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Abstract 

 

An analytic approach is developed to predict the performance of LaRC Thunder 

actuators under load and under blocked conditions. The problem is treated with the Von 

Karman non-linear analysis combined with a simple Raleigh-Ritz calculation. From this, 

shape and displacement under load combined with voltage are calculated. A method is 

found to calculate the blocked force vs voltage and spring force vs distance. It is found 

that under certain conditions, the blocked force and displacement is almost linear with 

voltage. It is also found that the spring force is multivalued and has at least one 

bifurcation point. This bifurcation point is where the device collapses under load and 

locks to a different bending solution. This occurs at a particular critical load. It is shown 

this other bending solution has a reduced amplitude and is proportional to the original 

amplitude times the square of the aspect ratio. 

 

Introduction 

 

Thunder actuators are devices constructed from an isotropic laminate of aluminum, 

LaRC SI adhesive, piezo-electric PZT, and a metal backing of either steel or brass. The 

LaRC adhesive is solid thermoplastic and the aluminum layer is indented to provide 

electrical conductivity after the actuator is cured at 250 deg C. After the curing process 

they form a bow shape after reaching room temperature. If simply supported or arranged 

in a clamshell arrangement they produce a linear motion when an external voltage is 

applied. 

 

A simple method for predicting the performance of these devices has long been 

sought. As of the time of this writing (2/98), a method for predicting the performance of 

these devices under loading or blocked conditions has never been attempted. One method 

that is widely used to measure blocked force is to place a mass on top and measure the 

displacement under load. This is not true blocked force, however. Blocked force is the 

change in force when constrained not to move. In particular, displacement under load is 

not the same as the change in force when constrained not to move. Because of the 

peculiar non-linear properties of the device, it is easy to be lulled into thinking one is the 

other when, in fact, they are different things. 
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If the device were perfectly linear, the delta amplitude with voltage would be 

completely independent of load in the static limit. This is easy to see by taking a linear 

spring and applying a static external force to find the change in amplitude due to that 

external force under different loading conditions. A non-linear device, on the other hand, 

is quite different and does depend on load. In this case there is actually some critical load 

where the device switches from one bending solution to another at a far reduced 

amplitude. The current blocked force procedure is to apply enough load until the 

amplitude is small. This procedure results in a gross overestimate for the blocked force 

because it depends more on the structural properties of the device than the true actuation 

force. In fact, the true blocking force has never been measured for these devices.  

 

The correct method to measure blocked force is to constrain the device such that the 

bottom is constrained to move in one plane but fixed to that plane and the top is 

connected to a load cell. In that situation the force will be F=F(x,V). This will be a 

combination of the spring force plus the actuation force. In a particular limit this may be 

approximated by F(x,V)=-k (x-x0)+! V. Of course, this neglects hysteresis effects.  

 

The incorrect method is to place a mass on top and measure the delta amplitude with 

respect to voltage. This method represents more what it can support structurally. It is a 

common method with these devices to place a mass on top, then apply a low frequency 

sinusoid and measure the delta amplitude. This is usually interpreted as the actuation 

force being the same as the weight of the mass. In reality, this is anything but the case.  

 

One approach to this problem is to use classical lamination theory[1]. However, this 

leads to an incorrect qualitative behavior [3]. As a result, a non-linear approach must be 

used. The type of correction used here is one that is valid for large displacement and 

small strain. This correction is usually attributed to Von Karman [2] in plate theory. Hyer 

[4] has applied this to his treatment of orthotropic laminates with good success. Campbell 

[3] extended this to Thunder actuators by treating each layer as isotropic and including 

voltage terms.  

 

Solution by the Von Karman Non-Linear Approximation 

 

The Von Karman approximation assumes large displacement and small strain. This 

suggests including second order terms in w in addition to the linear terms for u, v and w. 

