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ABSTRACT 
Simulation of divot weight in the insulating foam, associated 

with the external tank of the U.S. space shuttle, has been evaluated 
using least squares and neural network concepts. The simulation 
required models based on fundamental considerations that can be 
used to predict under what conditions voids form, the size of the 
voids, and subsequent divot ejection mechanisms. The quadratic 
neural networks were found to be satisfactory for the simulation of 
foam divot weight in various tests associated with the external 
tank. Both linear least squares method and the nonlinear neural 
network predicted identical results. 

1.0 APPROACH 
The simulation of foam mass ejection (divot) weight is 

assessed using four distinct methodologies: (1) linear least squares 
(LLS), (2) linear neural networks (LNN), (3) nonlinear (quadratic) 
neural networks (QNN), and (4) linear quadratic neural networks 
(LQNN). The justification for using these methods is presented 
subsequently suffices it to say that they were selected to evaluate 
the effectiveness of each methodology and identify associated 
weaknesses and strengths. Additionally, results from one method 
will be correlated to those of the other methods. A good correlation 
among the four alternative methods will ascertain that the models 
established are initially correct. At the end of the process one 
would expect to have the capability of selecting appropriate 
models/methods dependent on the targeted simulation. 
Fundamental principles and basic features of LLS, LNN, QNN, 
and LQNN are briefly discussed below. Herein, it is mentioned 
that all the variables in the formulations are assumed to be 
independent.  

1.1 Least Squares (LLS) 
Least squares is a mathematical procedure used for finding the 

best-fitting curve to a given set of points. It is a widely used 
modeling method. The unknown parameters are estimated by 
minimizing the sum of the squared deviations between the data and 
the model. The minimization process reduces the over-determined 
system of equations formed by the data to a sensible system of 
equations. This new system of equations is then solved to obtain 
the parameter estimates. While LLS often give optimal estimates 
of the unknown parameters, it is very sensitive to the presence of 
unusual data points in the data used to develop the model. Outliers 

can skew the results of the analysis. This makes model validation 
critical to obtaining sound answers. A typical LLS model used in 
predicting foam divot weight is represented by the following 
equation:  
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where n is the total number of known variables (xi) is the ith 
variable that could influence the foam divot weight. Some of those 
variables are: void diameter, void height, height of foam over the 
void, foam surface temperature, pressure inside the void, failure 
time, and location of the void. β’s are the coefficients evaluated by 
Least Squares.  

1.2 Neural Networks  
Neural networks are the most advanced concept in data fitting. 

Neural networks are powerful data modeling tools that are able to 
capture and represent complex data relationships. Neural networks 
resemble the human brain in the following two ways: (1) a neural 
network acquires knowledge through learning and (2) a neural 
network's knowledge is stored within inter-neuron connection 
strengths known as synaptic weights. The advantage of neural 
networks lies in their ability to represent both linear and non-linear 
relationships and in their ability to learn these relationships directly 
from the data being modeled. Neural networks may be thought as 
an in situ process of multiple linear/non-linear regression. 

Neural networks are very well capable of drawing meaning 
from complicated, imprecise, and incomplete data. They can be 
used to identify patterns and detect trends that are too complex to 
be noticed by conventional computer techniques or humans. A 
trained neural network can be thought of as an “expert” in the 
category of information it has been given to analyze. This expert 
can then be used to provide projections given new situations of 
interest within the data that it was trained.  

In the foam divot weight simulation, two models of neural 
networks have been used. They are: LNN and QNN. The linear 
and non-linear models are coefficients based. The nonlinear model 
was used to identify if it can provide improved simulation of the 
test data. The LNN has the following explicit form:  
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where n is the total number of known variables (xi) the ith 
variable that could influence the foam divot weight (as 
explained in sec. 1.1 above). β’s are the coefficients evaluated 
by the linear neural networks. The basis function for the non-
linear (Quadratic) Neural Networks has the following explicit 
form: 
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Note that the β’s are the coefficients calculated by the neural 
networks. The use of LNN or QNN is really a function of the 
amount of data available. The use of LNN is sufficient if the 
number of test data for example is equal at least to the number of 
variables n plus one. That is required for proper prediction of the 
coefficients in LNN. But if the number of data sets available would 
exceed the number of coefficients of a QNN model, then the use of 
QNN will be justified. The number of data sets and selected model 
could influence the accuracy of the prediction. As a result, it was 
decided to use the LNN and QNN models and correlate the 
outcome from the two models.  

