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Glenn Research Center 
Cleveland, Ohio 44135 

 
Gloria S. Sivko 
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Abstract 
A new, lower cost fluorinated dianhydride based on the phenyltrifluoroethylidene (3F) connecting 

linkage was invented by the principal author in the early 1980’s. New 3F condensation and addition cured 
polyimides were synthesized with the newly discovered 3F dianhydride and the previously known 3F 
diamine. As controls, polyimides based on the somewhat analogous higher cost hexafluoroisopropylidene 
(6F) linkage were also prepared. The short term thermal oxidative stability (TOS), determined by thermal 
gravimetric analysis (TGA), and the glass transition temperatures (Tg) of 3F dianhydride polyimides were 
found to be similar to 6F dianhydride polyimides, but the Tg was slightly higher for 3F diamine 
polyimides than 6F diamine polyimides. Unfortunately, in real time testing, long term TOS of 3F 
polymers was clearly inferior to 6F polymers. This was due to a 3 to 5 fold greater rate of loss of 
trifluoromethyl group from 3F versus 6F linkages. However, at shorter times or lower temperatures, 3F 
TOS was almost comparable to 6F TOS. The wide scope of the 3F technology was also demonstrated to 
have distinct unique advantages over 6F technology through the use of the 3F pendant phenyl ring as a 
synthetic site to introduce other functional groups. These groups have been used for the control or 
modification of polymer properties; an advantage lacking within 6F technology. The synthetic ease by 
which 3F can be introduced into various types of monomers has lead to the explosion of advanced 3F 
polyimides and other high performance advanced 3F polymers in the prior decade of 3F polymer 
literature as cited herein; covering polyimides, substituted polyimides, at least ten types of nonpolyimide 
3F polymer modifications, and also the government’s nine 3F U.S. patents and corporations’ nine 3F U.S. 
patents. 

1. Introduction 
The commercially available condensation polyimide (known as AVIMID N®) containing the 

hexafluoroiso-propylidene (6F) connecting linkage is considered to be state-of-the-art in ultimate thermo-
oxidative stability (TOS) for organic polymer matrix resins. Improvement in the 6F based polyimide 
useful lifetime at temperatures up to 371 °C (700 °F) is desirable for increased polyimide composite usage 
in jet engine applications. All types of advanced lightweight materials, including high temperature 
polyimide composites, are needed because their use in structural and engine applications will result in 
significant weight and fuel savings. The main objective of this study was to examine the somewhat 
analogous phenyltrifluoroethylidene (3F) connecting linkage in polyimides to determine if the 3F linkage 
provides improved glass transition temperature (Tg), TOS and composite mechanical properties compared 
to 6F; making 3F a potential replacement candidate for 6F technology in long term, high temperature 
environments, such as in jet engines. Another objective of this paper is to demonstrate the scope of 3F 
monomer/polymer synthesis capability in order to educate additional researchers about 3F technology for 
use in potential projects and other applications. The third objective of this paper is to bring together in 
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one article a 3F review/summary using the latest and/or most complete 3F publications as lead references. 
This review portion of the paper will highlight current state-of-the-art 3F technology, recent progress in 
3F research, current 3F applications, such as microelectronics and gas separator membranes, and will 
describe our 3F work aimed ultimately toward composites in jet engine applications. 

2. Experimental 
2.1  3F Dianhydride and Diamine Monomers 

The 3F and 6F dianhydride and diamine monomers used in this study are shown in figure 1. Also 
used were dianhydrides containing carbonyl linkages (3,3’,4,4’-benzophenone tetracarboxylic 
dianhydride, (BTDA)) and ether linkages (3,3’,4,4’-oxydiphthalic dianhydride, (ODPA)), along with 
diamines containing ether linkages (4,4’-oxydianiline, (ODA)), and without linkages (para-
phenylenediamine, (PPDA)). In order to study the 3F linkage, this principal investigator invented the 
synthetic route to the new 3F dianhydride (3FDA)1–5 (fig. 2) and synthesized1 and patented6 many new 3F 
polyimides. The 3FDA monomer synthesis route closely follows the synthesis route of the commercially 
available 6F dianhydride (6FDA), using an air oxidation process identical to the commercial synthesis of 
6FDA, to provide an 85% yield of 3FDA. The only change in the 3FDA synthesis route is the use of 
lower cost, less toxic starting material, α,α,α-trifluoroacetophenone (TFA), rather than 1,1,1,3,3,3-
hexafluoroacetone (HFA) or hexafluoropropylene oxide (HFPO), for preparing the 3F tetramethyl 
precursor in 90% yield before oxidation to the 3FDA. Alternatively to air oxidation, the oxidation to 
6FDA may use nitric acid. This is not desirable for the 3F oxidation step, as nitration of the pendant 3F 
phenyl ring also occurs;7 (6F does not nitrate as it does not contain a pendant phenyl ring). Others have 
used and patented8 the nitric acid oxidation route to 3FDA but only after additional oxidation product 
cleanup is performed to acquire unnitrated 3FDA. For other polymer uses (described later in sections 
3.3.3 to 3.3.5), however this high reactivity of the 3F pendant phenyl can be desirable, even to the point 
of deliberately nitrating the pendant 3F phenyl ring as in reference 7. This phenyl can be a useful site to 
introduce other functional groups (besides nitro) to prepare substituted 3F monomers7, 9–10 and substituted 
3F polymers9 to alter or control the subsequent 3F polymer properties. 

The first laboratory synthetic route to the existing 3F diamine11 (3FDAM) used a one step synthesis 
by reacting aniline with TFA using aniline hydrochloride catalyst (fig. 3). Initially, this investigator 
scaled up that procedure to a half pound size and improved the purification and yield to 80%.1–5, 7 Others, 
in academia, have further improved the synthesis, purification, and yield of 3FDAM.12 At the same time, 
the Defense Advanced Research Projects Agency (DARPA) supported additional 3FDAM synthesis and 
polymerizations under Army Research Office (ARO) monitorship.13 This interest arose because of both 
the lower cost, one step, higher yield 3FDAM synthesis route, and the increased 3FDAM reactivity 
compared to the expensive, multi-step, low yield synthesis of 6F Diamine (6FDAM), and the very low 
6FDAM reactivity. The low reactivity of 6FDAM is due to the strong electron withdrawing nature of the 
6F group.1, 14–15 
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2.2  3F Polyimide Polymers and Composites 

Various new condensation and addition cured polyimide resins containing PPDA and 3FDA, as well 
as the corresponding 6FDA (as controls), were synthesized16 for weight loss investigations at 260, 316, 
and 371 °C (500, 600, and 700 °F). Specifically for this study, two different lots of 3FDA and 6FDA as 
diacid dimethylesters (3FDE and 6FDE)/PPDA/phthalic anhydride (PA) molding powders formed at 
n/n+1/2 stoichiometry (n = 113.34 for 3F and n = 115.21 for 6F), were processed as 10.16 by 10.16 cm 
neat resin plaques. The 3F and 6F polymerization of monomeric reactants (PMR) molding powders had 
been endcapped with PA to limit the maximum calculated formulated molecular weight (FMW) to 
60,000. The process conditions were twenty minutes at 415 °C (779 °F) under 3.45 MPa pressure  
(500 psi). The two lots of each resin plaque making four different plaques were each cut into forty nine 
1.29 by 1.29 cm squares and used to greatly exceed the minimum requirements for a statistically designed 
postcure study to determine the optimum temperature (from 371 to 468 in 14 °C intervals) and 
environment (air versus argon) required to obtain the best postcure. The results showed the best postcure 
(lowest weight loss) was at the lowest temperature in an inert environment. After postcure both lots of the 
3F and 6F resin squares were used for aging in air for 400 hr at 371 °C. 

Neat resins of 3FDAM and 6FDAM, besides 3FDA and 6FDA, were also used for this study. 
Specifically, PMR monomer solutions of 3FDAM, 6FDAM, and ODA with ODPA, BTDA, 3FDA, and 
6FDA as diacid dimethylesters were prepared using PA as the endcap to limit the maximum calculated 
FMW to 60,000. A portion of each of the calculated 60,000 FMW PMR solutions was evaporated to 
dryness, making the PMR molding powders. Resin disks (2.54 cm diameter) of each powder were 
processed by inserting the cold powder filled die into a 427 °C press and applying 27.6 MPa (4000 psi) in 
evenly spaced 3.45 MPa increments so that final pressure was reached by 371 °C, after which heating was 
stopped, the insulation removed, and a final mold temperature of 382 to 418 °C (well above all the Tgs) 
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was momentarily reached before the mold started to rapidly cool back to room temperature. Later the 
discs were cut into four 0.64 by 0.64 cm squares to use as long term aging samples (after postcuring the 
squares in air for 20 hr at 316 °C) and the edge pieces used for short term thermal analysis (Tg and 
thermal gravimetric analysis, (TGA)). Many of these resins were also processed at these temperatures as 
discs between two rheometric plates using only enough pressure to fuse the melted molding powder to the 
rheometric plate, to be later used to determine the remelt processability viscosity as described later in 
section 3.1.4. 

Composites and neat resin plaques were also prepared at a calculated 20,000, 40,000, and  
60,000 FMW using PA endcaps to limit the maximum FMW to these values. The resins selected, using 
the results of the above neat resin study and remelt viscosity study, were a low cost selection of 
ODPA/ODA, a medium cost selection of ODPA/3FDAM and a high cost selection of 6FDA/3FDAM. 
The neat resins were processed as 10.16 by 10.16 cm moldings from molding powders as a preliminary 
measure of the temperature/pressure needed to consolidate the powders, from which uniform processing 
conditions (below) were decided on. For the composites study, all the PMR monomer solutions were 
prepregged at forty resin weight percent on drum wound unsized G30–500 carbon fiber. Twelve ply 7.62 
by 20.32 cm unidirectional composites were prepared using both a compression molding cycle and two 
slightly different simulated autoclave molding cycles, all reaching 343 °C momentarily at a final pressure 
of 1.38 MPa (200 psi) for simulated autoclave moldings or 3.45 MPa for compression moldings and then 
allowed to cool to room temperature under those pressures. The laminates were ultrasonically C-scanned 
for quality analysis and cut into nominally 2.54 by 6.75 cm pieces for mechanical testing and aging 
studies. All the pieces were postcured in a circulating air oven for 20 hr at 316 °C. 

2.3  Thermal and Mechanical Characterization 

The 3F and 6F resins and composites were characterized for maximum potential, long-term use 
temperature by isothermal aging (ITA), TGA, and Tg determinations. Fourier transform infrared 
spectroscopy (FTIR) was coupled to a TGA (TGA-FTIR) to identify the high temperature degradation 
products and elucidate the degradation pathways of 3F and 6F polyimides. Interlaminar shear strength 
(ILSS), flexural strength (FS), and flexural modulus (FM) testing of unidirectional graphite fiber 
composites were performed using American Society for Testing and Materials (ASTM) procedures 
prescribed in D2344–76 and D790–71.  

