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Abstract 

 

An analytic approach is developed to predict the shape and displacement with voltage 

in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical 

lamination theory and Von Karman non-linear analysis. In the case of classical 

lamination theory exact analytic solutions are found. It is shown that classical lamination 

theory is insufficient to describe the physical situation for large actuators but is sufficient 

for very small actuators. Numerical results are presented for the non-linear analysis and 

compared with experimental measurements. Snap-through behavior, bifurcation, and 

stability are presented and discussed. 

 

Introduction 

 

Thunder actuators are devices constructed from an isotropic laminate of aluminum, 

LaRC SI adhesive, piezo-electric PZT, and a metal backing of either steel or brass. The 

LaRC adhesive is a 1 mil thick solid thermoplastic and the aluminum layer is indented to 

provide electrical conductivity after the actuator is cured at 250 deg C. After the curing 

process they form a bow shape after reaching room temperature. If simply supported or 

arranged in a clamshell arrangement they produce a linear motion when an external 

voltage is applied. 

 

A simple method for controlling the manufacturing process and predicting the 

actuation amplitude has long been sought for Thunder actuators. A first attempt to do this 

by an analytic method was completed by BBN [9]. However, this theory treated the 

problem in 1 dimension with no adhesive layer (a three layer model) and it wasn't clear if 

this was sufficient to describe the behavior. In particular, there are many variables to be 

considered. To make assumptions regarding the shape of the device can be misleading. 

Quite different shapes are possible depending on the geometry and the material 

properties. The other behavior missing from the BBN model is the snap-through 

behavior. These devices have two natural bending modes - one in the x and one in the y. 

In reality, this behavior is a strong function of size. Below some critical size the shape is 

a perfect dome with equal curvatures but above this critical size the curvatures become 

unequal. 
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One approach to this problem is to use classical lamination theory. This is a very old 

subject based on the theory of composite laminates. With laminates, temperature effects 

are very important. As a result a very rich theory has been developed to minimize these 

temperature effects. Although the theory is sufficient to find an optimal lay-up to 

minimize temperature effects, it is quite deficient in predicting the actual shape in all 

cases. The reason for this is because it is a linear approximation to a problem that is 

essentially non-linear. As a result, a non-linear correction to the theory is needed to 

describe large actuators. 

 

The type of correction used here is one that is valid for large displacement and small 

strain. This correction is usually attributed to Von Karman [2] in plate theory. Hyer [3] 

has applied this to his treatment of orthotropic laminates with good success. He uses this 

in combination with a simple Raleigh-Ritz energy method to obtain solutions exhibiting 

the snap-through behavior. To apply his theory here, however, it must be reformulated for 

isotropic laminates, which is a completely separate (and unrelated) case. In particular, the 

qualitative behavior of orthotropic laminates and isotropic laminates are quite different. 

Orthotropic laminates produce saddle shapes that approach cylinders when the laminate 

is large. Isotropic laminates produce domes that approach cylinders when the laminate is 

large. They are both subsets of the anisotropic case but not subsets of each other. This 

behavior is well demonstrated with this theory. 

 

Solution by Classical Lamination Theory 

 

Derivation of equations 

 

Classical lamination theory [1] assumes strains are small, and amplitudes are shallow. 

In addition, it assumes both shearing and extensional strains perpendicular to the surface 

are zero. These assumptions follow the Kirchhoff-Love hypothesis for shells. 

