and a Coordinator, who is
the resident expert on the control automation. Both
Prime and Backup change weekly while Coordinator is
a permanent role.

In previous ground tests without the DCI System. the
Prime engineer manually checked the system every 3-4
hours to see if it was functioning properly. This meant
there could be hours of delay before problems were
handled. The engineer would first review schematics
disp!~ying current system stzte. If he perceived a
problem, he would then bring up tables of logged data
to try and identify the problem. Both of these tasks
could be performed remote from the PPS hardware. If
this provided insufficient information to identify the
problem, or if a recovery action was required, the
engineer would go to the site of the PPS hardware and
control automation where additional information from
the automated software was available and where he
could adjust the PPS as needed.

The PPS ground test is the first use of DCI to assist
control engineers in supervising automated crew life
support systems [14]. Instead of monitoring the PPS
periodically, control engineers rely on the DCI System
to contact them if an interesting event or a problem
occurs and to assign anomaly handling tasks when
needed. Using secure internet access via Virtual Private
Network (VPN), control engineers can access the DCI
System from their offices at JSC, from offices located
off-site, and from home. When an engineer becomes
Prime, the notice specifications used by his Liaison
Agent change to ensure that he is contacted first when
important events occur or problems arise (i.e., page).
For example, the Prime is notified when a tank of
water has been processed, or when the PPS beds lose
their effectiveness in polishing water. Control
engineers use situation summaries created by DCI to
better understand anomalies and how to fix them.
They also use these summaries to verify that nominal
reconfigurations of the PPS are timely and correct.

6. CONCLUSIONS 8. REFERENCES

After a year of using the DCI system in the WRF.
control engineers rely on it to maintain situation
awareness about the test and to detect PPS problems.
The DCI System operated near continuously in support
of the PPS ground test from January 2004 through
January 2005. Resetting the DCI System was done
periodically to clear system buffers and improve
system performance after extended operation. From
June 2004 to January 2005, DCI was restarted every 1 I
days on the average. and ran for up to 30 days
continuously in some cases. 'When DCI was restarted.
it was typically down for less than 10 minutes.

DCI situation awareness software was used throughout
this test. The notification capability operated reliabl)
once the notice specifications were tuned to ensure
notices were routed to the proper personnel. The data
monitoring and event detection capability required
minor adjustments throughout the course of the test.
Changes include (1) modifying or writing new Event
Definitions for CERA and EDA as users changed what
they wanted to see or how the PPS test was conducted,
and (2) debugging errors in Event Detection software.
including bugs the CEP-4 software from INet.

One of the more surprising results of this evaluation is
that pagers are not reliable for infrequent but critical
notification. We found that users who did not need a
pager for anything else forgot to carry them, forgot to
change the batteries in them, or forgot to turn them on.
This delayed user awareness of important notices (i.e.,
anomaly notices) by as much as 10 hours in some
cases. As a result, we plan to investigate alternative
notification approaches, such as cell phones.

Based on the results from evaluating the DCI System
in the WRF, we propose that intelligent operations
assistants such as DCI enable more autonomous space
operations. They permit safely shifting greater
responsibility to the crew for managing autonomous
crew and vehicle systems by supporting supervision
and coordination of concurrent human and autonomous
activities. Such capabilities provide for the high level
of onboard autonomy needed for the Crew Exploration
Vehicle and human lunar return missions.

7. ACKNOWLEDGEMENTS

We want to acknowledge Dr M. Shafto, manager of
NASA's Software, Intelligent Systems, & Modelling
for Exploration, who sponsored this work. We also
wish to acknowledge the efforts of Pete
Bonassokfetrica, Tod Milarn/SKT, and Cheryl
MartinIApplied Research Laboratories on the design
and implementation of DCI.

1. Bonasso P. Firby J, Gat, E., Kortenkamp D., Miller
D, & Slack M. Experiences with an Architecture for
Intelligent, Reactive Agents. Journal of Experinzental
Theoty of ArtiJcial Intelligence. 9: 237-256. 1997.
2. Bonasso P., Kortenkamp D., & Thronesbery C.
"Intelligent Control of Water Recovery System: 3
years in the Trenches" A i Magazine 24 (1): 19-44 2003
3. Schreckenghost D.. Ryan D.. Thronesbery C..
Bonasso P., & Poirot D. Intelligent control of life
support systems for space habitats. IAAI 1998.
Madison, WI. July 1998.
4. Schreckenghost D.. Martin C., Bonasso P.:
Kortenkamp D., Milam T.. & Thronesbery. C.
"Supporting group interaction among humans and
autonomous agents" Cotznecrion Science 14(4) 36 1 -
369 2002.
5. Fitzgerald W., Firby J., Phillips A., & Kairys J.
Complex event pattern recognition for long-term
system monitoring. AAAl Spring Svmposium IVorksl~op
on Human Interaction with Autonomous Systems in
Complex Environments. Mar 2003 104- 109.
6. Thronesbery C., & Schreckenghost D., Situation
Views: Getting Started Handling Anomalies. IEEE
hternational Cozjerence on Systems, A4an, and
Cybernetics. Washington, D. C. Oct 5-8, 2003
7. Allen, J. Maintaining knowledge about temporal
intervals Conzmunications ofACM 26:832-843 11 1983
8. Malin J., Molin A., and Thronesbery C. Managing

and instructing information assistants. AAAI Spring
Symposium Hforkshop on Persistent Assistants: Living
and Working with AI. March 2005.
9. Schreckenghost D., Martin C., and Thronesbery C.
Specifying organizational policies and individual
preferences for human-software interaction. AAAI Fall
Symposium on Etiquette for Human-Conzputer Work
32-39. North Falmouth, MA: AAAI Press 2002.
10. Horvitz E., Jacobs A., & Hovel D. 1999. Attention-
sensitive alerting. Proceedings of UAI '99, Stockholm,
Sweden. Morgan Kauhann, 305-3 13 Jul 1999.
11. Schrnandt C., Marmasse N., Marti S., Sawhney N.,
and Wheeler, S. Everywhere messaging. IBM Systems
Journal 39(3&4): 660-677 2000.
12. Bradshaw J. et al. Representation and reasoning
for DAML-based policy and domain services in KAoS
and Nomads. AAMAS 2003. Melbourne, Australia,
ACM Press. 2003.
13. Endsley M. Design and evaluation for situation
awareness enhancement. Human Factors Society 32nd
Annual AJeeting, Santa Monica, CA. 1988.
14. Schreckenghost D., Bonasso P, Hudson M., Martin
C., Milam T., & Thronesbery C. Teams of engineers
and agents for managing the recovery of water. AAAI
Spring Symposium Workshop on Persistent Assistants:
Living and Working with AI. March 2005.