3.  Results and Discussion 
3.1 Thermoplastic 3F Condensation Polyimides 

In our very early 3F studies, emphasis was on identifying high Tg and high TOS thermoplastic1,16 and 
thermoset 3F polyimides17–19 using traditional solution condensation polymerizations and also the PMR 
approach to fabricate 3F and 6F films,1 resin disks16–17 and graphite fiber composites18–20 that were either 
unendcapped1 high molecular weight formulations or PA endcapped thermoplastics (this paper) or nadic 
ester (NE) endcapped BTDA/3FDAM17–20 thermosets. Others then joined the 3F bandwagon by preparing 
3F thermosets of NE endcapped 3FDA/4,4’-methylenedianiline21 (MDA), NE endcapped 3FDA/PPDA,22 
and unsubstituted and phenyl substituted ethynyl endcapped 3,3’,4,4’-biphenyl dianhydride (BPDA)/ 
3FDAM13 as resins and composites while others prepared PA endcapped 3F thermoplastics of 3FDA/ 
PPDA23 and pyromellitic dianhydride (PMDA)/3FDAM24 resins. However the major initial interest was in 
PMDA/3FDAM thermoplastics24 because of the very high Tg ( > 430 °C) for PMDA/3FDAM 
thermoplastic polyimide and similar high Tgs for PMDA/3FDAM-meta or para 6FDAM copolyimides, 
all first reported by this principal author.1 These were so desirable that the very high Tg of PA endcapped 
PMDA/3FDAM was later reconfirmed by others.24 The Tg’s of BTDA,1 3FDA,1 6FDA,1, 25 and 
BPDA25/3FDAM polyimides were lower, so our further interest in these was minimal. Others25–26 also 
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used mixed dianhydrides of PMDA/6FDA with 3FDAM25 and mixed diamines of 3FDAM/PPDA with 
PMDA or BPDA25 and mixed diamines of 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-
hexafluoropropane (BDAF)/3FDAM with PMDA26 to produce high Tg PA endcapped copolyimides.25–26 
These resins are similar or identical to earlier PMDA/BDAF and mixed dianhydrides of PMDA/6FDA 
and PMDA/BTDA with 3FDAM and mixed diamines of 3FDAM/6FDAM with PMDA which produced 
the high Tg unendcapped polyimides and copolyimides reported in our initial study.1 Our initial1 and later 
3F publications27–28 and technology transfer publications29 and subsequent work of others24–26 eventually 
lead to heightened interest in 3F, which then lead to sponsorship by DARPA, under ARO monitorship.13 
This project had an eventual goal of high temperature jet engine 3FDAM bushings comparable to the 
state-of-the-art 6FDA/PPDA commercial bushings. Later, this DARPA study13 culminated in combining 
BPDA/3FDAM/meta-phenylethynylaniline (PEA) endcapped thermosets and PA endcapped 
thermoplastics to prepare 3F semi-interpenetrating networks (SIPN) for study as composites. At this point 
most studies claimed high TOS and high Tg, but these studies had been spread in so many different 
directions by additional investigators that proper comparisons of definitive data were becoming elusive. 
Thus, this paper will attempt to bring together all 3F polymer data in some form of a comparative fashion 
and conclusion. 

3.1.1  Glass transition temperatures (Tg’s) 
For 3F to be a potential replacement for 6F, it is necessary for the 3F Tg to at least equal, or better 

yet, exceed the 6F Tg in order for 3F polyimides to possess equally useful high temperature mechanical 
properties before polymer chain segmental rotation occurs at the Tg. Using the Tg’s from our seminal 
publication,1 table 1 shows that 3F Tg equals or exceeds 6F Tg by two different methods for determining 
Tg, differential scanning calorimetry (DSC) under 1.38 MPa nitrogen pressure and thermal mechanical 
analysis (TMA), (both at 10 °C/min heatup rate). The Tg’s of 3FDA versus 6FDA polyimides are 
virtually identical, while the Tg’s of 3FDAM versus 6FDAM polyimides are consistently higher by 
around 15 to 30 °C, depending on which method was used. Thus, 3FDAM polyimides exhibited a higher 
potential polymer use temperature than 6FDAM polyimides, while also clearly placing the 3FDAM Tg 
much higher than the Tg of ODA polyimides (with small ether linkages) and slightly higher than the Tg 
of PPDA (without any diamine linkage) in commercially available unpostcured AVIMID N®. These 
observations suggest that the larger 3F linkage caused greater restricted polymer chain segmental rotation, 
resulting in the higher 3F Tg’s. A portion of the 3FDAM Tg increase could also be due to 6FDAM not 
achieving very high molecular weight polymers, but in either case, the 15 to 30 °C higher 3FDAM Tg’s 
were one strong factor in DARPA’s initial 3FDAM interest.13 

 
TABLE 1.—COMPARISON OF 3F AND 6F Tg’s WITH EACH OTHER AND WITH ODA AND PPDA 

DIAMINE 3FDAM 6FDAM ODA PPDA 
 
DIANHYDRIDE 

TMA DSC 
°C °C 

TMA DSC 
°C °C 

TMA DSC 
°C °C 

TMA DSC 
°C °C 

3FDA 308 293 279 275 288 283 292 — 
6FDA 309 287 287 271 264 266 300 — 

 

3.1.2  Thermal Gravimetric Analysis (TGA) 
For 3F to be a potential replacement for 6F, it is necessary also for the 3F TOS to be at least equal, or 

better yet, exceed the 6F TOS in order for 3F polyimides to possess equally useful high temperature 
lifetimes as 6F polyimides. Using TGA at 10 °C/min heatup in air as a preliminary TOS measurement, 
table 2 shows 3F TOS equals or exceeds 6F TOS. The onset of weight loss via TGA for the 3FDA versus 
6FDA polyimides is virtually identical, while the onset of weight loss for 3FDAM versus 6FDAM 
polyimides is around 5 °C higher. Thus, 3FDAM polyimides could be slightly more thermally oxidatively 
stable than 6FDAM polyimides. In addition, 3FDAM TOS is much higher than ODA TOS (because of 
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ODA’s less stable ether linkages) and comparable to the TOS of PPDA based commercially available 
AVIMID N®. These observations suggest the 3F linkage provides excellent short term TOS via TGA. A 
portion of the small 5 °C 3FDAM increase could also be due to 6FDAM not achieving very high 
molecular weight polymers, but in either case, the higher 3FDAM TOS was also a factor in DARPA’s 
strong 3FDAM interest.13 

 
TABLE 2.—COMPARISON OF 3F AND 6F ONSET OF WEIGHT LOSSES  

IN AIR WITH EACH OTHER AND WITH ODA AND PPDA 
DIAMINE 3FDAM 6FDAM ODA PPDA 
DIANHYDRIDE °C °C °C °C 
3FDA 524 516 496 521 
6FDA 521 517 519 522 

 
Later, a subsequent more exhaustive TGA study23 of the stability of 3FDA versus 6FDA/PPDA/PA 

polyimides was done using four kinetic analysis methods to determine the activation energy (Ea) of 
decomposition, instead of just using onset of weight loss as in table 2. Unfortunately, this clearly 
provided a different stability result; that 3F is inferior to 6F polymers. The Ea in kJ/mol of these polymers 
showed 3F was inferior by all four analytical methods in reference 23 (109 versus 140 by Coats and 
Redfern, 84 versus 162 by Ingrahm and Marier, 123 versus 162 by Horwitz and Metzger, and 142 versus 
171 by ITA). Figure 4 shows representative TGA’s done in nitrogen from this later study. These clearly 
demonstrate the higher char yield but slightly lower decomposition temperature (Td) of 3F compared to 
6F/PPDA/PA polyimide, which resulted in the lower Ea for 3F. The TGA is also in agreement with the 
postcuring data done in inert and air environments as shown in figures 5 and 6. If one views the postcure 
weight losses as a series of high resolution TGAs (each stopping at a set temperature until the weight loss 
is completed), then the Td and Ea data is consistent with the dynamic TGA data  
(fig. 4) and the inert postcure weight loss data (fig. 6 with only one resin lot shown and fig. 5 with two 
resin lots plotted in which the lot 2 closed triangles are superimposed on top of the lot 1 open triangles). 
The Td and Ea agree because they are determined in similar temperature ranges from the data in figures 4 
to 6. It is only at much higher temperatures that the final char yield of 3F exceeds 6F, well beyond the 
temperature range in which the Td and Ea are determined, thus accounting for the better 6F TOS Td and 
Ea. The 3F postcure weight loss in both air and inert environments was higher until 441 °C (825 °F), 
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resulting in lower 3F Td. Above 441 °C 6F postcure weight loss exceeded 3F, thus leaving 3F with a 
greater char yield at the final TGA temperature in figure 4 and also at the higher postcure temperatures as 
shown in figure 5. Visually, the 3F and 6F resins postcured in inert environment, shown in figure 6, look 
similar at all postcure temperatures. However, visually the air postcured 3F samples, also shown in  
figure 6, show more cracks at lower postcure temperature to increase the surface area. This alone could 
account for the greater 3F weight loss seen early on (thus providing lower 3F Td in air). However, 3F did 
eventually provide a lower overall postcure weight loss than 6F. As the 6F surface cracking increased 
(fig. 6), the resulting 6F postcure weight loss (fig. 5) was greater than that of 3F at the higher postcure 
temperatures. 

The higher char yield of 3F versus 6F in both the inert TGA environment and in the air and inert 
postcure environments led us to examine these samples in a microcalorimetry experiment30 utilized for 
screening the flammability of plastics. The experiment was done under nitrogen at a very rapid heatup 
rate (4.3 °C/s), with a 30 second hold at the final 930 °C temperature. Again, 3F had a higher char yield 
versus 6F as shown in table 3. Thus, the microcalorimetry data is consistent with the TGA (fig. 4) and 
postcure weight loss data (fig. 5) discussed above in section 3.1.2. Unfortunately a higher (poorer) heat 
capacity and greater total heat release was also found for 3F (table 3). This is considered to be the real 
measure of comparative flammability. The higher 3F total heat release indicates that 3F was clearly not as 
good in preliminary flammability tests as 6F. Not surprisingly, nonfluorinated polyimides were even 
poorer, as also shown in table 3. Thus 6F is again superior to 3F. 

 
TABLE 3.—MICROCALORIMETRY DATA FOR 3FDA, 6FDA,  
AND NONFLUORINATED CONDENSATION POLYIMIDES 

Polyimide Heat Capacity, J/g-k Total Heat Release, KJ/g Char Yield, % 
6F/PPDA/PA 17±3 2.0±0.3 59.3 
3F/PPDA/PA 20±2 3.8±0.3 66.3 
Typical Nonfluorinated Polyimide  25±3 6.6±0.3 51.9 
Data is average of three determinations for one milligram samples heated at 4.3 °C/sec to reach 930 °C, 
then held at 930 °C for 30 sec. 