2.0 SIMULATION OF FOAM DIVOT IN THERMAL 
VACUUM TEST 

The simulation results presented in this section pertain to 
predicting the weight of foam loss for a thermal vacuum test. The 
objective here is to replicate the test numerically using models 
from three methods: linear least squares, linear neural networks, 
quadratic neural networks, and multi factor interaction model. The 
divot weight calculation results presented in this report are based 
on the schematic of the physical variables depicted in figure 2.1. 
As shown in the figure, the void is assumed to be right on the 
substrate surface. The total foam thickness is basically comprised 
of two components: void height and foam height over the void and, 
therefore, it is not an independent variable. The aspect ratio L1/L2 
indicates the type of void. For example, voids with aspect ratios 
L1/L2 > 2.5, are treated as slot voids. On the other hand, voids with 
aspect ratios L1/L2 < 2.5, are treated as cylindrical voids. For slot 
type voids, the critical void dimension is L2 while L1 is the critical 
dimension for cylindrical voids. The criterion for defining the type 
of void was provided by the RTF program based on their  
 

 
 

Figure 2.1. Schematic of foam physical variables that influence 
the divot process. 

 
experience. Divot data obtained from the RTF program for a 
thermal vacuum test are discussed next. 

2.1 Test Data Description 
Thermal vacuum testing performed by the RTF program was 

aimed to develop an empirically relationship for the void size 
which will produce a divot for regions of the tank not susceptible 
to cryo-ingestion and cryo-pumping type environments. According 
to information obtained from the program, BX 265 foam panels 
were cut to 1 ft2 and machined to desired heights. For the test data 
supplied to GRC, notched cylindrical voids were placed at the 
substrate of the panels. Note that the voids are introduced into 
foam panels and then foam panels with voids are bonded to a 
substrate. During testing foam surface is heated with using quartz 
lamp bank and radiator plate to match the highest heating rate 
experienced in the flange area during flight. Tests took place in 
vacuum chamber to match pressure profile during flight. Pressure 
inside the void and time to divot and mass of divot were recorded 
during test. Limited test data supplied to GRC are shown in  
table 2.1.  In the next few sections, the simulation of the divot as 
carried out by least squares, neural networks, and multi factor 
interaction model is described. Note that the divot weight 
measured after each test is listed in the last column to the right of 
the table. The lowest weight recorded for this set of data was 
0.00044 lb while the highest weight was 0.145 lb. The debris 
allowable set by the program’s Level II Review is 0.038 lb. 

 
 

Table 2.1 Divot Weights From Thermal Vacuum Test (Cylindrical Voids) 
Void diameter  

(in.) 
 

Void height  
(in.) 

Foam over void 
(in.) 

Foam surface 
temperature  

(F) 

Pressure inside 
void  
(psi) 

Time to fail 
(sec) 

Divot weight 
(lb) 

1.0 0.5 0.25 183.49 12 57 0.00044 
0.5 0.5 0.25 352.07 10 73 0.00022 
1.0 1.0 0.25 171.85 11 52 0.00044 
1.0 0.5 0.5 547.09 12 86 0.00132 
0.5 0.5 0.5 645.00 12 123 0.00044 
1.0 1.0 0.5 519.62 11 84 0.00154 
0.5 1.0 0.5 645.00 15 108 0.00044 
3.125 2.0 2.0 412.19 12.35 77 0.10318 
4.125 2.0 2.0 219.86 11.5 64 0.14506 

  1 in. = 2.54 cm; °F=(5/9)°C; psi=6.89 Pa; lb=0.455 kgm 
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2.2 Simulation of Divot Weight by Least Squares, and 
Linear and Quadratic Neural Networks  

The least squares model used to predict the foam divot weight 
(W) based on supplied thermal vacuum test data has the following 
explicit form:  

 