 

Under deformation the thin plate is described by three variables - u, v and w, where u 

is the displacement in x direction, v in the y and w is the height of the plate in the z 

direction. The variables u, v and w are themselves functions of x, y and z. It is assumed u 

and v follow the relation 

 

   u = u
0
– z

! w
0

! x
,

v = v
0
– z

! w0

! y
,

(1)

 

 

 

where the 0 subscript denotes the quantity is measured about the middle surface. The 

strains are given by [2] 
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" x
+ " u

" x

2

+ " v
" x

2

+ " w
" x

2

– 1 # " u
" x

,

! y = 1 + 2 " v
" y

+ " u
" y

2

+ " v
" y

2

+ "w
" y

2

– 1 # " v
" y

,

$ xy = sin
– 1

" u
" y

+ " v
" x

+ " u
" x

" u
" y

+ " v
" x

" v
" y

+ " w
" x

" w
" y

1 + !x 1 + ! y

#
" u
" y

+
" v
" x

(2)

 
 

 

The results of Equation 1 and Equation 2 imply 

 

 

   
! x =

" u
0

" x
–z

"2 w
0

" x2
,

! y =
" v

0

" y
–z

"2 w
0

" y2
,

# xy =
" u

0

" y
+
" v

0

" x
– 2 z

" 2 w
0

" x"y
.

(3)

 
 

 

The above implies the relationship 

 

   !x

!y

" xy

=

!x
0

!y
0

" xy
0

+ z

# x

# y

# xy

, (4)

 
 

where !x, !y, and !xy are the x, y and twist curvatures. The middle surface strains and 

curvatures are given by, 
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!x
0

!x
0

" xy
0

=

# u0

# x

# v0

# y

# u0

# y
+
# v0

# x

,

$ x
0

$ x
0

$ xy
0

= –

#
2
w0

# x2

#2 w0

# y2

#
2
w0

# x#y

.

(5)

 
 

The relationship between stress and strain is given by 

 

     !x

!y

"xy

= Q

# x

# y

$ xy

, (6)

 
 

where Q is the reduced stiffness and  Q  is the transformed reduced stiffness. For isotropic 

media, 

 

    

Q = Q =

Q1 1 Q1 2 Q1 6

Q1 2 Q2 2 Q1 6

Q1 6 Q2 6 Q2 6

=

Y
1 – !2

! Y
1 – !2

0

! Y
1 – !2

Y
1 – !2

0

0 0 Y

2 1 + !

, (7)

 
 

where Y is Young's modulus and " is Poisson's ratio. To find the force and moments we 

first find the stresses for the k'th layer by, 

 

    
!x

!y

"xy
k

= Q
k

# x
0

# y
0

$ xy
0

+ z

% x

% y

% xy

. (8)

 
 

Now we use the relationship 
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Nx

0

Ny

0

Nxy

0

=

! x

! y

"xy

dz,

– h / 2

h / 2

Mx

0

My

0

Mxy

0

=

! x

! y

"xy

z dz,

– h / 2

h / 2

(9)

 
 

 

where h is the thickness. By Equation 9 and 8 we find, 

 

 

    Nx

Ny

Nxy

= A

! x
0

! y
0

" xy
0

+ B

# x

# y

# xy

,

Mx

My

Mxy

= B

!x
0

!y
0

" xy
0

+ D

# x

# y

# xy

,

(10)

 
 

where A, B, and D are the extensional, coupling and bending stiffness matrices and are 

given by, 

 

   
Aij = Qij k

zk – zk – 1!
k = 1

N

,

Bij = 1
2

Qij k
zk

2 – zk – 1
2!

k = 1

N

,

Dij =
1
3

Qij k
zk

3 – zk – 1
3!

k = 1

N

,

(11)

 
 

where the z's are measured with respect to z=0 (at a point half way through the 

thickness). Since each layer is isotropic the symmetry of the stiffness matrices will be the 

same as the reduced stiffness matrix. Moreover, since in this case the layers are not 

symmetric about z=0 the coupling stiffness will be non-zero so that, 
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A=

A
1

A
2

0

A2 A1 0

0 0 A
3

,

B =

B
1

B
2

0

B
2

B
1

0

0 0 B
3

,

D=

D
1

D
2

0

D
2

D
1

0

0 0 D
3

(12)

 
 

We now have everything we need to find the thermal and actuation loading so we 

may solve the problem. 