 

3.1.3  Isothermal Aging (ITA) 
After postcuring, the Tg of both 3FDA and 6FDA/PPDA/PA can be raised to be satisfactory for  

371 °C applications. However, the promising preliminary TGA TOS result, when studied in real time ITA 
showed 3FDA was clearly inferior to 6FDA. In our initial study of 400 hr aging at 371 °C in two different 
ovens, the weight losses of two resin lots (table 4) for commercial AVIMID N® was 7.5 to 8.1% versus 
14.2 to 16.0% for PMR laboratory prepared 6FDA/PPDA/PA while a shocking 93.5 to 99.9% for 
laboratory prepared 3FDA analog. This somewhat unexpected result clearly differs from earlier 
literature31–34 in which others claim 3F is as stable or superior to 6F. Because of this discrepancy with our 
study, new 3FDA and 6FDA/PPDA/PA samples were prepared as described in the experimental section. 
The new samples were postcured as shown earlier in figures 5 and 6 and then aged. The visual effect of 
200 and 400 hr aging at 371 °C (700 °F) is seen in figures 7 and 8. After even the mildest postcure 
conditions (371 °C in argon), the visual effect is apparent as a discoloration and severe dimensional 
shrinkage. The weight loss data through 300 hr aging is shown in figure 9. Interestingly, only the 6FDA 
weight loss after either air or argon 371 °C postcure remains linear if plotted to 400 hr while all the others 
continue to accelerate, with many of the samples having totally disappeared before 400 hr of aging (see 
fig. 8), after which all aging was discontinued. All three aging figures 7 to 9 clearly show increasing the 
postcure severity (seen in figs. 5 and 6) only further increases sample deterioration during subsequent 
aging with 3F degradation far exceeding 6F degradation. This agrees with our conclusions that 3F is not 
as stable as 6F.23 To explain the different stability result of references 31 to 34 versus ours in reference 
23, an extensive comparison in reference 23 of their sample compositions as to endcap type and  
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meta-phenylenediamine (MPDA) content, along with doing weight loss comparisons only at the same 
limited aging time at which they terminated their studies shows our weight loss results in reference 23 are 
quite similar at that aging time (100 hr at 371 °C), again supporting our sample validity and conclusion of 
3F is less stable than 6F. When aged to times beyond those in references 31 to 34, the conclusion is more 
apparent. In fact, their own data31–34 even supports this. They show that the stability of 3F/6F 
copolyimides increases as the amount of 3FDA used decreases. Thus, by all data, the thermal stability of 
3F at 371 °C is clearly inferior to that of 6F. 
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TABLE 4.—371 °C WEIGHT LOSSES OF 3F VERSUS 6F RESINS 

Resin                                                       Percent resin weight loss after 384 hr at 371 °C (700 °F) 
   
 Oven No. 1 Oven No. 2 
6FDA/PPDAa (Commercial AVIMID N®) 7.45±0.54 8.06±1.24 
6FDE/PPDA/PAb 16.04±0.49 14.17±0.79 
3FDE/PPDA/PAb 99.92±0.99 93.47±2.04 

aHigh molecular weight condensation polyimide processed and provided by DuPont. 
bFormulated for 60 000 M.W. using PMR approach, actual M.W. assumed to be significantly lower. 

 
 
Even at a lower 316 °C (600 °F) aging temperature, figure 10 demonstrates the same trend of poorer 

3FDA TOS. Also, AVIMID N® is now identical to laboratory prepared 6FDA/PPDA/PA (shown as solid 
circles). Regretfully, figure 10 also shows the same trend continues at an even lower 260 °C (500 °F) 
aging temperature, after extended aging of 10,000 hr. Invariably, the 3FDA/PPDA/PA resin and 
composites exhibited inferior high temperature stability (higher weight loss) in the 260 to 371 °C region 
desired for use in jet engines compared to the 6FDA/PPDA/PA resin and composites. A TGA-FTIR 
study23 also clearly showed that the lower TOS of the 3F thermoplastic polyimide is due to the evolution 
of a 3 to 5 fold greater amount of trifluoromethane than the corresponding 6F polyimide or the two 6F 
based thermoset polyimides. This is easily seen in the TGA-FTIR at the 350 to 600 °C temperature range 
(fig. 11). Thus, 3F linkages clearly thermally decompose at a faster rate compared to 6F. This clearly 
compromises the potential of 3F polymers for high temperature jet engine composite applications. 

 
 
 



NASA/TM—2006-214235 11

 
 
 

 
 
Our emphasis for continued 3F investigations shifted from the short term 316 to 371 °C aging to 

accelerated aging in order to simulate long term, lower temperature isothermal aging of 100,000 hr at  
204 °C (400 °F) and 20,000 hr at 260 °C, needed for applications such as High Speed Civil Transport 
(HSCT) and Advanced Subsonic Engine Technology (AST). The resins were formulated in monomer 
combinations that would provide a slightly lower Tg for the lower temperature applications and a wide 
range of total material costs determined by the use inexpensive nonfluorinated BTDA or ODPA with 
3FDAM (lowest cost combination) to 6FDAM (higher cost combination), or the use of 3F or 6F in either 
or both the dianhydride and diamine (very highest cost combinations). Figure 12 shows that the accelerated 
aging at 316 °C (600 °F) of both nonfluorinated BTDA or ODPA resins provides higher weight loss than 
for either fluorinated 3FDA or 6FDA resins. Figure 12 also shows that, with any of the dianhydrides, the 
3FDAM weight loss always exceeded 6FDAM. Clearly, the earlier trend of 3F linkages providing higher 
weight loss is true for both the diamine, (fig. 12), and the dianhydride, (figs. 10 and 12).  
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In fact, the data very clearly shows that the more 3F, the higher the weight loss, i.e., 6F used in both 
monomers = lowest loss, 3F used in either monomer = intermediate loss, while 3F used in both monomers 
= highest loss. However, figures 10 and 12 also show that when the aging temperature is lowered to  
260 °C (500 °F), the differences in 3F versus 6F weight losses become quite small, but still real. It is 
important to note, however, that when either 3F or 6F linkages are replaced in either monomer by ether 
linkages, the rate of weight loss invariably increases (fig. 13). This clearly means the use of 3F is the next 
best thing to 6F for stability in aromatic condensation type resins even though 3F has poorer TOS than 6F. 
However, 3F can compensate for its poorer TOS with its increased synthetic versatility, increased 
reactivity (particularly in the diamine,1, 14–15 but also somewhat in the dianhydride)14–15 and lower monomer 
cost. This combined with the fact that 3F composite mechanical properties (some shown  
later in section 3.1.5) are similar to those of 6F thermoplastics (but less than comparable thermosets), 
demonstrates some potential to use 3F in polyimides for long term, lower temperature applications still 
exists. Unfortunately, recently both the HSCT and AST programs have been terminated. With the TOS of 
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3F clearly inferior to 6F for prolonged intermediate-to-high temperature exposure, our interest in 3F 
polyimides for high temperature jet engine and intermediate temperature structural applications also 
ceased. 

3.1.4   Resin Remelt Viscosity 
In a preliminary study of resin melt viscosity, various combinations of BTDA, ODPA, 3FDA, and 

6FDA were imidized with 3FDAM, 6FDAM, and ODA using PA as the endcap to limit the molecular 
weight to a maximum 60,000 FMW as described in section 2.2. These molding powders were processed 
between a parallel plate rheometric fixture and their comparative remelt viscosities measured (fig. 14). 
Although this does not indicate the initial processing viscosity, the technique does indicate the final 
maximum processing viscosity because stable thermoplastics should not advance further in molecular 
weight, thus providing constant viscosity once processed. A stable remelt viscosity for thermoplastics 
could be useful in refabricating components or plastics that gave less than a satisfactory result on the 
initial processing attempt. The results show that all the fluorinated linkage combinations provide roughly 
a comparable remelt viscosity with a minimum around 420 °C. Interestingly, in comparing the minimum 
viscosity of 3F versus 6F, a slight trend toward lower viscosity of 6F linkages (either in only one or both 
monomers) can be visualized, i.e., using 6F in both linkages resulted in the lowest remelt viscosity range, 
while using 3F in both monomers resulted in the highest remelt viscosity, and combinations of 3F and 6F 
resulted in intermediate viscosities. However, using BTDE, instead of 3FDE or 6FDE, further raised the 
remelt viscosity by at least an order of magnitude. 

Conversely, this increase was not true for the use of ether linkages. Use of ODPE or ODA in place of 
the corresponding 3F or 6F monomers is shown in figure 15. All combinations of 3F or 6F with an ether 
linkage replacing a fluorinated linkage continued to provide roughly similar remelt viscosity with its 
minimum still about 420 °C. Again, those combinations with the 6F linkage provided a slightly lower 
remelt viscosity than analogous 3F polyimides, e.g., 6FDE/ODA < 3FDE/ODA. Without any 3F or 6F 
linkage present, as in ODPE/ODA, the remelt viscosity was raised by as much as an order of magnitude 
(just as BTDE did when used with a fluorinated diamine). The 3F or 6F combinations, with or without an 
ether linkage present, were examined for intermediate term remelt viscosity stability by letting the 
rheometrics parallel plates experience three, 1 hr temperature holds at 360, 380, and 420 °C before 
stopping at 440 °C as shown in figure 16. As expected, because these were thermoplastics, the remelt 
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viscosity did not significantly increase during these temperature holds, instead staying almost level within 
each temperature hold and decreasing slightly at each temperature ramp increase (fig. 16). This indicates 
the FMW seems to level off, even though the temperature holds were kept above the Tg to insure some 
mobility for any possible molecular weight advancement during the extended heating times. As in figures 
14 and 15, there is a slight trend within the narrow viscosity range shown toward monomer combinations 
with 6F having lower remelt viscosity than those with 3F. A different study done by others will discuss in 
a later section (3.2.4) similar results of the initial melt (not remelt) viscosity of various 3F versus 6F 
polymer thermosets. 
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3.1.5  Composite Mechanical Properties 
Tables 5 and 6 show the initial ILSS and FS of the PA capped thermoplastic resin combinations 

investigated; ODPA/ODA, ODPA/3FDAM, and 6FDA/3FDAM all formulated at 20, 40, and 60,000 
calculated maximum FMW and processed as unidirectional G30–500 graphite fiber composites, as 
described in section 2.2. In tables 5 and 6, the mechanical properties of the two simulated autoclave 
processing cycles were averaged to form one column which still showed remarkable similarity of 
strengths when compared to the compression cycle results in the other column. More importantly, an 
inspection of both the initial and elevated temperature strengths shows that all the thermoplastics are 
around half the strength of what is obtained with the PMR polyimide thermosets that we currently use for 
aeronautical applications. Hence, additional data (long term composite TOS and retention of composite 
mechanical strengths) was not acquired. These composite mechanical results and the inferior TOS of 3F 
resins compared to 6F resins (section 3.1.3) led us to abandon the 3F thermoplastic approach, concluding 
the DARPA sponsored approach13 using 3F SIPN (discussed later in sections 3.2.2 and 3.2.3) could 
potentially be more promising for our jet engine composite applications. 

TABLE 5.—INTERLAMINAR SHEAR STRENGTH (ILSS) IN MPa OF UNIDIRECTIONAL  
UNSIZED G30–500 GRAPHITE FIBER/POLYIMIDE COMPOSITES 

Resin 
 

ODPA/ODA/PA 
(lowest cost resin) 

ODPA/3FDAM/PA 
(medium cost resin) 

6FDA/3FDAM/PA 
(highest cost resin) 

Cure Cycle Cure Cycle Cure Cycle  
Compression Vacuum bag Compression Vacuum bag Compression Vacuum bag 

Molecular weight and 
Test temperature, °C 

   

20K RT 
20K 204 
20K 260 

 70±4 64±10 
 42±3 45±2 
 5±1 5±1 

 43±2 41±2 
 31±2 29±1 
 16±4 16±3 

 29±0 31±4 
 21±1 23±4 
 14±1 17±3 

    
40K RT 
40K 204 
40K 260 

 51±4 56±1 
 24±0 30±1 
 8±0 11±1 

 51±2 47±4 
 31±2 29±5 
 23±0 28±3 

 39±7 45±8 
 26±0 32±6 
 35±1 23±2 

    
60K RT 
60K 204 
60K 260 

 19±2 37±7 
 16±0 26±5 
 5±0 9±4 

 37±4 37±3 
 32±0 28±3 
 20±1 21±2 

 36±6 34±2 
 19±1 22±4 
 15±1 18±1 

Compression ILSS is average of two tests, autoclave ILSS is at least average of four tests, occasionally up to six tests. 