 1 2 3

4 5 6

-0.0435+0.0261X 0.0026X +0.028X
-0.00007X -0.00072X +0.00062X
W = +

 (2.1) 

 
where the variables X1 through X7 are basically the test 
variables that are listed in table 2.1 and they are: void diameter 
VD, void height VH, foam height above the void FH, foam 
surface temperature at time of divoting FST, pressure inside the 
void PR and time at divot t. The neural network linear basis 
function model has the following explicit form:  

 

 1 2 3

4 5 6

-0.0435+0.0261X 0.0026X +0.028X
-0.00007X -0.00072X +0.00062X
W = +

 (2.2) 

 
The neural network quadratic basic function has the following 
general form:  
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The total number of coefficients required to obtain a solution 

from equation (2.3) is 38. They are listed in table 2.2. The divot 
weight results obtained from the linear least squares, neural 
network linear and quadratic are summarized in figures 2.2 through 
2.8. Each figure contains plots of the divot weight as a function of 
the independent variable as obtained from: (a) least square, (b) 
linear neural networks, and (c) quadratic neural networks.  
Figure 2.2 shows the effect of increase in the void diameter on the 
divot weight. As the void diameter was perturbed, all the other 
independent variables were set to their respective means.  
Figure 2.2 indicates that the divot weight monotonically increases 
with the increase in the void diameter except for the LNLQ which 
decreases slightly. The largest variation in the divot weight was 
detected with the quadratic neural networks where the divot weight 
increased from near zero to 0.09 kg (0.223 lb). The solution 
calculated by the least squares showed relatively less variation as 
compared to nonlinear neural networks and the linear nonlinear 
neural networks. The results are consistent with the physical 
phenomenon of foam ejection. The divot weight increases at 
increased void diameter. However, the divot weight decreases as 
the void diameter increases as predicted by the NN quadratic. This 
effect may be attributed to insufficient data required by the 
quadratic NN fit. The results for the void height effect on the divot 
weight are presented in figure 2.3. The plots basically are used to 
show how one physical variable influence the divot weight when 
all other considered physical variables are set their respective 
mean. The least squares and linear neural network predicted  
 

 

 
Figure 2.2. Simulation of divot weight in a thermal vacuum test 

as a function of void diameter as obtained from least squares 
and neural network. (lb=0.455 kg). 

 
 
 

 
Figure 2.3. Simulation of divot weight in a thermal vacuum test 

as a function of void height as obtained from least squares 
and neural network. (lb=0.455 kg) 

 
 
comparable effects for the void height that is the divot weight 
would increase as the void height increased. With the quadratic 
neural networks, the divot weight would increase the greatest as 
the void height is increased. A review of the test data shows a large 
disparity in the divot weights since 7 out of 9 samples produced 
divot weights under 0.0006 kg (0.00154 lb) while the remaining 
two samples produced divot weights above 0.04 kg (0.1 lb).  

Table 2.2 Neural network coefficients beta (i,j) for quadratic basis function 
Beta 0 –7.673E–06      
Beta 1,1:1,6 1.055E–04 3.112E–05 4.802E–05 –1.466E–04 1.187E–04 6.738E–04 
Beta 2,2:2,6  7.017E–08 1.741E–05 3.013E–05 –6.359E–05 –6.935E–05 
Beta 3,3:3,6   1.979E–05 9.482E–05 8.368E–05 4.107E–04 
Beta 4,4:4,6    2.256E–06 7.692E–05 –3.606E–05 
Beta 5,5:5,6     –3.342E–04 –3.456E–04 
Beta 6,6      1.209E–04 

 