 

Thermal Loading 

 

The thermal loading takes two forms. The first is extensional and the second is 

bending. The problem is greatly simplified since we have only isotropic layers with equal 

thermal strains in each direction. The thermal loading may be calculated by, 

 

     Nx

T

Ny

T

Nxy
T

= Q
!
!
0
"T dz

– h / 2

h / 2

#

NT

N
T

0

,

Mx

T

My

T

Mxy

T

= Q
!
!
0
"T z dz

– h / 2

h / 2

#

MT

MT

0

,

(13)

 
 

where, 

 

   
NT = !T "k Q

1
+ Q

2 k
zk – zk – 1

,#
k = 1

N

MT = !T
2

"k Q
1
+ Q

2 k
zk

2 – zk – 1
2 .#

k = 1

N

(14)

 
 

 

 

Actuation Loading 

 

By analogy with thermal loading, 
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     Nx

A

Ny

A

Nxy
A

= Q

d3 1

d3 1

0

V
t dz

– h / 2

h / 2

!

NA

N
A

0
.

Mx

A

My

A

Mxy

A

= Q
d3 1

d3 1

0

V
t

z dz

– h / 2

h / 2

!

M A

M A

0

,

(15)

 
 

where t is the thickness of the PZT, V is the applied voltage, d31 is the actuation constant 

in a plane perpendicular to the poling axis and, 

 

  NA = d3 1 Q1 + Q2 3
V ,

M A = d3 1 Q1 + Q2 3
z3 + z2 V .

(16)

 
 

Here it is assumed we only have actuation on the third layer. 

 

Thermal and Actuation Displacement 

 

To find the resulting strains and curvatures in terms of the actuation loading we first 

add both the thermal and actuation sources as 

 

   Nx

'

Ny

'

Nxy
'

!

NA + NT

N
A
+ N

T

0

=

N'

N
'

0

,

Mx

'

My

'

Mxy

'

!

M A + MT

M A + MT

0

=

M '

M '

0

.

(17)

 
 

Now we use the results of Equation 10 so that 
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N'
N'
0
M'
M'
0

= A B

B D

! x
0

! y
0

" xy
0

# x

# y

# xy

. (18)

 
 

Inversion of the above gives 

 

     !x
0

!y
0

" xy
0

# x

# y

# xy

= A B

B D

– 1

N'
N'
0
M '
M '
0

. (19)

 
 

By using the results of 12 and inverting the 6x6 matrix we find, 

 

   
! x

0 " !y
0 =

D
1

+ D
2

N' – B
1
+ B

2
M'

A
1
+ A

2
D

1
+ D

2
– B

1
+ B

2

2
,

# x " # y =
A

1
+ A

2
M' – B

1
+ B

2
N'

A1 + A2 D1 + D2 – B1 + B2

2
,

$ xy = # xy = 0.

(20)

 
 

So we have thus found the curvature in terms of known quantities. The shape is that 

of a dome. The simplicity of the relationship comes about because the layers are 

isotropic. The solution is valid for small actuators such as the round ones used for pumps 

and speakers. 

 

Solution by the Von Karman Non-Linear Approximation 

 

The Von Karman approximation assumes large displacement and small strain. This 

suggests including second order terms in w in addition to the linear terms for u, v and w. 

Expanding Equation 2 to include these terms give, 
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! x"

# u
# x

+ 1
2

# w
# x

2

,

! y"
# v
# y

+ 1
2

# w
# y

2

,

$ xy "
# u
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+ # w
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#w
# y
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(21)

 
 

This combined with the results of Equation 1 give, 

 

 

   
! x =

" u0

" x
+ 1

2

" w0

" x

2

– z
" 2 w0

" x2
,

! y =
" v

0

" y
+ 1

2

" w
0

" y

2

– z
"2 w

0

" y2
,

# xy =
" u

0

" y
+
" v

0

" x
+
" w

0

" x

" w
0

" y
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"2 w
0

" x "y
.