Expressing the strain to include these terms gives, 

 

   
! x"

# u
# x

+ 1
2

# w
# x

2

,

! y"
# v
# y

+ 1
2

# w
# y

2

,

$ xy "
# u
# y

+ # v
# x

+ # w
# x

#w
# y

(1)
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By using the relation, 

 

   u = u
0
– z

! w
0

! x
,

v = v
0
– z

! w0

! y
,

(2)

 
 

we find, 
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" x
+ 1

2
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" x

2

– z
" 2 w0

" x2
,

! y =
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0

" y
+ 1

2

" w
0

" y

2

– z
"2 w

0

" y2
,
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0

" y
+
" v

0

" x
+
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0

" x

" w
0

" y
– 2 z

"2 w
0

" x "y

(3)

 
 

The total energy takes the form, 

 

  
U = dU

0
– d WT – d WA – w p x, y dx dy, (4)

 
 

where dU1 is the stored elastic energy volume density and dWT and dWA are the 

temperature and actuation contributions. The last integral is the work done against the 

external pressure, p. The elastic energy portion of it for the k'th layer is, 

 

   dU0 k
= 1

2
! x "x + ! y " y + #xy $ y

k

= 1
2

Q1 " x
2 + Q2 "x "y + 1

2
Q1 " y

2 + 1
2

Q3 $ xy
2

k

(5)

 
 

For the thermal portion we have, 

 

   dWT k
= ! x

T "x + ! y
T "y

k

= Q1 + Q2 # $T "x + Q1 + Q2 # $T "y

k

(6)

 
 

For the actuation portion we have, 
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   dWA 3
= !x

A "x + ! y
A " y

j

= Q
1
+ Q

2
j
d

3 1
V
t
"x + Q

1
+ Q

2
j
d

3 1
V
t
"y

(7)

 
 

Actuation is assumed to occur on the j'th layer and Q is the reduced stiffness with 

Q11=Q22=Q1 and Q12=Q21=Q2. Now that we have the general form for the energy 

integral we may try a Raleigh-Ritz type solution. The method involves making a guess 

for the solution. This guess should look qualitatively like the expected solution yet be 

flexible enough to allow for adjustment. This adjustment comes in the form of changing 

the guess based on a finite number of parameters which the guess contains. The 

parameters are adjusted in such a way as to minimize the total energy of the system. In 

this situation it would be advantageous to choose a guess that is close enough to the 

classical lamination  result that in the linear limit (small scaling) the solution approaches 

the classical lamination result. Such a guess takes the form, 

 

  w0 = w
0
0 + 1

2
a x2 + b y2 (8)

 
 

Classical lamination theory assumes no shearing strain between layers for thermal 

expansion. If we make the same assumptions here we find u0 and v0 must take the form, 

 

  u0 = c x – 1
6

a2x3 – 1
4

a b x y2

v0 = d y – 1
6

b2 y3 – 1
4

a b x2 y

(9)

 
 

The ansatz represented by Equation 27 and 28 has been used successfully by Hyer [3] 

in his treatment of orthotropic laminates and by Campbell [3] with Thunder actuators. It 

is sufficiently flexible enough to be used with isotropic laminates as well as we will soon 

see. Equations 3, 8 and 9 give, 

 

   ! x = c – 1
4

a b y2 – a z

! y = d – 1
4

a b x2 – b z

! xy = 0

(10)

 
 

If the length in the x direction is Lx and the length in the y is Ly then, we may 

approximate w0
0 by, 
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  w
0
0 = – 1

8
a Lx

2 + b Ly

2 (11)
 

 

 

 This assumes the device is simply supported. For p(x,y) we choose a point load of,  

 

   p x, y = F ! x ! y (12)
 

 

Other choices are possible such as a constant distributed pressure. However, a point 

load is closest to the type of load used with the rectangular devices. The solution is 

obtained by minimizing the total energy with respect to a, b, c and d. The result of the 

minimization is, 

 

  D1 a + K8 b – B1 c – B2 d + K1 b2 + K6 a b – K4 b c – K3 b d +

K7 a b2 + M ' – 1
8

Lx

Ly

F= 0

K8 a + D1 b – B2 c – B1 d + K2 a2 + K5 a b – K4 a c – K3 a d +

K7 a2 b + M ' – 1
8

Ly

Lx

F = 0

– B1 a – B2 b + A1 c + A2 d – K4 a b – N' = 0

– B2 a – B1 b + A2 c + A1 d – K3 a b – N' = 0,

(13)