 4

The results obtained for the foam height above the void, foam 
surface temperature, pressure inside the void, and time to fail from 
least squares, linear neural networks, and quadratic neural 
networks are presented in figures 2.4 thru 2.7. The largest divot 
weight predicted by the least squares model was obtained when 
evaluating the effect of the foam height above the void on the divot 
0.09 kg (0.233 lb). The largest divot weight predicted by the 
nonlinear neural networks model was obtained when evaluating 
the effect of time to fail on the divot 0.03 kg (0.0702 lb). Similarly, 
the largest divot weight predicted by the linear nonlinear neural 
networks model was obtained when evaluating the effect of time to 
fail on the divot 0.21 kg (0.47 lb). Inconsistency in the presented 
results is due to the fact relatively few test data were available. 
Next, results from a multi factor interaction model obtained during 
the simulation of the same test data are presented. Figure 2.4 shows 
the inconsistencies between the three data-fit methods. The linear 
least squares and the linear NN are exactly the same. The non-
linear NN shows very different behavior. The NN quadratic only 
shows a very steep rise with foam height increase while the 
quadratic with linear term added shows a rather steep decrease 
with foam height increase. This is further evidence that non-linear 
NN requires a lot more data. Figure 2.3 shows that all methods 
decrease with foam surface temperature increase while the non-
linear NN shows a steepest decrease than the other three. Figure 
2.6 shows another slight inconsistency between the two non-linear 
NN’s. Figure 2.7 shows a very interesting behavior. The linear least 
square and the linear NN show a rather steep increase with time to 
fail. The two non-linear NN’s show a wide different non-linear 
behavior—initially a decrease bottoming out at about 60 to 70 sec 
and, then, a very steep increase to about 100 sec.  

The collective results of the four fitting methods indicate that 
the NN’s should only be used with a lots data for training. 

The neural network linear plus quadratic basis functions have 
the following general form: 

 

 

6 6 6
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 (2.4) 

 

The total number of coefficients required to obtain a solution 
from equation (2.4) is 28. They are listed in table 2.3. 

 

 
Figure 2.4. Simulation of divot weight in a thermal vacuum test as a 

function of foam height above void as obtained from least squares 
and neural network. (lb=0.455 kg) 

 
Figure 2.5. Simulation of divot weight in a thermal vacuum test as a 

function of foam surface temperature as obtained from least 
squares and neural network. (lb=0.455 kg) 

 

  
Figure 2.6. Simulation of divot weight in a thermal vacuum test as a 

function of pressure inside the void as obtained from least squares 
and neural network. (lb-0.455 kg) 

 

 
Figure 2.7. Simulation of divot weight in a thermal vacuum test as a 

function of time to fail as obtained from least squares and neural 
network. (lb=0.455 kg) 
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Table 2.3 Neural network coefficients beta (i,j) for linear plus quadratic basis functions 
beta 0 –5.069E–06      
beta 1: 6 7.689E–06 –6.941E–06 5.447E–06 –2.273E–04 –4.516E–05 –9.909E–05 
beta 1,1:1,6 8.424E–05 2.342E–05 3.763E–05 4.916E–05 9.246E–05 5.635E–04 
beta 2,2:2,6  –2.139E–06 1.292E–05 4.211E–05 –6.652E–05 –9.453E–05 
beta 3,3:3,6   1.476E–05 –1.699E–04 6.028E–05 2.887E–04 
beta 4,4:4,6    8.590E–08 8.756E–05 –1.357E–05 
beta 5,5:5,6     –3.142E–04 –3.192E–04 
beta 6,6      6.727E–05 

 
3.0 SIMULATION OF FOAM DIVOT IN A CRYO 
INGESTION TEST 

As mentioned in previous sections, LMSSC/MAF conducted 
many tests to determine a relationship between internal voids and 
debris size. The team responsible for this independent assessment 
at NASA GRC obtained data pertaining to a cryo ingestion test 
which is supposed to evaluate the effect of LN2 entrapped in the 
void interior. This report will not discuss the details of the test but 
will focus on the results obtained from computationally simulating 
the test. The test data obtained for the cryo ingestion test are listed 
in table 3.1. The geometry of the void shown in figure 3.1 is also 
used in this test. That means all the voids faced the substrate 
directly. The number of test variables is four and they are: void 
diameter, void height, and foam above the void. The divot weight 
for 15 test data points are also listed in table 3.1. In this case, the 
lowest divot weight was 0.009 kg (0.0019 lb) and the highest divot 
weight was 0.0811 lb. 