(22)

 
 

The total energy takes the form, 

 

  
U = dU

0
– d W

T
– d W

A
, (23)

 
 

where dU1 is the stored elastic energy volume density and dWT and dWA are the 

temperature and actuation contributions. The elastic energy portion of it for the k'th layer 

is, 

 

   dU
0 k

= 1
2
! x "x + ! y " y + #xy $ y

k

,

= 1
2

Q
1
" x

2 + Q
2
"x "y + 1

2
Q

1
" y

2 + 1
2

Q
3
$ xy

2

k

.

(24)

 
 

For the thermal portion we have, 

 

   dWT k
= ! x

T "x + ! y
T "y

k
,

= Q1 + Q2 # $T "x + Q1 + Q2 # $T "y

k

.

(25)
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For the actuation portion we have 

 

   dWA 3
= !x

A "x + ! y
A " y

3
,

= Q1 + Q2
3

d3 1
V
t
"x + Q1 + Q2

3
d3 1

V
t
"y.

(26)

 
 

Now that we have the general form for the energy integral we may try a Raleigh-Ritz 

type solution. The method involves making a guess for the solution. This guess should 

look qualitatively like the expected solution yet be flexible enough to allow for 

adjustment. This adjustment comes in the form of changing the guess based on a finite 

number of parameters that the guess contains. The parameters are adjusted in such a way 

as to minimize the total energy of the system. In this situation it would be advantageous 

to choose a guess that is close enough to the classical lamination result that in the linear 

limit (small scaling) the solution approaches the classical lamination result. Such a guess 

takes the form 

 

  w0 = 1
2

a x2 + b y2 . (27)
 

 

Classical lamination theory assumes no shearing strain between layers for thermal 

expansion. If we make the same assumptions here we find u0 and v0 must take the form, 

 

  u0 = c x – 1
6

a2x3 – 1
4

a b x y2,

v0 = d y – 1
6

a2 y3 – 1
4

a b x2 y.

(28)

 
 

The ansatz represented by Equation 27 and 28 has been used successfully by Hyer [3] 

in his treatment of orthotropic laminates. It is sufficiently flexible enough to be used with 

isotropic laminates as well as we will soon see. Equations 22, 27 and 28 give, 

 

   ! x = c – 1
4

a b y2 – a z,

! y = d – 1
4

a b x2 – b z,

" xy = 0.

(29)

 
 

All that is needed now is to use Equation 23 with Equations 24, 25 and 26 and 29 to 

find the total energy. The solution is obtained by minimizing the total energy with respect 

to a, b, c and d. The result of the minimization is 
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  D1 a + K8 b – B1 c – B2 d + K1 b
2 + K6 a b – K4 b c – K3 b d +

K7 a b
2 + M ' = 0,

K8 a + D1 b – B2 c – B1 d + K2 a2 + K5 a b – K4 a c – K3 a d +

K7 a2 b + M ' = 0,

– B1 a – B2 b + A1 c + A2 d – K4 a b – N' = 0,

– B2 a – B1 b + A2 c + A1 d – K3 a b – N' = 0,

(30)

 
 

where, 

 

  K1 = 1
48

B1 Lx

2 + B2 Ly

2

K2 = 1
48

B2 Lx

2 +B1 L x

2

K3 = 1
48

A1 Lx

2 + A2 Ly

2 ,

K4 = 1
48

A2 Lx

2 + A1 Ly

2 ,

K5 = 1
24

B1 Lx

2 + B2 Ly

2 ,

K6 = 1
24

B2 Lx

2 + B1 Ly

2 ,

K7 =
A2 L x

2 Ly

2

1152
+

A1 L x

4 +Ly

4

1280
,

K8 = D2 + N'
48

Lx

2 + Ly

2 .

(31)

 
 

The A's, B's and D's have the same meaning as before and N' is the same as well. The 

lengths Lx and Ly are the length and width of the actuator. It is a simple matter to show 

that the solution in the linear limit (small scaling - Lx=Ly=0) that the solution to these 

equations matches the classical lamination result if we take a=-!x, b=-!y, c=#x and d=#y. 