 
 

where, 
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  K1 = 1
48

B1 Lx

2 + B2 Ly

2

K2 = 1
48

B2 Lx

2 +B1 L x

2

K3 = 1
48

A1 Lx

2 + A2 Ly

2

K4 = 1
48

A2 Lx

2 + A1 Ly

2

K5 = 1
24

B1 Lx

2 + B2 Ly

2

K6 = 1
24

B2 Lx

2 + B1 Ly

2
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A2 L x

2 Ly

2

1152
+

A1 L x

4 +Ly

4

1280

K8 = D2 + N'
48

Lx

2 + Ly

2

(14)

 
 

 

 

The A's, B's and D's have the usual meanings of extensional, coupling and bending 

stiffness.  The force and moment per unit width, N' and M', are given by, 

 

   Nx

'

Ny

'

Nxy
'

!

NA + NT

N
A
+ N

T

0
=

N'

N
'

0

Mx

'

My

'

Mxy

'

!

M A + MT

M A + MT

0

=

M '

M '

0

(15)

 
 

where, 

 

  NA = – d3 1 Q1 + Q2 j
V

M A = – 1
2

d3 1 Q1 + Q2
j

z3 + z2 V

(16)
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and, 

 

   
NT = !T "k Q

1
+ Q

2 k
zk – zk – 1#

k = 1

N

MT = !T
2

"k Q
1
+ Q

2 k
zk

2 – zk – 1
2#

k = 1

N

(17)

 
 

The z's are measured with respect to the middle surface and z0 is the top surface. The 

lengths Lx and Ly are the length and width of the actuator. It is a simple matter to show 

that the solution in the linear limit (small scaling - Lx=Ly=0) matches the classical 

lamination result if we take a=-"x, b=-"y, c=#x and d=#y and F=0.  

 

Unlike the classical lamination result, the non-linear analysis predicts unequal 

curvatures that depend on the magnitude of the scaling and the aspect ratio. It also 

predicts multiple possible solutions. The nature of these solutions are dome-like solutions 

which approach cylinders in the limit of large scaling. Under load, saddles are also 

possible. Typically, there will be one or two stable solutions and possibly a third unstable 

solution depending on the size and material properties. There are also unphysical 

solutions in terms of complex numbers.  

 

As a simple example we take 3 layer actuator constructed from 1 mil brass, 1 mil 

LaRC Si thermoplastic and 6.8 mil PZT 5A. By solving Equation 13 with V=0 and 

plotting F as a function of dome height we find the spring force for the actuator. The 

results of this calculation show the spring force is multivalued. When initially in the short 

axis mode, the actuator may be depressed until a critical load is reached. At this point, the 

actuator switches and locks to the long axis solution. This has been verified 

experimentally and is a general characteristic of all Thunder actuators that have unequal x 

and y curvatures. When the x and y curvatures are strongly unequal, the spring force is 

almost linear except for the bifurcation point. 
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Figure 1.  Calculation of spring force for a 3 layer actuator. 

 

Blocked force as a function of voltage may be calculated by constraining the distance 

by Equation 11. and solving Equation 13 to find the resulting force as a function of 

voltage at a particular constrained distance. Figure 2. is the result of such a calculation for 

the same 3 layer actuator. In this case the blocked force appears to be almost linear with 

distance. In reality there is some hysteresis involved. The horizontal axis is voltage and 

the vertical is pounds. The constrained distance chosen was close to the equilibrium point 

and the short axis solution is shown in the plot. 

 

-200 -150 -100 -50 50 100 150 200

-0.2

-0.15

-0.1

-0.05

0.05

0.1

0.15

0.2
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Figure 2.  Calculation of blocked force as a function of voltage for a 3 layer actuator. 

 

If the constrained distance is close enough to the bifurcation point it is actually 

possible to cause the actuator to switch from the short axis solution to the long axis 

solution. The result is a bifurcation point involving voltage and blocked force.  

