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I. Introduction

Design under uncertainty arises in numerous disciplines including engineering, economics,

finance, and management. Achieving balance between robustness and performance is one of

the fundamental challenges faced by scientists and engineers. Trade-offs should be made to

meet acceptable levels of performance with adequate robustness to uncertainty.

The concern in this paper is the analysis and design of a system described by a para-

metric mathematical model. The parameters which specify the system are grouped into two

categories: uncertain parameters, which are denoted by the vector p, and design parameters,

which are denoted by the vector d. For example, one component of d could be the designer’s

choice for the thickness of a structural member while one component of p could represent the

manufacturing error in that same thickness or uncertainty in some material property. For

purposes of using the design techniques presented here, the necessary information about the

system being designed is abstracted in constraint functions and a performance metric. These

are functions of p and d. The constraint functions are scaled so that they take on positive

values at parameter values representing unacceptable systems. The design process attempts

to find a design which is acceptable over the entire range of uncertainty and which optimizes

(in a sense to be made precise subsequently) the performance metric. The uncertainty in

p is modeled by specifying a set, the so-called uncertainty set ∆p. While the actual value

of p is uncertain, it is assumed that p ∈ ∆p. One way of specifying ∆p will be termed

“deterministic”. For example, the uncertain manufacturing error mentioned earlier could be
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modeled as an interval of real numbers based on known manufacturing tolerances. Another

way of specifying uncertainty is to model p as a random vector. Then ∆p could be taken

as the Support Set of its joint Probability Density Function (PDF), so P [p 6∈ ∆p] = 0 (if

fp(p) is the joint PDF of p, take ∆p = {p : fp(p) 6= 0}). Hereafter, the terms “uncertainty

set” and “support set” will be considered equivalent. In principle, the uncertainty set can

be unbounded. In practical applications, the choice of ∆p is usually made by a discipline

expert. However, the theory presented subsequently acknowledges that such a choice may be

fairly arbitrary, and addresses the need for quantifying the level of tolerance of the system

to uncertainty in p when a particular d is chosen. Any member of the uncertainty set is

called a Realization. For all the variables that depend on p, such as performance metrics

and constraints, there is a corresponding uncertainty model. The uncertainty model of these

variables is fully prescribed by the uncertainty model of p and by the equation that relates

the dependent variable with p.

Design requirements for the system are prescribed by means of a vector of constraint

functions, g(p,d) ≤ 0, which in general depend on both the uncertain and design parameters.

The system is deemed acceptable if the constraints are satisfied for all possible realizations

of the uncertain parameter. For each value of the design parameter vector, these functions

partition the uncertain parameter space into two sets, a Failure Domain, where the design

requirements are not satisfied because at least one of the constraints is violated, and its

complement set, the non-failure domain where no constraints are violated.

For a fixed design point d and a given uncertainty model of p, the constraints g(p,d) ≤ 0

are said to be Feasible, if they are satisfied for all possible realizations of the uncertain

parameter. Otherwise, the constraints are Infeasible. Robust optimization strategies can

be classified according to the ability and/or desire to make constraints feasible. Constraint

feasibility is usually imposed on critical design requirements. Previous strategies1–5 to solve

the resulting semi-infinite optimization problem require nested searches to identify the Worst-

Case Parameter Realization.1 In previous work,6,7 we present constraint feasibility tests

based on the deformation of sets in p-space and the calculation of Critical Parameter Values

(CPVs) and Parametric Safety Margins (PSMs). These methods are optimization based,

and the results are reliable so long as global optima have been obtained.

By necessity or desire, one may want to let some parameter realizations violate the

constraints. This situation may result from slack design requirements, overly large uncer-

tainty sets and limiting design architectures. Deterministic5 and probabilistic8–11 approaches,
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including chance-constrained programming,12 sampling-based techniques, reliability-based

methods,13 and penalty-based optimization,5,12 are available. The developments in prior

work14,15 use probabilistic uncertainty models and focus on strategies for limiting the proba-

bility that p will fall into the Failure Domain. Hereafter, the probability that the uncertain

parameter falls in the Failure Domain will be referred to as the failure probability. In these

studies,8–11 closed-form expressions for upper bounds to the failure probability are derived

along with a hybrid method for the approximation of its actual value. Analogous to con-

straint feasibility tests in the previous work,6,7 this optimization-based methodology is based

on the deformation of sets, now in the standard normal space, and on the calculation of CPVs

and Reliability Indices (RIs).

In this paper, the deformations mentioned above are expansions or contractions that

preserve proportionality and orientation. These are called homothetic deformations. The

methods developed in the prior work6,7, 14,15 are based on the homothetic deformation of

hyper-spherical or hyper-rectangular sets until the deformed set is of maximal size without

encroaching on the Failure Domain. For these two geometries, we cast the problem of finding

the maximal homothetic deformation in terms of an optimization problem for which standard

nonlinear constrained optimization algorithms are applicable. Because the Failure Domain

depends upon the design variable, the larger the maximal homothetic deformation, the better

the robustness characteristics of the corresponding design. Therefore, one can then search

for a design which admits the largest maximal homothetic deformation. Design optimization

methods based on this idea are presented herein.