The non-linear equations are coupled and third order so it is unlikely that an exact 

analytic solution exists. It may be possible to find close approximate solutions to them, 

however. In any event they may be solved numerically with no difficulty.  
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Unlike the classical lamination result the non-linear analysis predicts unequal 

curvatures that depend on the magnitude of the scaling and the aspect ratio. It also 

predicts multiple possible solutions. The nature of these solutions are dome-like solutions 

which approach cylinders in the limit of large scaling. 

 

As a comparison for a particular case we compute a simple example. For this case 1 

mil aluminum, 1 mil LaRC Si, 5 mil PZT and 2 mil stainless was chosen.  

 

 The non-linear analysis predicts a total of 5 possible solutions. Out of the five, 3 are 

non-physical so we are left with two real solutions. The snap-through behavior is clearly 

exhibited in this case. As a comparison this is compared with classical lamination theory. 

The behavior is quite different in this case. It should be noted that the non-linear theory 

may admit very different solutions depending on the geometry, aspect ratio, etc. 
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Figure 1.  Non-linear Solution #1 
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Figure 2.  Non-linear Solution #2 

 

Stability 

 

The stability of each solution is determined by whether or not the solutions are 

maxima or minima. If a particular solution represents a minimum then it is stable. If it is 

a maximum, it is unstable. The total energy of the system may be viewed as a function of 

several variables. As such, once an extremum is found, the test whether it represents 

minima is determined by whether the determinant of F is positive definite where 

 

   Det[F] > 0,

Fi j=
!2U

! xi ! x j

.

(32)

 
 

Fortunately  !U/  ! xi is represented by the left hand side of Equation 30 (to within a 

multiplicative factor) so all we have to do are the xj differentiations to find the matrix 

elements. 

 

Bifurcation 

 

As stated earlier, The solution may take on different shapes depending on the scaling. 

To demonstrate this, numerical results were completed for a square piece having the same 

material properties as before except we vary the size from x=0 to x=2 in. For a small 

piece the shape is a dome as predicted by classical lamination theory. At some critical 

size the shape turns suddenly into a dome with unequal curvatures. In the limit of large 

scaling it becomes a cylinder. Figure 3 is a plot of both the x and y curvatures. In this 

case the critical size is at approximately 1 inch square. This is quite different from the 

results of Hyer[3], who found saddle solutions. However, this is easily explained by the 
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fact that his work was with orthotropic laminates as opposed to isotropic laminates. In the 

case of orthotropic laminates even classical lamination theory predicts a saddle. 
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Figure 3.  Bifurcation plot of x and y curvature as a function 

of size for a square actuator. Stable solutions only. 

 

 

Preliminary calculations seem to indicate the currently manufactured devices are 

close enough to the bifurcation point for these effects to be important. 

 

Experimental Results 

 

As an example we compare the model with known measured data, (assumed) material 

properties, and thicknesses. A table of these samples is shown below.  

 

 

    Sample 1 (2"x1"). 

 

  Material Thickness  Y (GPa) CTE(10-6/deg C) 

Layer 1 Aluminum .001"   73   22 

Layer 2 LaRC Si .001"(irregular) 4   46 

Layer 3 PZT 5a  .01"   63  1 

Layer 4 LaRC Si .001"(irregular) 4   46 

Layer 5 stainless steel .005"   200   16 

 

 

    Sample 2 (2"x1"). 

 

  Material Thickness  Y (GPa) CTE(10-6/deg C) 

Layer 1 Aluminum .001"   73   22 

Layer 2 LaRC Si .001"(irregular) 4   46 
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Layer 3 PZT 5a  .01"   63  1 

Layer 4 LaRC Si .001"(irregular) 4   46 

Layer 5 stainless steel .003"   200   16 

 

    Sample 3 (2"x1"). 