TABLE 6.—FLEXURAL STRENGTH (FS) IN MPa OF UNIDIRECTIONAL  
UNSIZED G30–500 GRAPHITE FIBER POLYIMIDE COMPOSITES 

Resin 
 

ODPA/ODA/PA 
(lowest cost resin) 

ODPA/3FDAM/PA 
(medium cost resin) 

6FDA/3FDAM/PA 
(highest cost resin) 

Cure Cycle Cure Cycle Cure Cycle  
Compression Vacuum bag Compression Vacuum bag Compression Vacuum bag 

Molecular weight and 
Test temperature, °C 

   

20K  RT 
20K 204 
20K 260 

 953±534 1059±319 
 514±93 524±64 
 46±4 46±4 

 890±33 662±167 
 502±40 389±11 
 204±28 184±46 

 449±2 480±223 
 366±20 439±117 
 191±3 224±64 

    
40K RT 
40K 204 
40K 260 

 825±323 1295±67 
 532±58 603±89 
 140±19 246±48 

 650±204 626±357 
 303±87 384±83 
 288±22 330±39 

 574±39 870±97 
 459±7 631±81 
 363±24 396±11 

    
60K RT 
60K 204 
60K 260 

 300±7 499±121 
 213±4 359±48 
 49±1 79±22 

 488±67 483±129 
 253±50 315±70 
 173±36 218±31 

 607±174 676±63 
 422±64 380±85 
 305±2 271±14 

Compression FS is average of two tests, autoclave FS is at least average of four tests. 
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3.2  Thermoset 3F Addition Polyimides 

The 3F based polyimide monomers have that been studied are 3FDAM13, 17–20 and 3FDA21–22, 35–36 in 
nadic,17–22 ethynyl,13 phenylethynyl,13, 35–36 and vinyl (this paper) crosslinked polyimides as follows: 

3.2.1  3FDAM Based Polyimides 
Studies to replace MDA in PMR-15 with 3FDAM17–20 have successfully produced composites with 

good initial mechanical properties and higher Tg, but then they failed more rapidly in ITA. Although the 
concept of using more oxidatively stable diamines, such as 3FDAM, to improve TOS sounds logical and 
desirable, the resultant TOS in ITA was dramatically poorer when 3FDAM was used to replace MDA in 
PMR-15. Instead, it appears that the combination of benzylics (MDA) and aliphatics (NE, nadic 
crosslink) in PMR-15 is responsible for the excellent surface char formation17–20 that is, in turn, 
responsible for the superior TOS of PMR-15. Thus, the desirable synergistic effect of benzylic in 
combination with aliphatic was tampered with and lost by using a more oxidatively stable diamine, such 
as 3FDAM, to replace MDA, resulting in poorer TOS. This effect has been observed with many different 
diamines besides 3FDAM, and has been reported both in resin studies17 and composite studies.18–20 

Another study13 using 3FDAM in thermosets also produced satisfactory processable composites by 
using Hercules IM7 graphite fiber prepregged with low molecular weight oligomers of BPDA/3FDAM 
endcapped with PA and PEA as a SIPN. Unfortunately, all evaluations stopped after demonstrating 
satisfactory composite processability. Thus, TOS data and composite mechanical property data is not 
available in reference 13. Also, the study initially used meta-aminophenyl acetylene (APA) as the 
crosslinker, but it reacted too rapidly at too low of a temperature to successfully process composites. 
Thus, reference 13 instead switched to the slower reacting PEA endcap as the crosslinker for preparation 
of the BPDA/3FDAM SIPN used in the thermoset composites. 

3.2.2   3FDA Based Polyimides 
3FDA has been studied in NE crosslinked resins21–22 and composites21 using both MDA21 and PPDA22 

as the diamine. A back-to-back comparison against the corresponding 6F based systems was not done in 
either study so conclusions as to superior TOS, Tg or viscosity of 3F versus 6F could not be made. In 
fact, reference 22 only compared the TOS against a nonfluorinated PMR polyimide, BTDA/MDA/NE as 
PMR-30 and PMR-50, to conclude the 3F based PMR II-50 resin had better TOS at 371 °C than the 
BTDA/MDA analogs of PMR-30 and 50. However their22 resin weight losses of 3F PMR II-50 (~10% at 
100 hr and ~15% at 200 hr of 371 °C air aging) are in moderate agreement with our 3F PMR II-50 
composite weight losses of 2 to 2.5% at 100 hr and > 6% at 200 hr after the composite weight losses are 
corrected by increasing 2.5 times to equal 5 to 7.5% at 100 hr and >15% at 200 hr to account for our 
60/40 fiber/resin weight content. With that in mind, the only clear, definitive comparison of 3FDA versus 
6FDA in crosslinked resins is our G40–600 and G40–700 carbon fiber composite data shown in figure 17. 
This figure again clearly shows 6F based polyimides have superior TOS to their 3F analogs as was seen 
for 3F thermoplastics (section 3.1.3). Additional support for poor 3F TOS is our 3F weight loss also 
agrees with other’s22 weight loss after again correcting for the fiber weight diluting the resin weight loss 
data. 

3FDA has also been studied as a thermoset in other more recent studies35–36 with a variety of diamines 
using PEA as the endcap. These studies are aimed toward low viscosity, fully imidized oligomers for 
coatings, rather than composites or TOS studies, so they are discussed later in  
section 3.2.4. 
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3.2.3   Composite Mechanical Properties  
Compared to the extensive 3F thermoplastic properties in section 3.1.5, only limited composite 

mechanical property evaluations for the 3FDA and 3FDAM types of 3F thermosets (discussed in 3.2.1 
and 3.2.2) are available. For composites containing 3FDAM, the BPDA/3FDAM/PEA and PA endcapped 
SIPN Hercules IM7 graphite fiber composites study13 stopped after demonstrating composite 
processability, so composite mechanical properties were not determined. For the BTDA/3FDAM/NE 
study,18, 20 an extensive set of composite mechanical properties are reported. These studies18, 20 however 
also showed that while the initial room temperature and 316 °C ILSS, FS, and FM composite mechanical 
properties compared very favorably to those of PMR-15, the retention of these mechanical properties 
dropped rapidly because of the inferior TOS compared to PMR-15. This again was because the desirable 
synergistic benzylic-aliphatic surface char formation of PMR-15 was lost by replacing MDA with more 
oxidatively stable 3FDAM.17–20 

For the composites containing 3FDA, reference 21 reported 3FDA/MDA/NE Celion 6000 graphite 
fiber composites had an initial room temperature ILSS of 23 MPa (3340 psi), an initial 316 °C ILSS of 
23.9 MPa (3470 psi), and an initial 316 °C FS of 766 MPa (111,000 psi) with a corresponding FM of 
137,300 MPa (19,900,000 psi) while not reporting any TOS or mechanicals after aging. A much more 
extensive set of 3FDA thermoset composite properties is shown in figures 18 to 20 for 3F PMR II-
50/G40–600 and 700 graphite fiber composites compared to the analogous 6FDA composites. During the 
200 hr of 371 °C aging, the mechanical properties of 3F versus 6F PMR II-50 remained remarkably 
comparable in spite of the poorer 3F TOS (section 3.2.2). The 371 °C ILSS (fig. 18) remained in the 20.7 
to 27.6 MPa (3000 to 4000 psi) range for both 3F and 6F throughout the 371 °C aging. However, the 
room temperature FS (fig. 19) dropped from 1380 MPa (200,000 psi) to at least half that for 6F and 
almost one fourth that for 3F after the 200 hr 371 °C aging, while the related room temperature FM  
(fig. 20) also dropped from 138,000 MPa (20,000,000 psi) range to about half that for both 6F and 3F  
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after the 200 hr 371 °C aging. In spite of similar property retention, the inferior 3F TOS, shown in 
figure 17, would clearly compromise dimensional stability sooner than in the 6F composites as 3F 
generated copious amounts of loose surface fiber during the aging, making 3F PMR II-50 clearly inferior 
to 6F PMR II-50. 

3.2.4   Resin Processing Viscosity 
There are many claims for low viscosity flow during processing of 3F polymers. However, direct 

comparisons of 3F versus 6F viscosities are scarce; found only in references 35 to 36 discussed in this 
section, in the remelt viscosity of 3F thermoplastic polyimides discussed in section 3.1.4, and outside the 
polyimide area in polyacrylates discussed in section 3.4.4. Low viscosity processing flow of thermoset 3F 
resins and composites using both 3FDAM17–20 and 3FDA21–22, 35 has been reported, but the claims are 
limited to 3F only, without any direct comparisons to analogous 6F polyimides. Reference 35 contains the 
most data as a comparative study of the processing viscosity of seven 3FDA polyimides, all at  
5000 FMW, prepared with six different diamines (3,4’-ODA, 4,4’-ODA, PPDA, BDAF, 2,2’-bis 
(trifluoromethyl) benzidine (TFMB) and 1,3-bis (3-aminophenoxy) benzene (APB)) and an 85/15 mixture 
of 3,4’-ODA and APB (analogous to diamines used in the original phenyl ethynyl terminated imide 
(PETI) resin series). Figure 21 clearly shows the low processing viscosity from 275 to 370 °C of the 
seven 3FDA polyimide oligomers compared to the much higher viscosity of nonfluorinated BPDA in 
PETI-5. In addition, the initial viscosities of 3FDA resins remain low as reported in reference 35 during a 
1 hr temperature hold at 310 °C, proving the 4-phenylethynyl phthalic anhydride (PEPA) endcap has not 
reacted extensively after 1 hr at 310 °C. An explanation based on the electron withdrawing power of 3F 
and 6F connecting linkages slowing the initiation of PEPA relative to BPDA is also presented in 
reference 35. The initial low viscosities and their stable isothermal viscosity are very desirable.  
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Consequently, these resins are being studied35 for melt coatings (on optical fibers), adhesives and resin 
transfer moldings (RTM). 

The question as to which provides a lower melt viscosity, 3F or 6F, appears to remain unanswered, 
but swings toward 6F having a lower viscosity unless reactive 3F diluents are present. Reference 35 also 
contains a direct comparison of 3FDA versus 6FDA versus BPDA in PETI-3 and PETI-5 formulations. 
The data showed at 3000 FMW that 3F versus 6F were virtually identical (with BPDA considerably 
greater at both FMWs). The 3F versus 6F complex viscosity in Pascal sec.(at °C) was 27 versus 26 (at 
290 °C), 17 versus 14 (at 300 °C), 7 versus 7 (at 310 °C) and 29 versus 16 (at 350 °C) with a minimum of 
6 (at 314 °C) versus 3.5 (at 324 °C). However, at the higher 5000 FMW 3F complex viscosity was 
consistently higher than 6F as shown by 860 versus 255 (at 290 °C), 350 versus 129 (at 310 °C), 154 
versus 77 (at 310 °C) and 65 versus 61 (at 350 °C) with a minimum of 59 (at 344 °C) versus 48  
(at 337 °C). Both 3F and 6F PETI-3 and PETI-5 formulations had only minimal increases (almost 
doubling) in their initial viscosity after a 1 hr hold at 310 °C. Thus the low viscosity formulations have 
excellent potential for RTM resins. Reference 35 also included a discussion explaining the lower 3F 
viscosity (compared to 6FDA and BPDA) based on calculated solvent accessible surface area, molecular 
surface area and solvent excluded volume. However, as their data35 showed, 3F was equal or higher than 
6F. Thus, the meaning of their explanation is unclear. 