When there are designs for which the constraints are feasible, we can attempt to select

one of these designs which optimizes the value of a performance function y(p,d). However,

since p can be any point in the uncertainty set, y can take on many values for each feasible

design; these values comprise the uncertainty model of y at the design point. Several design

criteria, in the form of functionals J which operate on these uncertainty models, will be

introduced to provide a single value of merit from this collection of possible performance

function values. The design criteria considered in this paper are worst-case, least-second-

moment and reliability-based. The robust constrained optimization problem of interest will

lead to designs for which the uncertainty model of y is optimal while the constraints remain

feasible.

The content of this paper is organized as follows. The problem formulation and basic

mathematical background is described in Section II. An overview on how to study and
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integrate inequality constraints into robust optimization problems is presented in Section

III. The optimal design criteria mentioned above are then introduced in Section IV and

exemplified with a low-dimensional example in Section V. Finally, Section VI presents

conclusions.

II. Problem Formulation

A design procedure using a conventional constrained optimization problem with no un-

certainty wherein it is assumed that the parameter p is equal to a known value p̄ is given

by the following problem statement:

Problem 1 (Deterministic Optimization Problem).

min
d
{y(p̄,d) : g(p̄,d) ≤ 0}

Here, y is a performance metric of interest and g is a set of constraint functions for

which the inequalities g ≤ 0 correspond to a set of requirements for which violations are

unacceptable. The cases in which some violations are acceptable or even unavoidable are

considered later (Section IV.A.3 and Section IV.B, respectively). Now we consider the case

in which p is uncertain and we have modeled the uncertainty with an uncertainty set ∆p.

For a given design point, the propagation of ∆p through y leads to the uncertainty set

∆y(d)
∆
= y(∆p,d). In this case, the counterpart to Problem 1 is given in the following

problem statement:

Problem 2 (Robust Optimization Problem).

min
d
{J (∆y(d)) : g(p,d) ≤ 0 for all p ∈ ∆p}

Here, J(·) assigns a scalar to each uncertainty model ∆y(d). For example, to minimize

the worst case value of y, J(∆y) would be chosen to be max(∆y). Observe that Problem

1 is the special case of Problem 2 with ∆p = {p̄} and J being (essentially) the identity

function. If p is modeled as a random vector and ∆p is the support of its PDF, any design

d which satisfies the constraint g(p,d) ≤ 0 for all p ∈ ∆p in Problem 2 has zero probability

of violating the constraints.

The robust optimization problems above deal with the search for design points that shape
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the uncertainty model ∆y of y, directly in the deterministic case and indirectly by shaping

fy(y) in the probabilistic one, according to the optimality criterion prescribed by J , while

limiting the search to designs d for which no vector in the set g(∆p,d) has any positive

components. For instance, in a structural problem p could contain material properties, d

might parameterize the geometry of the structure, and g ≤ 0 might be a requirement on

the maximum allowable stress. If y is the weight of the structure, whose dependence on p

makes it uncertain as well, J(y) might be the worst-case weight.

III. Robustness Analysis

The tools introduced in this section enable the quantification of the robustness of the

system and provide the means to efficiently implement a constraint feasibility test in the

form of a constraint function for an optimization problem and to calculate upper bounds of

failure probability.

In an earlier paper,7 we introduced the notions of a Reference Set Ωp in p-space and a

distinguished realization of the uncertain parameter, p̄ ∈ Ωp, called the Designated Point,

which can be regarded as the nominal value of the uncertain parameter. For clarity sake,

the presentation of the material will concentrate on the case where the Designated Point

is feasible; i.e., g(p̄,d) ≤ 0. By consideration of maximal homothetic deformations of the

Reference Set which did not intersect the Failure Domain (which is a function of the chosen

design), a measure of the robustness of that design to parameter uncertainty was obtained.

One reasonable choice for the Reference Set is a hyper-sphere. The hyper-sphere of radius

R centered at p̄, denoted as S(p̄, R), is defined by

S(p̄, R) = {p : ‖p̄− p‖ ≤ R} ,

where ‖ · ‖ denotes the `2 norm in Rdim(p) space. Another reasonable choice might be

to confine each component of the Reference Set to a bounded interval. This leads to a

hyper-rectangular set. If m is the vector of half-lengths of the sides of the rectangle, the

hyper-rectangle R(p̄,m) is defined by

R(p̄,m) = {p : pi ∈ [p̄i −mi, p̄i + mi], 1 ≤ i ≤ dim(p)} .