 

  Material Thickness  Y (GPa) CTE(10-6/deg C) 

Layer 1 Aluminum .001"   73   22 

Layer 2 LaRC Si .001"(irregular) 4   46 

Layer 3 PZT 5a  .01"   63  1 

Layer 4 LaRC Si .001"(irregular) 4   46 

Layer 5 stainless steel .001"   200   16 

 

    Sample 4 (3"x1.75"). 

 

  Material Thickness  Y (GPa) CTE(10-6/deg C) 

Layer 1 Aluminum .001"   73   22 

Layer 2 LaRC Si .001"(irregular) 4   46 

Layer 3 PZT 5a  .0078"   63  1 

Layer 4 LaRC Si .001"(irregular) 4   46 

Layer 5 1020 steel .005"   200   16 

 

    Sample 5 (3"x1.75"). 

 

  Material Thickness  Y (GPa) CTE(10-6/deg C) 

Layer 1 Aluminum .001"   73   22 

Layer 2 LaRC Si .001"(irregular) 4   46 

Layer 3 PZT 5a  .0078"   63  1 

Layer 4 LaRC Si .001"(irregular) 4   46 

Layer 5 1020 steel .003"   200   16 

 

 

    Sample 6 (3"x1.75"). 

 

  Material Thickness  Y (GPa) CTE(10-6/deg C) 

Layer 1 Aluminum .001"   73   22 

Layer 2 LaRC Si .001"(irregular) 4   46 

Layer 3 PZT 5a  .0078"   63  1 

Layer 4 LaRC Si .001"(irregular) 4   46 

Layer 5 1020 steel .001"   200   16 

 

We compare the measured dome height with the predicted values. The first 3 samples 

were taken from the BBN report and the last 3 were measured at LaRC. The setting 

temperature of LaRC SI was assumed to be 250 deg C for the calculation. 
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Table 1.  Measured vs. Predicted dome heights 

 

Sample 1 2 3 4 5 6 

Measured .114" .126" .193" .198" .281" .466" 

Predicted .116" .103" .029" .29" .282" .113 

Sol. Type cylinder cylinder dome cylinder cylinder cylinder 

BBN pred. .098" .095" .047" * * * 

 

The results of Table [1] show that the model is fairly accurate except when the base 

layer has a small thickness. This would suggest the adhesive layer irregularities have an 

effect on the solution. In the case of the smaller BBN 1 mil sample a transition from 

cylinder to dome was predicted. This would suggest the solution is close to the 

bifurcation point. Since any small error near the bifurcation point produces huge 

differences in the curvatures, this could be another explanation for the discrepancy for a 

small base layer. A third explanation could be the second order non-linear correction may 

not be enough to accurately describe the real physical shape in all cases. It is interesting 

the BBN model predicts the same trend. The reasons for this are not clear since they do 

not consider the adhesive layer at all. 

 

 

Conclusions 

 

More work needs to be done to accurately describe the problem to take into account 

irregularities in the adhesive layers. These irregularities are currently part of the 

manufacturing process and are currently needed to provide electrical conductivity for the 

device. At least in the case of the top layer it may be possible to treat the 

aluminum/adhesive combination as a single layer with special material properties of it's 

own . In the case of the steel/adhesive boundary, detailed measurements need to be taken 

to see if there is some trend in the irregularities. If there is it may be possible to model it. 

In any event, the model appears to be very accurate as it is for a base layer of 3 mils and 

above. 

 

This model shows some very interesting behavior and is a giant leap forward in 

demonstrating the snap-through behavior. It also gives insight into how the devices 

should be manufactured. It shows that in some cases perfect domes are possible and that 

one should construct the devices as far from the bifurcation point as possible so that the 

device is in the cylinder range. 

 

Numerical work needs to be done to show the voltage effects in Equation 16. In 

addition, external loading effects need to be taken into account. This is a very 

straightforward problem using the energy approach and would result in a slight variation 

of the Equation 30. Several variations of this are possible. The first would be to find the 

change in amplitude with voltage as a function of load. Another more interesting case 

would be to constrain the amplitude and allow the load to vary. This would result in an 

equation for blocked force as a function of constrained distance. 
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