3.1 Simulation of Divot Weight by Least Squares, 
Quadratic and Linear With Quadratic Neural Networks  

As is in the case of the thermal vacuum test simulation, the 
four models derived from least squares, linear neural network, 
quadratic neural network and linear plus and quadratic neural 
network combined were applied to simulate the cryo ingestion test. 
The results from the simulation of divot weight as a function of 
void diameter as obtained from least squares model and neural 
network methods are presented in figure 3.1. The relationship 
between the divot weight and each of the void diameter, void 
height, and foam over void is shown in figures 3.1, 3.2 and 3.3, 
respectively. The least squares fit predicted that the void weight 
would increase with the increase in the void diameter and the foam 
height above the void. However, figure 3.2 shows that all methods 
decrease with void height—linearly with the linear fits and non-
linear with the non-linear fits. It is interesting to note that the non-
linear causes decrease steeply, bottom out, and then increase rather 
smoothly. Figures 3.1 through 3.3 also show the results from the 
linear plus quadratic neural network for the divot weight as a 
function of the void diameter, void height, and foam height above 
the void. There are some similarities between the results that are 
obtained from least squares and the ones obtained from quadratic 
neural network. The quadratic neural network solution is highly 
non-linear compared to the one from least squares. The least 
squares and quadratic neural network solutions seems to be more 
consistent with the physical characteristics of foam devoting. 
Naturally, if all other factors remain unchanged, it is likely that a 
thicker foam above the void would not be expelled as easily as the 
thinner one.  

One legitimate question is raised at this stage. How good are 
the models developed from each method? The answer to this 
question is provided in table 3.2. Each test data point (design 
vector) is plugged back into the models from the three methods. 
The differences between the test divot weights and the ones 

predicted by least squares, linear neural network and quadratic 
neural network are tabulated in table 3.2. The least difference 
between test divot weight and predicted divot weight is obtained 
from the quadratic neural network. The maximum error (difference 
between test and predicted divot weight) is about 0.0008 kg 
(0.0017 lb) for the quadratic plus linear neural network. Therefore, 
the use of the neural network quadratic plus linear form is highly 
recommended for simulating the test and determining an 
actual/accurate relationship between the physical variables and the 
divot weight. Tables 3.3 and 3.4 list the various coefficients used in 
the simulation of the divot weight using the quadratic and 
quadratic plus linear neural networks, respectively. 

 
Table 3.1 Divot weights from cryo ingestion test  

(cylindrical voids) 
Void diameter  

(in) 
Void depth  

(in) 
Foam over void  

(in) 
Test divot 

weight  
(lb) 

1.125 0.500 0.500 0.0019 
1.625 0.500 0.500 0.0034 
0.875 0.250 0.750 0.0039 
1.125 0.500 1.000 0.0081 
1.375 0.750 0.750 0.0051 
1.875 0.750 0.750 0.0055 
0.875 0.250 1.250 0.0072 
2.125 0.125 2.500 0.0811 
2.125 0.625 2.000 0.0470 
2.125 1.125 1.500 0.0272 
1.875 1.750 1.250 0.0172 
1.375 1.750 1.250 0.0220 
1.125 1.500 1.500 0.0182 
1.125 0.100 2.100 0.0240 
1.375 0.100 2.100 0.0301 

1 in. = 2.54 cm; lb=6.89 Pa; 1 lb = 0.455 kg 
 

 

 
Figure 3.1. Simulation of divot weight in cryo ingestion test as a 

function of void diameter as obtained from least squares and neural 
network. (lb=0.455 kg) 
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Figure 3.2. Simulation of divot weight in cryo ingestion test as a 

function of void height as obtained from least squares and neural 
network. (lb=0.455 kg) 

 
Figure 3.3. Simulation of divot weight in cryo ingestion test as a 

function of foam over void as obtained from least squares and 
neural network. (lb=0.455 kg) 

 
Table 3.2 Validation of least squares method and neural networks (linear, quadratic and  

linear plus quadratic) for the simulation of divot weights in cryo ingestion test 
 Least squares method Neural network  