Hyper-spherical sets consider parameters with similar levels of uncertainty. They could also
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be used for parameters with dissimilar levels of uncertainty if some scaling is used. However,

whether scaling is used or not, a degree of dependence is introduced. For instance, the range

of variability of one parameter depends on the values taken on by the others. Rectangular

sets permit the consideration of dissimilar levels of uncertainty without the need for scaling

and introduce no such dependence. A design point is deemed to be in the Feasible Design

Space (FDS) if it satisfies all the constraints when the uncertain parameter assumes the

value of the Designated Point. A design is a Robust Design if it is a feasible design for every

choice of the uncertain parameter in the uncertainty set. The Robust Design Space (RDS)

is the set of all Robust Designs. Note that if the RDS exists, it is a subset of the FDS. This

is so since the implied constraint set {p̄} for p in Problem 1 is a subset of the constraint

set in Problem 2. For a fixed design point d, the Failure Region, denoted as F(d, g), is

composed of the parameters that do not satisfy all the constraints, and is given by the union

of the Failure Domains for each individual constraint Fi(d, g) = {p : gi(p,d) > 0}, where

i = 1, . . . dim(g).

One of the tasks of interest is to assign a measure of robustness to a design point based on

measuring how much the Reference Set can be deformed before intersecting the Failure Do-

main. Mathematical structure is imposed on this process by limiting attention to homothetic

deformations. A Homothetic Deformation by a factor of α can be viewed in the following

way. Imagine standing at the Designated Point and looking at any other point of Ωp. Denote

the distance from the Designated Point to the other point by δ. The corresponding point of

the Homothetic Deformation of Ωp with similitude ratio α is attained by looking in the same

direction and placing the point at a distance of αδ from the Designated Point. A mathe-

matical expression for the corresponding deformed set is {q : q = p̄ + α(p − p̄),p ∈ Ωp}.
While expansions are accomplished when α > 1, contractions result when α < 1. Hereafter,

deformations must be interpreted as homothetic expansions or contractions.

For purposes of this paper, two uncertainty models will be called Proportional if one

of the two sets can be formed from the other by homothetic deformation by some positive

factor about the common Designated Point. Such a factor is called the Similitude Ratio and

is denoted by α. For instance, the hyper-rectangles R(p̄,m) and R(p̄, αm) are proportional

sets.

The notions of Critical Parameter Value and Parametric Safety Margin are now intro-

duced. The reader should keep in mind that these are functions of the design point, since

they depend on the Failure Domain which, itself, depends on the design point. Intuitively,
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one imagines that a set proportional to the Reference Set is being expanded homotheticly

with respect to its Designated Point, until its boundary just touches the boundary of the

Failure Domain. The point(s) where the expanding set touches the Failure Domain is (are)

the CPV(s). The Critical Similitude Ratio (CSR), denoted as α̃, is the similitude ratio of

that expansion, and the PSM, which will be defined subsequently for the cases that the

Reference Set is a hyper-sphere or a hyper-rectangle, is a dimensional metric that quantifies

the size of the corresponding deformed set. Both the CSR and the PSM are measures of

robustness of a design to parameter uncertainty. The larger these metrics are, the larger

the variation of the uncertain parameter from the Designated Point that can occur before

encountering a constraint violation. Therefore, both are metrics which quantify the degree

of robustness of d to uncertainty in p.

The CSR is non-dimensional, but depends on both the shape and the size of the Reference

Set. The PSM has the same units as the uncertain parameters, and depends on the shape,

but not the size of the Reference Set. If the PSM assumes the value of zero, there is no

robustness since at least one of the constraints is active for p̄. The convention is that designs

within the FDS assume non-negative PSM values, otherwise they are negative.

In the case that the Designated Point p̄ satisfies the constraints (g(p̄,d) ≤ 0) for a given

design point d, the Spherical PSM, denoted as ρS, is the distance from p̄ to a CPV p̃, which is

a point on the boundary of the Failure Domain which is closest to the Designated Point. By

viewing this as homotheticly deforming the hyper-spherical Reference Set Ωp = S(p̄, R) until

it touches the constraint violation region, finding p̃ can be cast in terms of an optimization:

p̃ = p̃(i), (1)

where

i = argmin
1≤j≤dim(g)

{
‖p̃(j) − p̄‖

}
, (2)

and

p̃(j) = argmin
p

{
‖p− p̄‖ : gj(p,d) ≥ 0

}
. (3)

(Recall that the mathematical operator “min” returns the minimum value of a function or

set, while “argmin” returns the value of a variable at which that minimum occurs.)

In the event that some constraint is violated at p̄, CPVs are redefined as points in or on

the boundary of the constraint satisfaction set which are closest to the Designated Point.
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Such a CPV can be calculated using the previous procedure by reversing the inequality in

the optimization given in (3). The fact that, for this design, the Designated Point is in the

failure domain is signaled by defining the Spherical PSM to be a negative quantity. The

Spherical PSM is now defined as:

ρS
∆
=

 ‖p̃− p̄‖ for g(p̄,d) ≤ 0

−‖p̃− p̄‖ otherwise
(4)

In contrast, in the case that the Designated Point satisfies the constraints at a given design

point, the homothetic deformation of the hyper-rectangular Reference Set Ωp = R(p̄,m)

leads to the CPV and CSR given by

p̃ = p̃(i) and α̃ = α̃(i), (5)

where

i = argmin
1≤j≤dim(g)