Another direct comparison of 3F versus 6F processing viscosity was also recently published.36 The 
study used 4000 and 7000 FMW oligomers of 80/20 and 70/30 PPDA/MPDA mixtures imidized with 
3FDA and 6FDA. These were endcapped with PEPA for oligomer molecular weight control and 
crosslinking. The study was done with and without 10 and 20 mole percent additions of n = 1 reactive 
diluents, 3FDA and 6FDA/MPDA/PEPA, in order to study processing viscosity versus temperature. 
Using these four oligomers and two reactive diluents (which were all formed in N-methyl-2-
pyrrollidinone (NMP) and isolated by precipitation into methanol), the study found the opposite result of 
reference 35. Now the minimum complex viscosity of the 3F polyimide was as much as an order of 
magnitude lower than 6F. In addition, the viscosity minimum occurred about 20 °C lower than the 
analogous 6F polyimide. The study36 reported the 3F versus 6FDA/80/20 PPDA/MPDA/PEPA 4000 
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FMW oligomers, without any reactive diluents added, had a minimum complex viscosity/temperature in 
Pascal sec (at °C) as 419 (at 324 °C) versus 4442 (at 342 °C). When 20 mole percent 3F or 
6FDA/MPDA/PEPA reactive diluents were added to the respective 3F or 6F FMW 4000 resin, the 
corresponding minimum complex viscosities were significantly lowered to 68 (at 325 °C) versus 1583 (at 
347 °C) for 3F versus 6F resins. 

Interestingly, the lower 3F processing viscosity result when using reactive diluents is the reverse of 
the 3F versus 6F polyimide remelt viscosity data discussed in section 3.1.4, the reverse of the 3F versus 
6F polyacyrlate viscosity data discussed in section 3.4.4, and also the reverse of their own data in 
reference 35. Obviously, any general conclusion as to which has lower viscosity, 3F or 6F, has to be made 
within comparable polymer types and at comparable extents of cure and oligomer weights. The 
contradictory conclusions in both references 35 and 36 and in all three sections could be valid but specific 
to polymer types (imides or acrylates), polyimide type (diamines used), state of cure (crosslinkable 
oligomer or thermoplastic), solvent used and solvent residue (methanol or NMP), use of reactive diluents 
and/or resulting molecular weight (crosslinked or above Tg). In summary of this data, 6F consistently had 
lower or equal melt viscosity (depending on initial FMW) than 3F in all resin types studied, except for the 
4000 FMW 3FDA/80/20 PPDA/MPDA/PEPA oligomers in reference 36 when used both with and 
without 20 mole percent of n = 1 3FDA/MPDA/PEPA reactive diluents. 

3.3   Substituted, Functionalized, Pendant, and Modified 3F Polyimides 

Historically, di- and tri- substituted 3F compounds were first extensively reported in the original 3F 
paper11 and most were subsequently patented.37 Interestingly, the patent listed the NASA Administrator at 
that time as an inventor in order to make the assignment to the U.S. government. In the patent examples,37 
3F was incorporated into a variety of substituted bis (4-methyl, 4-methoxy, 4-hydroxy, 4-hydroxy-3-nitro, 
4-phenoxy, 4-tert-butyl, 4-ethyl, 4-isopropyl, 4-fluoro, and 4-bromo) phenyl and tris (4-methyl, 4-
carboxy, 4-formyl, and 4-methoxy) phenyl substituted 1,1,1-triphenyl-2,2,2-trifluoroethane compounds. 
The paper11 and subsequent NASA Tech Brief38 also reported bis- and tris- 4-amino, 4-acetamido, and 4-
cyano substituted 3F compounds besides those in the patent.37 However, they were unable to get the 1,1-
bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (3FDAM) composition of matter and process 
synthesis allowed for a U.S. patent. Thus, 3FDAM has been in the public domain ever since. For their 
purposes, these 3F compounds were the product of an organic synthesis project rather than an end result 
aimed at later specific polymers research by them. However, their patent,37 paper,11 and the NASA Tech 
Brief38 followed by our seminal publication1 which invented 3FDA and used 3FDA and 3FDAM in 
condensation polyimides, laid the groundwork for the ensuing large volume of 3F monomer and 3F 
polymer papers reported in the 1990’s. 

3.3.1   Scope of Modification of 3F Monomers and 3F Polyimides 
The scope of the monomer/polymer applications of 3F resins is limited by only being able to 

withstand short term, high temperature exposure (such as in microelectronics manufacturing) or at best 
only withstanding prolonged intermediate temperatures. However, this is compensated for by the 
potential benefits that could lead to specific applications and improvements over 6F based resins, such as 
in the following areas: 

 

1. A lower use temperature, lower cost alternative to the more expensive specialty 6F based resins 
commercially available, due to the lower cost TFA starting materials, the 3FDAM one step synthesis 
route and the improved 3FDAM polymerizability. 

2. A technology for new fluorinated polyimide as colorless, optically clear 3F film products39 (6F 
resins are colorless but commercially unavailable as film). However, this paper shows in figures 6 to 8 
that nonfilm, unpostcured 3F polyimides exhibit more color than 6F after thermal treatment due to the 
poorer 3F TOS; potentially negating 3F for colorless films. 
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3. An approach to introduce increased polymer solubility using 3F pendant groups, such as was 
demonstrated using 3FDA with TFMB.40–41 

4. A new method to produce high Tg polyimide dielectrics and nanofoams, such as was discussed in 
sections 3.3.6 and 3.3.8, respectively. 

5. An improvement over the existing 6F technology due to the wide synthetic versatility that uses the 
3F phenyl ring as the site to introduce functional groups1–7, 10–11, 42–47 which later are used to chemically 
modify polymer properties.1,7,42–47 

 

The last of these uses and modifications, incorporation of a functional group unto the 3F pendant 
phenyl ring, is the most versatile method to modify 3F polymers for specialty applications. This is 
partially due to the potentially low cost of TFA as a monomer building block. TFA has been prepared 
inexpensively12–13 by conversion of low cost trifluoroacetic acid to its acid chloride, followed by reaction 
with benzene to produce TFA. Unfortunately, only general nondocumented examples of introduction of a 
synthetic site into the 3F pendant phenyl can be found in the patent10 literature. Of these specific patent 
examples, none of the substituted pendant phenyl 3F monomers in reference 10 have been reported 
elsewhere, thus probably not existing other than within the patent discussion section and subsequent 
claims of reference 10. Even without these patent claims, actual other examples of synthetic pathways 
illustrating 3F synthetic versatility are shown in figure 22, which outlines the scope of how the 3F 
monomer and polyimide modifications can be done. Pendant 3F modifications for nonpolyimide 
monomers/polymers are discussed later in sections 3.4.1, 3.4.2, and 3.4.5. The 3F polyimide 
monomer/polymer modifications are reported to be done in four different ways: 

 

1. -Can Introduce a variety of Xs into TFA initially by using 3F Pendant Phenyl1–7, 11, 42–48 or 3F Pendant 
Naphthyl45–47 reacted with Aniline,1–7, 11, 38 Substituted Anilines,9, 49–52 Phenols12, 37, 53–56 and Substituted 
Phenols37, 54 

2. -Can Introduce X during2–7, 11 or after3–4, 42–44 Monomer Synthesis, such as by Nitration2–7 or 
Halogenation42–44 

3. -Can Convert X to Y after X is introduced in Monomer Synthesis, such as by Oxidation11 or 
Hydrolysis11 

4. -Can Change X to a Different Group by a Displacement Reaction during2–7 or after  
Monomer2–7, 42–44 or Polymer Synthesis6 or during Crosslinking42–44 
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3.3.2   Alkyl Substituted 3FDAM Monomers/Polyimides 
Two alkyl substituted 3FDAM monomers have been prepared by us,9, 49–50, 52 and two other alkyl 

substituted 3FDAM monomers have been prepared by others.51, 57 These have all been accomplished 
using a route analogous to the original synthesis of 3FDAM11 but replacing aniline with 2-methylaniline 
(o-toludine), 2,6-dimethylaniline, 2-methyl-6-i-propylaniline, and 2,6-di-i-propylaniline to produce the 
four substituted 3FDAMs in yields of 62, 26 to 64, 45, and 66%, respectively. In our studies, the resulting 
dimethyl and tetramethyl substituted 3FDAM monomers were polymerized with PMDA, BTDA, and 
6FDA.45, 49–50, 52 However, due to the low viscosity of the tetramethyl 3FDAM polyimides only the 
dimethyl 3FDAM made from o-toludine were successfully cast as films. These films were photolyzed 
with 350 nm ultraviolet (UV) light in order to examine their potential as photoresists by determining their 
Tg increase after UV exposure. The Tg shown in table 7 seemed to increase more from repeated thermal 
reruns in the TMA, rather than from the UV exposure. The lack of Tg advancement by UV light was 
perhaps due to the low strength of the UV light used. In either case, this concept of using an alkyl 
substituted diamine to advance the Tg for photoresist applications has been used with diamines58 other 
than 3FDAM and, historically, was attempted to be commercialized by Ciba Geigy under the name 
Probimide 300®. However, the concept has had limited success in the microelectronics industry because 
the photospeed (photosensitivity to the UV = photoefficiency) dropped when used in polymers instead of 
model compounds. The advancement of Tg is reported to proceed by a cyclization mechanism involving 
the ortho alkyl group and the imide carbonyl.59 

 
TABLE 7.—EFFECT OF UV LIGHT ON DIMETHYL 3FDAM IN BTDA, PMPA, AND 6FDA POLYIMIDES 

DIANHYDRIDES UV GLASS TRANSITION TEMPERATURE, Tg, °C (FROM TMA)a TGA PDT, 
°C  

 
 RUN 1 RUN 2 RUN 3 RUN 4 RUN 5  
PMDA 
 

BEFORE 
AFTER 

321 (460) 
324 (460) 

387 (460) 
360 (460) 

— 
398 (460) 

— 
— 
 

— 
— 
 

555 
555b 

6FDA 
 

BEFORE 
AFTER 

308 (410) 
290 (460) 

325 (460) 
308 (460) 

— 
320 (460) 

— 
360 (460) 

— 
380 (460) 

543 
555b, 554c 

        
BTDA 
 

BEFORE 
AFTER 

291 (400) 
293 (400) 

310 (460) 
313 (460) 

329 (460) 
320 (460) 

339 (460) 
NONE 
(460) 

— 
NONE 
(460) 

549 
566b, 567c 

aNumbers in parentheses represent the maximum temperature attained in each rerun 
bAfter 2-hr Exposure to 350 nm UV 
cAfter UV exposure and then heat to 460 °C in TMA 

 
Others51, 57 have taken our Tg evaluation much further by using the methyl and isopropyl substituted 

3FDAM monomers to prepare only 6FDA based substituted polyimides, followed by evaluation as gas 
separator membranes, both before and after UV exposure. Without UV exposure, their oxygen 
permeability, (P O2), in Barrer units greatly increased to the 25 to 80 range compared to an unsubstituted 
3FDAM permeability of almost 4, but their oxygen/nitrogen selectivity ratio, (α (O2 /N2)), dropped to 3 to 
3.5 range compared to a selectivity of 5 for the unsubstituted 3FDAM, as seen in table 8. Thus, all of the 
substituted 3FDAM polyimdes showed greatly enhanced permeability while sacrificing some selectivity. 
The permeability and selectivity of ortho-substituted diamines in 6FDA polyimides was further 
investigated in a modification of this work59 by using UV exposure at < 300 nm. In all the cases 
reported,59 the greatly increased permeability from using ortho-alkylation decreased only slightly after 
UV exposure compared to the large increase initially observed by introducing alkylation. At the same 
time, the selectivity that had decreased significantly from using ortho alkyls increased back toward the 
initial permeability without alkylation present. For example, in table 8-example 3A59, after UV exposure, 
the methyl isopropyl substituted 3FDAM permeability (example 3) only dropped from 50 (57.2 in  
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patent 51,57) to 42 while the selectivity increased from 3.5 to 5.5; but, without any alkyl groups present, the 
permeability was much lower at 3.83, while the selectivity was comparable at 5.0. Thus the concept of 
using ortho alkylation in any diamine, with or without UV exposure, shows great promise of increased 
permeability while maintaining selectivity. 