linear basis function 
Neural network 

quadratic basis function 
Neural network 

linear + quadratic basis function 
Divot weight 

(lb) 
Validation 

data 
Error Validation  

data 
Error Validation  

data 
Error Validation  

data 
Error 

0.0019 –0.0049 0.0068 –0.0049 0.0068 0.0005 0.0014 0.0027 –0.0008 
0.0034 0.0037 –0.0003 0.0037 –0.0003 0.0032 0.0002 0.0019 0.0016 
0.0039 –0.0024 0.0063 –0.0024 0.0063 0.0045 –0.0006 0.0044 –0.0005 
0.0081 0.0072 0.0009 0.0072 0.0009 0.0078 0.0003 0.0067 0.0014 
0.0051 0.0046 0.0004 0.0046 0.0004 0.0040 0.0011 0.0051 0.0000 
0.0055 0.0133 –0.0078 0.0133 –0.0078 0.0071 –0.0016 0.0073 –0.0017 
0.0072 0.0097 –0.0025 0.0097 –0.0025 0.0078 –0.0006 0.0073 –0.0001 
0.0811 0.0619 0.0192 0.0619 0.0192 0.0794 0.0017 0.0806 0.0005 
0.0470 0.0482 –0.0012 0.0482 –0.0012 0.0488 –0.0018 0.0480 –0.0009 
0.0272 0.0345 –0.0073 0.0345 –0.0073 0.0251 0.0021 0.0256 0.0016 
0.0172 0.0222 –0.0050 0.0222 –0.0050 0.0181 –0.0009 0.0181 –0.0009 
0.0220 0.0135 0.0085 0.0135 0.0085 0.0218 0.0002 0.0209 0.0011 
0.0182 0.0160 0.0021 0.0160 0.0021 0.1812 0.0000 0.0190 –0.0009 
0.0239 0.0350 –0.0111 0.0350 –0.0111 0.0215 0.0024 0.0227 0.0012 
0.0301 0.0393 –0.0093 0.0393 –0.0093 0.0340 –0.0039 0.0316 –0.0016 

 lb=0.455 kg 
 

The least squares model and the linear neural network model 
used to predict the foam divot weight (W) based on supplied cryo-
ingestion test data depicted in Table 3.1 has the following explicit 
form: 

 

 1 2 3-0.0348+0.0173X 0.0032X +0.0241XW = −  (3.1) 
 
The quadratic neural network model used to predict the foam divot 
weight (W) based on supplied thermal vacuum test data depicted in 
table 3.1 has the following explicit form: 

 

 
3 3

1
3.855 03 ij i j

i j i
W E x x

= =

= − − + β∑ ∑  (3.2) 

 
The linear plus quadratic neural network combined model used to 
predict the foam divot weight (W) based on supplied thermal 
vacuum test data depicted in table 3.1 has the following explicit 
form: 

 

 
3 3 3

1 1
0.02016 i i ij i j

i i j i
W x x x

= = =

= + β + β∑ ∑ ∑  (3.3) 

 
 

Table 3.3. Quadratic neural network coefficients and explicit model 
(cylindrical voids—cryo ingestion test) 

beta 0 –3.855E–03   
beta 1,1:1,3 2.496E–03 –2.448E–02 2.196E–02 
beta 2,2:2,3  1.810E–02 –1.787E–03 
beta 3,3   –6.065E–03 

 
 

Table 3.4. Linear plus quadratic neural network coefficients and 
explicit model (cylindrical voids—cryo ingestion test) 

beta 0 2.016E–02   
beta 1: 3 –3.435E–02 2.296E–02 –1.215E–02 
beta 1,1:1,3 1.189E–02 –2.005E–02 2.012E–02 
beta 2,2:2,3  1.035E–02 –8.962E–03 
beta 3,3   1.340E–03 
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4.0 CONCLUSIONS 
This work demonstrated the availability of specialized 

computational methods capable of simulating the foam divot 
weight as performed under several test programs. The relationship 
between defect size and divot weight is determined by applying the 
three models to the test results. Based on the performed evaluation, 
the following conclusions are drawn: 
 
1)  The foam divot weight could be expressed as a function of 

the void physical dimensions such as the void diameter and 
the void height, though the void height was relatively 
insensitive in the simulation with respect to other variables 
such as foam thickness and foam height above the void.  

  

 
2)  Among the various methods used in the simulation of divot 

weight in various tests, the QNN seem to perform the best. 
The difference between predicted and test divot weights 
was the least with QNN. 

3) The least square and linear neural network produce similar 
results as expected.  

4)  Sufficient amount of test data must to be available to make 
the use of neural networks more effective.  

5)  Confidence in the developed computational models is 
improved by arbitrarily using a portion of the test data to 
develop the model while using the remaining data for 
verification/ validation.  
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