{
‖p̃(j) − p̄‖∞m

}
, (6)

and

〈p̃(j), α̃(j)〉 = argmin
p,α

{α : gj(p,d) ≥ 0, |pk − p̄k| ≤ αmk, 1 ≤ k ≤ dim(p)}, (7)

and where the m-scaled infinity norm is defined as ‖x‖∞m = supi{|xi|/mi}. As in the

Spherical case, if the Designated Point does not satisfy the constraints, the CPV and CSR

are calculated by reversing the first inequality in (7). The corresponding Rectangular PSM,

denoted as ρR, is defined to be:

ρR
∆
=

 α̃‖m‖ for g(p̄,d) ≤ 0

−α̃‖m‖ otherwise
(8)

Details on the derivation of these expressions are available in an earlier paper.7 Figure 1

shows a sketch with relevant metrics for a rectangular Reference Set.

For a given design point and Reference Set, the set proportional to the Reference Set that

has the CPV(s) on its boundary is called the Maximal Feasible Homothet and it is denoted

as Mp or, if the dependence on d is important, Mp(d). The title of this paper refers to

the fact that when the constraints are satisfied at the Designated Point, the complement set

9 of 25

American Institute of Aeronautics and Astronautics



Figure 1. Relevant metrics for a rectangular Reference Set.

Mc
p of Mp bounds the Failure Domain. On the other hand, when the constraints are not

satisfied at the Designated Point, the complement of Mp bounds the non-failure domain.

The notions and metrics introduced above do not require probabilistic uncertainty mod-

els. Since uncertainty models can be probabilistic in nature, one may wonder how to integrate

such models with the above developments. Recall that when constraints are feasible, the

failure probability is equal to zero. When the complement set of Mp bounds the Failure

Domain, an upper bound to the failure probability can be easily calculated. This bound is

given by

ψp = 1− P [Mp] = P [Mc
p], (9)

where P [·] is the probability operator. If the components of p are independent random

variables and Ωp is the hyper-rectangle R(p̄,m), Equation (9) leads to

ψp = 1−
dim(p)∏
i=1

[
Fpi

(
p̄i +

ρRmi

‖m‖

)
− Fpi

(
p̄i −

ρRmi

‖m‖

)]
, (10)

where Fpi
(p) is the Cumulative Distribution Function (CDF) of pi. Note that there is an

upper bound for each non-proportional Reference Set. While the bound corresponding to

Ωp = R(p̄(1), αm(1)) is independent of α, the bounds that result from finding the Maximal
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Feasible Homothets of R(p̄(1),m(1)), R(p̄(2),m(1)), and R(p̄(1),m(2)) can all be different.

The main advantage of using Equation (9) is that failure probability bounds corresponding

to new probabilistic uncertainty models are trivial to evaluate since they do not require

solving for Mp again. As compared to methods based on the transformation of the problem

to standard normal space, this bound not only avoids the numerical error generated by

the transformation (which ranges from considerable to unmanageable as failure probabilities

become smaller) but also greatly reduces most of the dependence of the calculations on the

uncertainty model assumed. It should be noted that, using Equation (9) also has a downside.

Since the p-deformation needed to size Mp does not use the probabilistic uncertainty model,

the upper bound ψp might be large. Better bounds in Equation (9) are obtained if P [Mp]

can be increased by variation of the geometry of the Reference Set. Strategies for this are

considered in Section IV.B.

IV. Constraint Feasibility

It is necessary to find an algorithmic tool to implement the constraint feasibility condition

g(p,d) ≤ 0 for all p ∈ ∆p

in Problem 2. Determining constraint feasibility is not a simple task since there are an

infinite number of parameter realizations for which the constraints must be satisfied. Since

the numerical search for a solution to the robust optimization problem requires repeated

determination of constraint feasibility, the test must also be efficient. For use in standard

constrained optimization software, this test should be in the form of an inequality constraint.

Tools commonly used for uncertainty analysis and design, such as Monte Carlo Sampling

(MCS) and the First Order Reliability Method (FORM),13 are not well-suited to determine

constraint feasibility. More importantly, they are ineffective and inconclusive when dealing

with cases where constraints are feasible. In this case, with all points in the Uncertainty

Set being feasible, the optimization used in FORM diverges since, in standard normal space,

the limit state function has no level curves at the zero level; while the error due to finite

sample size in the MCS estimate of the probability of constraint violation might wrongly

indicate constraint feasibility. Since Problem 2 precisely targets design points at which there

are no constraint violations, and therefore these numerical tools break down, the need for

constraint feasibility tests is apparent.
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The means by which the constraints in Problem 2 are to be implemented will be provided

by a constraint feasibility test. Constraint feasibility tests have been recently proposed7 by

the authors. Such tests not only allow determination of constraint feasibility condition for

hyper-spherical and hyper-rectangular uncertainty sets, but also make Problem 2 computa-

tionally tractable.