 

TABLE 8.—PERMEABILITY IN BARRER UNITS AND SELECTIVITY RATIO  
OF UV UNEXPOSED 6FDA/ALKYL SUBSTITUTED 3FDAM POLYIMIDES 

 
 

Example R1 R2 
2Po  ∝(O2/N2) 

1* H H 3.83 5.0 
2 CH3 CH3 25.5 3.0 
3 CH3 i-C3H7 50 and 57.2 3.5 
3A   After UV 
Exposure 

CH3 i-C3H7 42 5.5 

4 i-C3H7 i-C3H7 80.0 3.22 
*Unsubstituted Comparative example 

 

The use of 3F in the dianhydride, instead of the diamine, has also been investigated60 in gas separator 
membranes using as nonalkylated diamines, MPDA, 1,5-diaminonaphthalene (DAN), and 3,3’-
diaminobenzophenone (DAB), and using as ortho-alkylated diamines, 9,9-bis (3-methyl-4-aminophenyl) 
fluorene (BMAPF), 2,4,6-trimethyl meta-phenylenediamine (TMMPDA), and 9,9-bis (3,5-dimethyl-4-
aminophenyl) fluorene (BDMAPF). The results shown in table 9 again clearly show that ortho-alkylation 
of the diamines greatly increases P O2 while also lowering α (O2/N2), compared to the three nonalkylated 
diamines, as was seen also for the 6FDA polyimides in table 8. For example, MPDA versus TMMPDA 
had a 35 fold increase in P O2 while only lowering α(O2/N2) by 40%. However, replacing 6FDA with 
3FDA gave values for 3FDA/BDMAPF that are 40% lower permeability compared the analogous 6FDA 
polyimide, while the 3FDA selectivity showed only a 23% increase to 4.49. The lower P O2 using 3FDA 
versus 6FDA clearly shows the increases in P O2 in table 9, while maintaining or slightly increasing the α 
(O2/N2), is due to the use of ortho-alkylation, rather than the use 3F in either monomer, as the technique 
also works for non 3F diamines.58–59 Thus, 3F technology is only the easy synthetic route to prepare the 
ortho-alkylated 3FDAM monomers. The lack of any technical advantage of 3FDA over 6FDA in this gas 
separator membrane preliminary study60 discouraged further pursuit of 3FDA for gas separator 
applications, although gases other than O2/N2 have not been studied or reported. 

 

TABLE 9.—PERMEABILITY IN BARRER UNITS AND SELECTIVITY RATIO  
OF 3FDA POLYIMIDES CONTAINING VARIOUS UNSUBSTITUTED  

AND ALKYL SUBSTITUTED AROMATIC DIAMINES 
P (O2) ∝ (O2/N2) 

  
3FDA/Various Diamines 
Unsubstituted Diamines 

MPDA 1.25 7.36 
DAN 4.48 6.37 
DAB 0.44 9.01 

  Substituted Diamines 
BMAPE 7.55 6.11 
TMMPDA 43.8 4.43 
BDMAPF 36.2 4.49 
6FDA*/BDMAPF 60.1 3.63 

*Comparative example from reference 53 
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3.3.3   Functionalized Pendant Ethynyl 3FDAM Monomers/Polyimides 
Ethynyl substituted 3FDAM monomers have been prepared42 in a three step procedure by the 

preparation of 4-bromo TFA or 4-iodo TFA, followed by reaction with aniline, and last, the conversion of 
the bromo group to ethynyl or hexylethynyl substitutents and the iodo group to phenylethynyl substitutent 
in overall yields of 53, 51, and 39%, respectively. This is, perhaps, the most elaborate example of the 3F 
pendant phenyl synthetic versatility. Initially the 3F substitution was introduced into the TFA starting 
material in order to synthesize pendant substituted 3FDAM monomer from pendant substituted TFA. This 
was followed by conversion of the pendant substituted 3FDAM monomer into three other pendant 
substituted 3FDAM monomers (EDA, HDA, and PEDA for ethynyl, hexylethynyl, and phenylethynyl 
3FDAM monomers, respectively). Then, during polymerization, the new 3FDAM substitution site was 
used to crosslink the 3F polyimides in order to control and modify subsequent polymer properties. This 
covers the entire gambit of possible places/routes to use 3F technology in order to modify 3F materials as 
follows: in the starting TFA, after the 3F monomer is synthesized and during and/or after the 
polymerization of the 3F polymer, as illustrated in figure 22. 

Using these three ethynyl substituted 3FDAMs, polyimides films were initially prepared42 and 
patented43 with BTDA and 6FDA. The emphasis then shifted to 6FDA copolyimides of all three ethynyl 
substituted 3FDAM monomers mixed with BDAF, while only EDA and PEDA were mixed with 
3FDAM; all five at 10/90 mole percent ethynyl diamine/nonethynyl diamine content. The room 
temperature and 177 °C mechanical properties of the three 6FDA/ethynyl 3FDAM/BDAF copolyimides 
shown in table 10 demonstrate that ethynyl crosslinking drastically reduced the elongation while 
maintaining the tensile strength along with slight to excellent gains in tensile modulus. 

 
TABLE 10.—TOS AND FILM ROOM TEMPERATURE AND 177 °C MECHANICAL 

PROPERTIES OF 6FDA/ETHYNYL CROSSLINKED 3FDAM/BDAF COPOLYIMIDES 

 
Diamine 
with BDAF 

5% weight loss 
by TGA, °C 

 
23 °C tensile properties (150 °C) 

  

 Air N2 Strength, MPa Modulus, GPa Elongation, % 
10% EDA 468 493 102.0  (68.3) 2.87  (2.15)   6.7     (7.5) 
10% HDA 401 493 122.7  (66.9) 3.68  (2.19)   5.9   (12.1) 
10% PEDA 450 493 122.0  (66.2) 3.57  (2.08)   6.1      (47) 
100% BDAF — — 107.6  (71.7) 2.99  (1.93) 26.7    (111) 

 

3.3.4   Pendant Perfluoro Phenyl 3FDAM Monomers/Polyimides  
The pendant phenyl site of TFA has also been used as the site for introducing five more fluorines 

beyond the three fluorines already in the 3F group.48 This was done by condensing o-xylene with 
2,3,4,5,6-pentafluoro-α,α,α-trifluoroacetophenone to produce the tetramethyl precursor to the 8F 
dianhydride (with eight fluorines on the connecting linkage group in a 30 to 40% yield. Oxidation was 
done by nitric acid, followed by dehydration to produce the perfluoro analog of 3FDA (8FDA). This new 
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dianhydride has been studied in polyimides prepared using PPDA, BDAF, meta-6FDAM, 3,4’-ODA and 
TFMB. The 8FDA/PPDA polymer showed slightly better dynamic TGA (Td-5% and 10%) in air and nitrogen, 
slightly higher char yield, but only comparable weight loss of 3.5% after 240 hr of 371 °C air exposure, 
with higher weight loss at 450 hr (6.3 versus 5.3%) when compared to commercially available 
6FDA/PPDA (AVIMID N®). As expected, the 8FDA/PPDA also showed 20 to 30% lower moisture 
uptake after 24 hr at room temperature and a 19 to 24 percent density increase; both caused by the 
increased fluorine content present in 8FDA compared to the commercially available 6FDA/PPDA 
AVIMID N®. More importantly, the dielectric constant (DE) of the five 8FDA polyimides (in the diamine 
order listed above) was 26, 17, 2, 14, and 27% lower than the comparable 6FDA polyimide. The lower 
DE with increasing fluorine content trend is well documented in polyimides used in the microelectronic 
industry, as illustrated later in section 3.3.6. Because the 8FDA polyimides’ TOS appears somewhat 
better during ITA than the 3FDA polyimide ITA TOS reported in this paper, the 8FDA polyimides could 
be viable candidates for many electronic and high temperature applications, only perhaps currently 
limited by a comprehensive Tg study of the 8FDA polyimides and an improved 8FDA synthesis path of 
lower monomer cost. 

3.3.5   Pendant Phenyl, Pendant Phenoxy, and Naphthyl Modified 3FDAM Monomers/Polyimides  
The pendant phenyl site of TFA has also been used as a site to introduce pendant 4-phenyl and  

4-phenoxy groups starting from 4-phenyl TFA and 4-phenoxy TFA and to introduce a 2-naphthyl group 
by replacing TFA with α,α,α-trifluoro-2-acetylnaphthalene in order to synthesize pendant and modified 
3FDAMs.45–47 The α,α,α-trifluoroaryl ketone synthesis was in 60, 51, and 47% yields, respectively.46–47 
These were converted to their respective 3FDAMs in 21, 17, and 12% yields.47 However, starting from 
α,α,α-trifluoro-1-acetylnaphthalene did not produce a naphthyl-modified 3FDAM.45 Instead, it gave an 
imine product, probably due to steric congestions at the 1-naphthyl peri position. The 4-phenyl and 4-
phenoxy pendant substituted 3FDAMs were polymerized with PMDA using PA endcap in a traditional 
solution condensation polymerization technique, providing inherent viscosities of 0.46 and 0.48. The Td’s 

were 511 and 490 °C while the Tg’s were 411 and 360 °C, respectively.46–47 The 2-naphthyl modified 
3FDAM was not examined in polyimides. 

3.3.6   Xanthene Modified 3FDA Monomers/Polyimides 
Additional polyimide rigidity was introduced by the use of two xanthene modified 3F type 

dianhydrides in order to raise the Tg while maintaining high TOS, low moisture uptake, low linear 
coefficient of thermal expansion (CTE), low DE, good polymer solubility and the good processing flow 
needed for film formation in microelectronic applications. The first xanthene modified 3FDA (3FCDA) 
was synthesized61–62 by an 8 hr 120 °C cyclobridging reaction of TFA with 2,3,6,7-tetramethyl 
diphenylether (dixylyl ether, DXE) in 80 to 90% yields followed by oxidation to 3FCDA in 76% yield. 
The patent63 reported that the yield increased to 92% for a six fold larger reaction when done at 130 °C 
for 8 hr, but at 140 °C the yield dropped to 58%. The second xanthene modified 3FDA (3FPXPXDA) was 
synthesized64 as a mixture of two isomers from the two cyclobridging ring closures by the reaction of 
TFA with 1,3-bis (3,4-dimethylphenoxy) benzene (BDMPB) in 50% yield followed by oxidation to the 
doubly bridged 3FPXPXDA in a high but unreported yield. The two 3FPXPXDA isomers were separable 
by successive recrystallizations but used as a mixture for polymerizations. The two 3F xanthene modified 
dianhydride synthesis routes are shown in figure 23. 