 

Special Limits 

 

There are two special limits that reduce to analytic forms. The first is the classical 

lamination limit where the size to thickness ratio is very small. The second is the strongly 

non-linear limit where the x and y curvatures are strongly unequal. This second limit is 

the most common type of rectangular actuator encountered. However, other types are 

possible and it is impossible to say for sure how the actuator will turn out without first 

doing the non-linear calculation first. It is highly desirable to design an actuator that is as 

close to a cylinder as possible. This is because it will behave more predictably than one 

that is close to the curvature vs. size bifurcation point. Actuators that are designed to be 

valid in the classical lamination theory limit are predictable but have a much reduced 

amplitude. 
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To find the classical lamination theory limit we solve Equation 13 in the limit Lx=0, 

Lx=0 with Lx/Ly fixed. The result is, 

 

  

a = –

A
1

+ A
2

M ' –
Lx

Ly

F – B
1

+ B
2

N'

A
1
+ A

2
D

1
+ D

2
– B

1
+ B

2

2

b = –

A
1

+ A
2

M ' –
Ly

Lx

F – B
1

+ B
2

N'

A
1
+ A

2
D

1
+ D

2
– B

1
+ B

2

2

(18)

 
 

Using the results of Equation 18 with the results of Equations 15, 16 and 17 to find F 

expressed in terms of the dome height, $, as, 

 

   F = – k ! – !
0

+ " V (19)
 

 

where, 

 

   
!0 = 1

8
Lx

2 + L y

2
A1 + A2 MT – B1 + B2 NT

A1 + A2 D1 + D2 – B1 + B2

2
,

k = 64 Lx Ly

A1 + A2 D1 + D2 – B1 + B2

2

Lx

4 + Ly

4 B1 + B2

,

" = – Lx Ly

Lx

2 + L x

2

Lx

4 + L x

4 z j+ z j– 1 – 1
2

B1 + B2

A1 + A2

Q1 + Q2 j
d3 1

(20)

 
 

The other limit is the strongly non-linear, perfect cylinder limit. In this case Equation 13 

becomes independent of either a or b, giving two possibilities. These two possibilities are, 

 

  
D

1
a – B

1
c – B

2
d + M' –

Lx

Ly

F= 0,

– B
1

a + A
1

c + A
2

d – N' = 0,

– B
2

a+ A
2

c + A
1

d – N' = 0,

(21)

 
 

or, 
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D

1
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2
c – B

1
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Ly
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F = 0

– B
2

b + A
1

c + A
2

d– N' = 0

– B
1

b + A
2

c + A
1

d – N' = 0,

(22)

 
 

Equations 21 and 22 may be solved for a or b so that we may find the force as before. 

The result is, 

 

   F
a
= – k

a
! – !

a
+ "

a
V,

F
b
= – k

b
! – !

b
+ "

b
V,

(23)

 
 

where, 
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8
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2
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and, 
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8
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With these results we may estimate the critical load represented in Figure 1. To find 

this we use Equation 23 with V=0 and write Fa=Fb so that, 

 

   k
a
! – !

a
= k

b
! – !

b
(26)

 
 

or, 

 

   
! =

ka !a – kb !a

k
a

– k
b

(27)
 

 

By substituting this into Equation 23 we find the critical load is then, 

 

   
F

a
= F

b
= –

k
a
k

b

k
a

– k
b

!
a
– !

b
(28)

 
 

We may also find the static amplitude with voltage under load. There are two 

possibilities, 

 

   m g = – ka ! – !a + " a V ,

m g = – kb ! – !b + " b V

(29)

 
 

The amplitudes are, 

 

   
!

1
= !a –

m g

ka

+
"a

ka

V,

!
2

= !b –
m g

kb

+
"b

kb

V

(30)

 
 

If the device is originally in the first bending solution and the critical load is applied, 

it will switch to the second bending solution. The ratio of the delta amplitude with 

voltage is, 

 

   

! "2

! "
1

=

# b

kb

! V

# a

ka

! V

=
# b ka

# a kb

=
Ly

Lx

2

(31)

 
 

This reduction in static amplitude with critical load is a purely a structural effect. The 

true actuation force, on the other hand, is given by Equation 23 - not Equation 28. They 

are completely different things. 
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blocked force vs voltage and spring force vs distance. It is found that under certain conditions, the blocked force and 
displacement is almost linear with voltage. It is also found that the spring force is multivalued and has at least one bifurcation 
point. This bifurcation point is where the device collapses under load and locks to a different bending solution. This occurs at 
a particular critical load. It is shown this other bending solution has a reduced amplitude and is proportional to the original 
amplitude times the square of the aspect ratio.  
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