The constraint feasibility test is based on the comparison of Mp(d) with the uncertainty

set ∆p. If the Feasibility Condition ∆p ⊆Mp(d) holds, the constraints are feasible, i.e., for

this fixed d, g(p,d) ≤ 0 for all p ∈ ∆p. On the other hand, constraints are infeasible if there

exist a parameter realization for which at least one constraint is violated. For arbitrarily6

shaped uncertainty sets, many feasible design points may be captured by using a hyper-

spherical or a hyper-rectangular set to bound ∆p, and comparing the size of the bounding

set with that of the Maximal Feasible Homothet. The constraint condition in Problem 2

is implemented either exactly (if ∆p is a hyper-sphere or hyper-rectangle) or conservatively

(if ∆p must be bounded by a hyper-sphere or hyper-rectangle). The feasibility condition

is realized as an inequality constraint by comparing the sizes of the uncertainty set (or

its bound) with the Maximal Feasible Homothet; e.g. if R is the radius of the bounding

set, ρR(d) is the Spherical PSM of the Maximal Feasible Homothet, and ρR(d) ≥ R, the

constraints are feasible for this d.

The design space can be explored by determining if ∆p ⊆Mp(d) as d varies. If a design

point for which ∆p ⊆ Mp(d) is found, a solution to Problem 2 exists. The set of designs

for which this is attained is exactly the RDS if the uncertainty set is hyper-spherical or

hyper-rectangular, and is a conservative approximation to the RDS if the uncertainty set

must be bounded by a hyper-sphere or hyper-rectangle. The design point for which the

PSM is maximal is called the Robustness Driven Design. For this design, the corresponding

Maximal Feasible Homothet is the largest. If constraints are infeasible for all design points,

say because the CPV corresponding to the Robustness Driven Design is an interior point of

∆p, a solution to Problem 2 does not exist.

IV.A. Optimality Criteria

In this section, it is assumed that constraints are feasible for at least one design point.

Therefore, a solution to Problem 2 exists. A few candidates for the design criterion functional

J for use in Problem 2 are introduced next. Recall that once the uncertainty set ∆p and the

performance function y are fixed, the uncertainty set ∆y(d) = y(∆p,d) is determined by the
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design parameter d, and so the value of J acting on that uncertainty set is determined by

d. Thus, solving Problem 2 can be considered to be optimizing J(d) over the set of feasible

designs d.

IV.A.1. Worst-Case

This criterion is to be used when we want to minimize the worst-case performance value.

The corresponding cost functional is given by

JWC
∆
= y(p∗,d), (11)

where

p∗ = argmax
p

{y : p ∈ ∆p} (12)

is the Worst-Case Parameter Realization. In the above equation is assumed that the smaller

the value of y the better the corresponding design. If the opposite holds, use the argmin{·}
operator in Equation (12). In general, the Worst-Case Parameter Realization depends on

the design variable and might not correspond to the parameter realizations that are the

furthest from the Designated Point. Therefore, the search for an optimal design in the

worst-case sense requires solving a min-max problem. Obviously, the implementation of this

criterion requires that ∆y be bounded from above for all the design points within the RDS.

This requirement imposes restrictions on the structure of y(p,d) within the support set ∆p.

Optimal designs corresponding to this criterion provide performance guarantees, since all

other realizations of y are less or equal than JWC . However, its use may lead to excessively

conservative designs since the Worst-Case Parameter Realization might be extreme and very

unlikely. Strategies to identify1 and approximate16,17 this realization are available. Since the

implementation of this criterion only requires prescribing the support set of the uncertain

parameter, probabilistic uncertainty models are redundant.

IV.A.2. Least-Second-Moment

The implementation of this criterion requires a probabilistic uncertainty model. This crite-

rion is to be used when we want to concentrate all possible performance values as close as

possible to a target value. We might want this to improve performance reproducibility or to
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reduce its variability. The corresponding cost functional is given by

JLSM
∆
= V[y] + E[y] (E[y]− 2ŷ) + ŷ2, (13)

where E[·] and V[·] are the expected value and the variance operators respectively and ŷ is

a target value. Equation (13) results from calculating the second moment of the random

performance metric about the target value. By minimizing JLSM in Problem 2, we are

searching for a design point that maximizes the concentration of y about ŷ, i.e. in an ideal

case, the optimal design leads to fy(y) = δ(y − ŷ), where δ(·) is the Dirac delta. The

minimization of the variability of y can be obtained from Equation (13) by substituting E[y]

for ŷ. This is not quite a special case, since in general E[y] is a function of d, and ŷ is not.

IV.A.3. Reliability-based

As before, the implementation of this criterion requires a probabilistic uncertainty model.

This criterion is to be used when we want the performance to stay within a prescribed

admissible range. The corresponding cost functional is given by

JRE1

∆
= P

[
(y < y) ∪ (y > y)

]
+ h(y, y), (14)

where y and y are the minimum and maximum allowable performance values respectively,

and h is a penalty function. The variables y, y, and the function h are prescribed in advance.