The 6F analog, 6FCDA, was also prepared by the cyclobridging DXE route in a much lower 33 to 
41% yield62 (or patent63 yield = 29 to 32%), followed by permanganate oxidation and dehydration to the 
dianhydride in a 60 to 95% yield (or patent63 yield = 61%). However, when 6FCDA precursor was 
synthesized by a one step condensation route of 3,4-dimethylphenol (DMP) forming DXE at the same 
time that DMP and the resulting DXE condensed with HFA, or HFPO, an even lower yield of 17% 
resulted.62–63 Obviously, these competing condensation reactions can also yield additional side products 
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because the TFA and HFA condensations can also proceed ortho to the hydroxyl next to the meta DMP 
methyl, rather than ortho to the hydroxyl but not next to a methyl of DMP, when using condensations 
starting from DMP instead of DXE. This DMP pathway was not investigated using TFA, as the 
cyclobridging DXE pathway was already far superior with 80 to 92% yields compared to the troublesome 
low yield condensation pathway when using HFA. This success reflects very highly on the versatility of 
3F synthesis capabilities. When the condensation path instead followed the cyclobridging pathway 
starting from DXE, instead of DMP, other tetramethyl substitutions could also result from DXE 
condensing with two HFAs or TFAs, thus competing with the cyclobridging reaction. This route was also 
more troublesome using HFA, rather than using TFA, as seen in the lower yields of 29 to 41% for 6F 
versus 80 to 92% for the superior 3F technology. The same was also true when DXE was replaced with 
4,4’-ditolyl ether (DTE) in the synthesis route of analogous xanthene diacids. The yield was only 7% for 
the cyclobridging with HFA versus 73% for TFA,62–63 again clearly attesting to the superior synthetic 
capabilities of 3F chemistry. 

A direct variation on this 3F technology was also reported by reacting meta-trifluoromethyl TFA with 
DXE to provide the corresponding tetramethyl 3F precursor in a 33% yield, but the dianhydride oxidation 
product was only illustrated, not reported,62 in the experimental section. The synthesis of twelve 
additional rigid dianhydrides,62–63,65 some quite similar to 3FDA, have also been reported by this xanthene 
condensation route as follows: using other fluorinated aryl ketones than TFA (perfluoro ethyl, propyl, and 
octyl groups in place of trifluoromethyl groups within TFA and also 4-perfluorohexyl phenyl heptafluoro-
1-butanone), using nonfluorinated aryl ketones (benzophenone and acetophenone) and even using nonaryl 
ketones (1,1,1-trifluoroacetone, perfluoro-2-butanone, acetone, 3-pentanone, cyclopentanone, and 
cyclohexanone), all in place of using TFA. The wide variety of modified 3F linkages formed reflects very 
highly on the versatility of 3F synthetic technology. 

The synthetic versatility compliments the main reason for incorporating 3F technology into xanthene 
ring structures, the initial reason being to make rigid planar dianhydrides for low DE and high Tg desired 
by the microelectronic industry. Interestingly, only some of these goals were met with the 3FCDA 
xanthene ring structure, as it was shown to be nonplanar. Using the bistolyl imide derivative of 3FCDA 
for x-ray analysis, the xanthane ring was shown to be tilted by 10° toward the oxygen bridge, but along 
with a 21 to 22° angle across the xanthene ring, like a butterfly wings along the molecule’s length.62, 66 
The cresent shape in xanthene diahydrides is as due to the difference in the longer carbon-carbon bond 
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length versus the shorter carbon-oxygen bond length in the xanthene ring. Using the tetramethyl 6FCDA 
precursor, the same cresent shape result, but now planar, was found for the 6F analog, as seen by the 
butterfly angle at the xanthene ring was now absent in the x-ray analysis. This suggests the larger 3F 
group at the xanthene ring causes the 21 to 22° angle butterfly fold. Reference 65 reported that the nature 
of the substitutents determined the size of the butterfly angle, with symmetric groups being required for 
planarity, but as size increased, even symmetry could not cause planarity, as with both groups being 
phenyls a 31° butterfly angle resulted. 

The two 3F xanthene type dianhydrides, 3FCDA and 3FPXPXDA have been prepared in traditional 
solution condensation polymerizations with many diamines.65–73 The 3FCDA has been polymerized with 
ODA,65–67 TFMB,65–70 (3,4’-ODA, MPDA, PPDA, 6FDAM, DAN, diaminodurene (DAD)),66–67 (3,5-
diaminobenzotrifluoride (DABTF), 2,5-dimethyl-1,4-PPDA (DMPPDA), 2-chloro-5-methyl-PPDA 
(CMPPDA) and 3,3’,5,5’-tetramethylbenzidine (TMB)),66 2,2’-dimethylbenzidine (DMB),67 ( 2,2’-
trifluoromethoxybenzidine (TFMOB), and 2,2’-tetrafluoroethoxybenzidine (TFEOB)).68–69 The 
3CFDA/TFMB polyimide has also been patented.70 This extensive list of 3FCDA polyimides was 
characterized to show which polyimides exhibited the desirable low DE, low CTE, high TOS, high Tg, 
high molecular weights, low moisture uptake, good polymer solubility, good film quality and good film 
mechanical properties. Generally, the use of 3FCDA versus 3FDA raised Tg, lowered CTE and improved 
polymer solubility while maintaining TOS, DE, film quality and mechanical properties, as extensively 
discussed in references 65 to 69. The well known relationship of low fluorine content to low DE and low 
moisture uptake was also shown for the extensive list of polyimides in reference 67. Besides these 
polyimides, 3FCDA polyimides have been modified with pendant groups (by means other than using 3F 
technology to introduce the pendant groups on the 3F phenyl site as shown in Figure 22), done by 
introducing 2,2-trifluoromethyl-2-heptafluoropropyl-1-ethane groups in the meta position on MPDA.71 
This modified 3FCDA polyimide and its 6FCDA analog, along with a 6FDA control comparison 
polyimide, were all soluble polyimides with good film forming properties, desired because the resulting 
increased fluorine content is part of the continued quest for lower DE of polyimides for microelectronics 
applications. The 3FCDA and 6FCDA polyimides had comparable tensile strength (TS), elongation (E), 
tensile modulus (TM), CTE, DE, and TGA-Td-5% loss. However, the 6FCDA had lower moisture uptake 
(0.06 versus 0.11%), probably due to the higher fluorine content in 6FCDA versus 3FCDA. The control 
6FDA polyimide compared somewhat favorably, but only had about one-half the TS, one-fifth the E, 
three fourths the TM and 40% higher CTE compared to the 3F and 6FCDA polyimides.71 Another 
modified 3FCDA polyimide has also been prepared using poly (propylene oxide) grafts as endcaps when 
copolymerized with 3FDAM/3FCDA polyimides.72 The poly (propylene oxide) endcapped 3FCDA 
polymers will be discussed later in the polyimide nanofoam section 3.3.8 along with PMDA/3FDAM 
nanofoams. 

The even more rigid and longer 3FPXPXDA, compared to 3CFDA, has also been polymerized using 
traditional solution condensation polymerization techniques with ODA, PPDA, DAD, and TFMB.64, 73 
The polyimides all formed good films except PPDA. The other three polymers exhibited low DE, high 
Tg, high TOS, low CTE (except ODA) and good polymer solubility. 

3.3.7   3F-BDAF Monomers/Polyimides 
Two synthetic routes have been used to prepare the 3F analog to 6F based BDAF. The first is 

analogous to the BDAF synthesis using a traditional three-step pathway53 starting from TFA; formation of 
the 3F bisphenol (3FBP),12, 37, 53–56 followed by reaction with p-fluoronitrobenzene and, last, catalytic 
hydrogenation to produce 3FBDAF in a 74% overall yield. Later, the route was changed to a two-step 
pathway74–75 of reacting TFA with 4-nitrophenyl phenyl ether, followed by catalytic reduction to produce 
the 3F analog of BDAF in a 72% overall yield (but the overall yield would have been 82% had the 
identical 3F dinitro precursor reduced in the 91% yield obtained in the earlier three-step route).53 A 
comparison of these routes is shown in figure 24. The multiple routes further demonstrate the versatility 
of 3F synthesis capability. 
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The 3FBDAF monomer has been polymerized with PMDA, BPDA, 6FDA, and also PMDA/6FDA 
mixtures to produce polyimides and copolyimide films74–75 using PA endcaps to control the molecular 
weights. The PMDA/3FBDAF polyimide was semicrystalline and had identical Tg to the 6F analog. The 
copolyimides made by introducing 6FDA into the PMDA/3FBDAF polyimides made the copolyimide 
meltable but also destroyed the semicrystalline nature. 

3.3.8   3FDAM Polyimide Nanofoam Modifications 
PMDA/3FDAM polyimides have been modified for examination as nanofoams, desired for lower DE 

in microelectronic applications. The modifications were done by introducing aliphatic sites and aliphatic 
polymers onto the PMDA/3FDAM polyimides by the use of blocks of poly (α-methyl styrene),76  poly 
(caprolactone),77 poly (propylene oxide)78 and by grafted poly (propylene oxide)79 as shown in figure 25. 
PMDA/mixed 3FDAM and pendant ethynyl 3FDAM polyimides (for use as a crosslinking site to 
strengthen the nanofoam) have also been prepared using poly (α-methyl styrene) as the foaming agent for 
when it depolymerizes and volatilizes.80 3FCDA/3FDAM polyimides have also been modified by the poly 
(propylene oxide) route,72 while 3FCDA/MPDA polyimides have been modified by incorporating 2,2-
trifluoromethyl-2-heptafluoropropyl-1-ethane pendant groups on MPDA.71 However, none of these were 
modified by 3F synthesis technology; rather, changes were introduced as copolymer blocks, grafts, 
pendants, and endcaps, just as had been done for the non 3F polyimide nanofoam technology. The 
nanofoam concept in these cases is to depolymerize or pyrolyze the aliphatics in order to create gaseous 
nano-voids which lower the DE of the polyimide film, (the DE of air being one in order to dilute the 
higher DE of the polyimide). The challenge with this concept has been to produce uniform size and 
distribution of the nano-voids for maximum lowering of the DE. Toward addressing the uniformity 
problem, nanofoams of the PMDA/3FDAM polyimides have been analyzed using transmission electron 
microscopy (TEM),76, 78, 80–82 microdeformation of their thin films83 and small angle x-ray scattering 
(SAXS).77, 79 An extensive review of the nanofoam area, including 3F polyimdes, was recently published 
as reference 84. 
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3.4   Advanced 3F Polymers Other Than 3F Polyimides 

The wide range of 3F compounds already synthesized (section 3.3) clearly demonstrates that the 
synthetic versatility already exists for introducing 3F into many other types of new monomers/polymers 
analogous to the existing wide spectrum of 6F monomers/polymers. The synthetic 3F building blocks 
starting from TFA12–13 are represented by the 3F dicarboxylic acid (3FDCA),11 3FDAM,1–7, 11, 38 3FDA,1–10 
and 3F bisphenol (3FBP)12, 37, 53–56 starting monomers already known. Their existence only awaits the 
expanded use for 3F monomers and modified 3F monomers into advanced 3F polymers (other than 
polyimides). The following sections detail the incorporation of 3F into advanced 3F monomers/polymers 
other than for 3F polyimides. 