Equation (14) allows for using shapable Failure Domains by augmenting the set of design

variables. See the authors’ prior work11 for details. Thanks to the first term in Equation

(14), the probability of attaining performance values within the non-failure domain y ≤
y ≤ y is maximized. The last term can be used to enhance the resulting performance by

simultaneously reducing y − y. For instance, if y is the weight of the structure, assuming

y = 0, and y = e, implies that the admissible weight range is [0, e]. By using Equation

(14) with h(e) = e/ymax for e > 0, and making e an additional design variable in Problem

2, the size of the admissible weight range is reduced while the probability of y exceeding e

is simultaneously minimized. The parameter ymax is chosen by the designer to balance the

influence of the two terms in Equation (14).

Note that violations to the requirements g ≤ 0 were regarded as unacceptable, i.e.,

these constraints are “hard”. Violations to y ≤ y ≤ y in Equation (14) are allowed; so

these constraints, which are built into the design criterion functional J , are “soft”. This
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distinction must be taken into account when deciding in which of these two formats a given

requirement should be cast.

The numerical tools available for the estimation of failure probabilities might be inaccu-

rate (e.g. FORM for a large failure probability), computationally expensive (e.g. sampling

for a small failure probability) or unsuitable for gradient-based design optimization (e.g. the

estimation of JRE via sampling leads to a piecewise constant function of d). The upper

bounds in Equation (9) provide an alternative way to enforce the reliability-based design

criterion. There are several advantages to using upper bounds in an optimization driven

design procedure, instead of using the available estimates of failure probability.

(a) The calculation of the upper bound is relatively cheap compared to estimating failure

probability by Monte Carlo sampling.

(b) The upper bound is a true conservative overestimate of the failure probability, while

there is no way of knowing whether estimates of failure probability by FORM or Monte

Carlo underestimate or overestimate the value.

(c) The accuracy of the upper bound does not depend on the value of the failure probability,

while the accuracy of both FORM and Monte Carlo sampling with a fixed number of

sample points is very sensitive to the actual value of the failure probability.

(d) These bounds are smooth functions of the design variable, whereas a Monte Carlo

estimate of failure probability using a fixed sample is a piecewise constant function of

the design variable with step discontinuities as changing the design variable makes the

failure boundary move across any of the sample points.

Using the bounds, Equation (14) is replaced by

JRE2

∆
= ψp + h(y, y), (15)

where ψp results from using Equation (9) along with the constraint function g = [y− y, y−
y] ≤ 0. Note that JRE1 ≤ JRE2 .

IV.B. Infeasible Constraints

This section considers the case when one or several of the constraints in g are infeasible.

If the design requirements can not be relaxed (i.e. the way in which g depends on p is
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fixed), and the uncertainty model cannot be refined, the corresponding requirements must be

enforced as soft constraints. This practice implies that (some, presumably limited) constraint

violations are now acceptable. One may decide to only use this format after realizing that

since no uncertainty model is perfect, the value of attaining constraint feasibility is mostly

mathematical. Strategies for the efficient implementation of the soft constraints are presented

next.

The ideas that follow require probabilistic uncertainty models for their implementation.

Since the requirements corresponding to the constraints in Problem 2 have been regarded

as important, the performance metric y will now be ignored. The emphasis is now on

finding a design which is as close to feasible as possible. If the constraint vector is written as

g = [gi, gf ], where gi has the infeasible constraints and gf has the feasible ones, a reliability-

based formulation to the problem of interest is

min
d

{
P [gi 6≤ 0] : gf ≤ 0, ∀p ∈ ∆p

}
. (16)

The inequality gi 6≤ 0 says that some component of the vector gi is positive which is on the

failure side of the constraint boundary, so the event represented by [gi 6≤ 0] is the gi failure

set.

It was noted earlier that the upper bound on failure probability could be improved

by changing the geometry of the Reference Set. Another means of looking for improved

upper bounds is by transforming the uncertain parameters to become random variables with

different distributions. A commonly used and well studied transformation results in the

transformed parameters being an independent vector of standard normal random variables,

denoted by u. The transformation13 between p-space and u-space will be denoted as u =

U(p).

The developments in prior work14,15 are based on the homothetic deformation of hyper-

spheres and hyper-rectangles in u-space. In that work, ideas parallel to the ones introduced

in Section III are developed. For instance, analogous to the Spherical PSM is the Spherical

Reliability Index βS, and to the Rectangular PSM is the Rectangular Reliability Index βR.

Likewise the CPV and the Maximal Feasible Homothet in p-space are analogous to their

counterparts in u-space. The Reliability indices (RI) are the best measure of robustness

of a given design for a given uncertainty model providing that such a design is non-robust.
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Analogous to Equation (9) is the upper bound to the failure probability

ψu = 1− P [Mu] = P [Mc
u], (17)

where Mu is the Maximal Feasible Homothet resulting from the deformation in u-space.

Note that bounds in Equations (14) and (16) can be calculated using Equation (17) as well.

In contrast to ψp, ψu can be calculated analytically for both hyper-spherical and hyper-

rectangular Reference Sets. Expressions for this can be found in the an earlier paper.15 The

unimodal, rotationally symmetric, and exponentially decreasing nature of the PDF in u-

space allows for placing hyper-spherical and hyper-rectangular Reference Sets so that their

Maximal Feasible Homothets capture more success domain probability. This practice may

yield better upper bounds than the ones in Equation (9). However, the calculation of ψu is

strongly dependent on the uncertainty model assumed.

Deformations in u-space also enable accurate and efficient approximations to the failure

probability.15 Note that the bounds ψp and ψu are probabilities of events, so they fall in

the numerical range of zero to one. The calculation of ψp and ψu enables the approximation

of the set of designs for which the failure probability is below an admissible value. This

information greatly facilitates the implementation of design optimization schemes.

V. Example

A two-dimensional problem in the design variables, i.e., d = [d1,d2], and in the uncertain

parameter, i.e., p = [p1,p2], has been selected to facilitate visualization of the concepts

introduced in this paper. The same example has been used in previous work6,7, 14,15 to

exemplify other aspects of the methodology. It is assumed that the Designated Point is

p̄ = [1, 1], while the performance metric and the constraint set are

y =

(
d1 +

39p1

5
− 9p2

)2

+

(
d2 + 7p1 −

87p2

10

)2

,

g =


3d2 − 4p2

1 − 4d1p2 sin (p2d1 − p2
1)

− sin (p2
1p2 − sin(2p1 − 2))− d1d2p1 − p2

d1 + p2
1d

2
2 − 4p2

2p1 − 4 sin (2p1 − 2p2)

2(p1 + p2) sin(p2
1 − d2)− 2p1p2 (d2 + 2p2

1 − 2) + d1 − 6p1

 .
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The PSMs for design points within the FDS corresponding to Ωp = S(p̄, R) are shown in

Figure 2. In this example, the spherical PSM can be interpreted as the largest percentile

of variation in p from its nominal value allowed before a constraint is violated. According

to the figure, parameter variations of less than 53% lead to non-empty RDSs. Therefore,

the Robustness Driven Design is able to tolerate variations of up to 53% in p. Notice that

more than one PSM maximum occurs (there are local maxima in the vicinity of [−1, 0] and of

[−2.2,−2.4]). More importantly, notice that designs further in from the boundary of the FDS

are not necessarily more robust. For instance, the comparison of d(1) = [−2.25,−2.4] and

d(2) = [−1,−1] shows that ρS(d
(1)) � ρS(d

(2)) even though d(1) is much closer to a constraint

limiting the FDS than d(2). Figure 3 shows the rectangular PSM values for Ωp = R(p̄, [1, 4]).

Figure 2. Spherical PSM ρS(d) in the FDS.

Considerable differences in the distribution and magnitude of the PSMs, as compared to the

previous figure, are apparent. This indicates a strong dependence of the robustness on the

geometry of the Reference Set. Consider the Support Set ∆p(µ) = R(p̄, µ[1, 4]). When µ

assumes the value of zero, the Problems 1 and 2 are identical since there is no uncertainty,

and all the Js of Section IV.A coincide. The solution to this problem will be referred to

as the Deterministic Optimal Design. From Figure 4 it can be seen that two constraints

are active at the Deterministic Optimal Design point. Increasing values of µ in ∆p(µ) will

now be assumed. For each value of µ, it is assumed that p1 and p2 are independent random
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Figure 3. Rectangular PSM ρR(d) in the FDS.

variables which have Beta distributions based on β(5, 2) and β(2, 5), respectively, but shifted

and scaled to be supported by ∆p(µ).

For each µ value, solutions that minimize the cost functionals in Equations (11-14) are

calculated. Since the performance function y is non-negative, the best possible performance

value that any design could attain is zero. By using the worst-case criterion one intends

to identify the design which minimizes the largest y. By using the least-second-moment

criterion, one tries to concentrate y near the target ŷ = 0. By assuming y = (max{y} +

3 min{y})/4, y = −∞ and h = y, when using this criterion, one tries to reduce the probability

that y lies in the upper three-quarters of ∆y while reducing the value of the number which

marks the division of the lower quarter and the upper three-quarters of the ∆y. Note that

∆y, y and h, are functions of the design parameter. The worst-case optimal designs for

increasing values of µ are grouped in a set referred to as the optimal trail in the worst-case

sense. Optimal trails corresponding to the least-second-moment and the reliability-based

design criteria are also generated. These three trails are shown in Figure 4. Moving along a

design trail from the Deterministic Optimal Design to the designs corresponding to increasing

values of µ corresponds to optimizing the corresponding cost functional over increasingly

larger uncertainty sets. Note that the three trails converge to the Robustness Driven Design

at µ∗ = 0.26, which is d∗ = [0.718, 0.631]. Recall that the Robustness Driven Design is the
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one for which the PSM is the largest. In this case the uncertainty set has grown so large

that the RDS is reduced to a point, therefore all three cost functionals lead to d∗.

Figure 4. Optimal trails.

Figure 5. Optimal PDFs for µ = 0.1235.

The PDFs of the optimal performance functions corresponding to µ = 0.1235 are shown
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in Figure 5. The corresponding support sets are ∆y = [1.242, 57.85] for the worst-case

criterion, ∆y = [0, 105.63] for the least-second-moment criterion and ∆y = [0.197, 58.81] for

the reliability-based criterion. Notice that the PDF for the worst-case solution does not

cover the vicinity of the ideal value of y = 0. This is not the case for the other two solutions.

Figure 6. ψp(d) in the FDS for Ωp = R(p̄, [1, 4]).

In what follows we assume µ = 0.26004 in the probabilistic uncertainty model of p

defined earlier. Since µ > µ∗, at least one constraint is infeasible, the RDS does not exist,

and P [F ] > 0 for all design points. The functions ψp(d) and ψu(d) corresponding to the

Reference Sets Ωp = R(p̄, [1, 4]), and Ωu = R(0, [1, 1]) are considered next. The bound ψp

is shown in Figures 6 and 7. While Figure 6 clearly shows large bound values, Figure 7 is

used to better illustrate small ones. The resolution used in this figure does not allow to see

the smallest bound, which is ψp(d∗) = 2.4972× 10−10. Recall that the calculation of ψp for

a different uncertainty model would only require changing the CDF in Equation (10).

Figures 8 and 9 show ψu(d). The contour of the FDS corresponding to ψp(d) is shown

as a dashed line in Figure 8. The two FDSs are different since the Reference Sets use

different Designated Points, i.e., p̄ 6= U−1(0). The smallest ψu(d) bound, which corresponds

to the design point attaining the largest Rectangular RI, which is βR = 12.22, is ψu(d†) =

4Φ(−8.6408)Φ(8.6408) = 1.1160 × 10−17, where Φ is the Cumulative Distribution Function
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Figure 7. − log(ψp(d)) in the FDS for Ωp = R(p̄, [1, 4]).

Figure 8. ψu(d) in the FDS for Ωu = R(0, [1, 1]).

of a standard normal random variable and d† is approximately equal to d∗. As before, the

resolution of the figures prevents us from seeing this value. This bound is so small that the

evaluation of the equivalent expression 1− (Φ(8.6408)−Φ(−8.6408))2 is approximated with
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Figure 9. − log(ψu(d)) in the FDS for Ωu = R(0, [1, 1]).

0 by Matlab©r. In general, the designs d∗ and d† are different. In this example, d† ≈ d∗ since

∆p and Mp(d∗) = R(p̄, µ∗[1, 4]) are almost identical. Since the corresponding Reference

Set is anchored at the origin of u-space, where most of the probability is, considerably

smaller bounds are obtained as compared to the ones in Figures 6-7. Recall that for a

different uncertainty model, and in contrast to ψp, the calculation of ψu requires solving a

new optimization problem to identify the new the Maximal Feasible Homothet.

There were instances during the calculation of ψu(d) when the numerical error caused by

the transformation to u-space U(p), led to inaccurate results. This occurs when ‖u‖ � 0.

Due to this numerical anomaly, the u-space must be artificially bounded when searching for

the CPV. Failing to impose these bounds may result in the numerical search not converging.

The usage of such bounds, however, imposes a low numerical limit on the values of ψu that

can be calculated. Notice that lower values of ψp(d) would have been obtained if we chose

p̄ = U−1(0) instead. Such practice, however, imposes the need for a probabilistic uncertainty

model. In the absence of a such a model, a natural choice for the Designated Point is the

geometric center of the uncertainty set.
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VI. Concluding Remarks

Strategies for the analysis and solution to robust optimization problems are proposed

herein. The methodology developed provides the means to quantify the robustness charac-

teristics of a given design point according to existing levels of uncertainty. In addition, it

allows for determining constraint feasibility in a conclusive and computationally tractable

manner. Strategies to deal with feasible and infeasible constraints are considered. This

paper implements worst-case, least-second-moment and reliability-based design criteria into

the robust optimization problem of interest. When the worst-case design criterion is appli-

cable, performance guarantees are attainable. However, such solutions are usually driven by

extreme and very unlikely parameter realizations, resulting in designs with excessive con-

servatism. In contrast, design criteria using probabilistic uncertainty models are able to

account for the likelihood of all possible outcomes. In this setting, a reliability-based design

captures the intent of the worst-case criterion since extreme parameter realizations still drive

the design process. However, the amount of conservatism is considerably reduced since it

allows for some realizations to fall outside the admissible range of performance. In contrast

to these two criteria, a least-second-moment design is driven by the most likely events. This

characteristic is appealing from the practical point of view, esspecially when the resulting

probability of unfavorable performance is low. Upper bounds to failure probability, based

on the homothetic deformation of sets in the original uncertain space, were proposed herein.

Design-optimization schemes based on these bounds have several advantages: the calculation

of the bounds is comparatively cheap, their usage considerably relaxes the dependence of the

calculations on the uncertainty model assumed, and their values are guaranteed to bound

the failure probability from above.
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