3.4.1   Scope of 3F Monomers Known for Other 3F Polymer Types 
Similar to the synthesis of pendant substituted polyimide monomers, 3F synthesis technology can be 

further expanded so the 3F building block (TFA) can start from substituted benzenes to produce 
substituted TFA’s.1, 7, 11, 38, 42–48 Starting from the substituted TFAs, the synthesis of symmetrically 
substituted trifunctional 3F compounds and monomers of 3F trimethyls, triacids, trinitriles, and triamines 
has already been reported11 while the synthesis and uses of pendant 3F triphenols and subsequent 
derivatives are discussed in section 3.4.5. Also starting from substituted TFAs, the synthesis and uses of 
unsymmetrically trisubstituted pendant ethynyl 3FBPs are discussed next in section 3.4.2. Similarly, 
starting from the unsubstituted TFAs, many additional difunctional 3F monomers have also been 
synthesized by condensations with a variety of aromatics, such as ortho xylene for the 3FDA route1–7  
(fig. 2), toluene for the 3FDCA route,11, 37 phenols for the 3FBP route,37, 53–56 aniline for the 3FDAM 
route1, 9, 11–12 (fig. 3) and diphenyl ethers for the 3F xanthene diacid route61–64 (similar to fig. 23). From 
these 3F basic building blocks, additional 3F compounds/monomers have already been prepared, 3F 
dicyanates, 3F bis (aminophenols), 3F diacetyls, 3F bis (aminoketones), 3F diacrylates, 3F diacid 
chlorides, 3F bis (arylchlorides), and 3F tri (perfluorovinyl ethers), for use in advanced 3F polymers 
(other than in 3F polyimides) as discussed in sections 3.4.2 to 3.4.10 to follow. Also, the 3F xanthene 
diacid has been successively converted to the diacid chloride, diazide, diisocyanate, and, last, to the 
diamine (all in reference 62), but none of these have been used in any polymerizations except the two 3F 
xanthene dianhydrides to prepare polyimides as discussed in section 3.3.6. The overall result is that the 
wide range of 3F compounds/monomers synthesized clearly reflects very highly on the ease of 3F 
synthesis capability. Furthermore, use of substituted anilines led to the substituted 3FDAM route9,49-52,54,60 

(section 3.3.2). Thus, the versatility of TFA chemistry clearly is not limited to only the polyimides 
discussed so far, but instead, 3F technology also provides the synthetic route which apples 3F technology 
into a wide variety of new 3F monomers. The variety of 3F monomers represents essential building 
blocks for synthesis of an even wider variety of new advanced 3F polymers, as has started happening in 
the 1990’s. Figure 26 summarizes the synthetic route to the basic 3F building blocks that have been 
modified to prepare more advanced 3F monomers/polymers, all starting from ordinary TFA’s. Of these 
3F building blocks, the 3FBP has been used the most often, as follows: unsubstituted (sections 3.4.2 and 
3.4.3), pendant substituted (sections 3.4.2 and 3.4.5), derivatized (sections 3.4.4 to 3.4.7), and groups next 
to the hydroxyl (section 3.4.8). The 3FDAM building block has been used the next most often both as 
unsubstituted (section 3.4.9) and substituted with groups next to the amine (sections 3.4.7 and 3.4.8). The 
unsubstituted 3FDCA building block has been used the least often (section 3.4.8). A 3F dihalide has also 
been synthesized without going through these basic 3F building blocks, and was used only once (section 
3.4.10). 
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3.4.2   3F Poly (arylene ether)s 
Uncrosslinked 3F poly (arylene ether)s have been prepared55 by the nucleophilic aromatic substitution 

reaction of 3FBP on the aryl dihalides, e.g., 4,4’-dichlorodiphenylsulfone, 4,4’-difluorobenzophenone 
(DFB), bis(4-fluorobenzoyl) benzene and bis(4-fluorophenyl) phenylphosphine oxide, by using p-tertiary 
butyl phenol to control the polymer molecular weight. The resulting poly (arylene ether)s were 
characterized for molecular weight, intrinsic viscosity, Tg, TOS, refractive index, and polymer 
solubility/miscibility. The results showed Tgs from 168 to 221 °C, high TOS, a good match of theory and 
experimental molecular weight, along with many polymer blends being miscible, all as described in 
reference 55. 

Crosslinkable 3F poly (arylene ether)s have also been prepared by the use of ethynyl pendant 
substituted 3FBP monomers.44,56 The monomer synthesis was a three step procedure analogous to that 
used for the ethynyl substituted 3FDAM monomers discussed in section 3.3.3. As before, the procedure 
was to prepare 4-bromo TFA or 4-iodo TFA, followed by reaction with phenol, instead of with aniline, 
and last, again the conversion of the bromo group to ethynyl or hexylethynyl substitutents and the 
conversion of the iodo group to the phenylethynyl substitutent to synthesize ethynyl, hexylethynyl, and 
phenylethynyl 3FBP monomers (EBP, HBP, and PEBP, respectively); all, coincidentally, in overall yields 
of 51%. The successful application of an analogous synthetic route further attests to the wide scope of 3F 
synthetic technology. 

As before with the crosslinkable polyimides, ethynyl sites were introduced into 3FBP to crosslink the 
poly (arylene ether)s in order to control and modify the resulting polymer properties. Thus, crosslinkable 
3F poly (arylene ether)s were prepared44,56 by nucleophilic aromatic substitution of the pendant ethynyl 
modifed 3FBP with DFB, often producing insoluble polymers as shown in table 11A. Alternatively 10% 
of EBP, 10% of noncrosslinkable 4-bromo 3F bisphenol (BBP), 10% PEBP and 30% of PEBP were each 
mixed with 6F bisphenol (6FBP), after which all four bisphenol mixtures and 100% of 6FBP as a control 
were polymerized with DFB. The resulting five polymers were characterized for inherent viscosity and 
Tg (table 11B) and TGA-TOS and film mechanical strength (table 11C). The results showed the 
toughness and solubility of the crosslinkable copolymers could be systematically controlled by varying 
the amount of ethynyl 3FBPs, which ultimately controlled the final crosslink density, similar to that result 
shown for the ethynyl crosslinked 3F polyimides in section 3.3.3. 
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TABLES 11A, B, AND C.—SOLUBILITY, VISCOSITY, Tg, TOS, AND ROOM TEMPERATURE 
FILM PROPERTIES OF DFB/ETHYNYL 3F BISPHENOL POLYMERS/COPOLYMERS. 

 
TABLE 11A.—INHERENT VISCOSITY  

OF 3F POLY (ARYLENE ETHER)S 
Bisphenol 
monomer 

Bisfluoro 
monomer 

ηinh, 
dL/g 

BBP DFB 1.15 
EBP DFB Insoluble 
HBP DFB Insoluble 
PEBP DFB 0.38 

 
TABLE 11B.—CHARACTERIZATION OF DFB/BPAF-BASED 3F COPOLYMERS 

DSC Tg, °C Bisphenol 
with BPAF 

ηinh, 
dL/g Initial Finala 

10% BBP 1.4 170 170 
10% EBP 0.89 172 185 
10% PEBP 0.92 165 179 
30% PEBP 0.52 162 184 
100% BPAF 0.35 168 168 

aAfter heating to 350 °C for 1 hr. 
 

TABLE 11C.—THERMAL STABILITY AND THIN FILM PROPERTIES OF  
3F POLY(ARYLENE ETHER) POLYMERS AND COPOLYMERS 

Bisphenol  
with BPAF 

5% weight loss 
by TGA, °C 

 
23 °C tensile properties (150 °C) 

  

 Air N2 Strength,  MPa Modulus, GPa Elongation, % 
10% BBP 484 490 54.5  (28.9) 1.80  (1.58) 60      (76) 
10% EBP 461 484 71.0  (33.8) 2.36  (1.79) 6.1      (9.1) 
10% PEBP 455 487 68.9  (33.8) 1.96  (1.48) 96      (180) 
30% PEBP 452 484 65.5  (31.0) 2.35  (1.60) 4.8      (4.8) 
100% BPAF 476 493 65.5  (27.6) 2.24  (1.37) 9.9      (1.3) 
      

3.4.3   3F Polyarylates (3F Aromatic Polyesters) 
Polyarylates of 3F aromatic polyesters have been prepared from 3FBP condensed with 6F 

dicarboxylic acid (6FDCA),85–86 4,4’-diphenyldicarboxylic acid (DPDCA),85–86 terephthalic acid (TA)87–89 
and isophthalic acid (IA).87–89 Films of the 3FBP/DPDCA polyarylates provided86 similar TS, E at break 
and elasticity modulus over a 20 to 250 °C range when compared to four polyarylates made with similar, 
but nonfluorinated bisphenols (replacing the trifluoromethyl group with hydrogen, methyl, phenyl, and 
replacing the 3F linkage with a 9,9-fluorene group). The 3F Tgs were all reported85–89 between 290 and  
320 °C in 10 °C intervals except for the IA polyarylate which was 260 °C. The TGA-TOS (Td-incipient and 
Td-20% loss) in nitrogen were 446 and 484 °C for theTA/3FBP polyarylate compared to 438 and 512 °C for 
the analogous TA/6FBP polyarylate.88–89 The TGA weight losses in nitrogen of the 3FBP versus 
6FBP/TA polyarylate were initially comparable,88 with 3F first providing 0.5% less weight loss at 450 °C 
(thus providing the slightly better 3F Td-incipient in the above sentence). However, the trend dramatically 
crossed over by 500 °C, with 3F exceeding 6F by 26% weight loss (thus providing the much better 6F Td-

20% loss). As temperature increased, 6F accelerated to catch up in weight loss, such that 3F then loses only 
slightly more weight (4.5%) than 6F at 550 °C, but finally 3% less at 600 °C (thus providing the higher 
final 3F char yield). Not unexpectedly, the same crossover trend is in total agreement to the trend 
observed for the 3FDA versus 6FDA/PPDA polyimides shown earlier in figure 4. In fact, the analogous 
polyarylate TGA figure would look remarkably similar, except shifted about 50 °C lower and the 3F Td-

incipient being slightly before the 6F Td-incipient instead of slightly after as in 3F versus 6F polyimide TGAs 
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shown earlier in figure 4.The disappointing TGA results85–89 caused the workers to abandon 3F as they 
were instead actively pursing higher polymeric TOS at that time. 

3.4.4   3F Polydimethacrylates for dental composites 
The 3FBP has also been incorporated into a set of twelve experimental acrylates90 by using four 

different bisphenol connecting linkages, 2,2-propane, phenyl phospine oxide, 6F and 3F, for the 
bisphenols, each then reacted with three different acrylates, varied by a hydroxyl, hydrogen, and methyl 
group on the acrylate. This was done to alter the hydrogen bonding, affecting the viscosity for their use as 
dental composite resins. The state-of-the-art is the Bisphenol A dimethacrylate (Bis-GMA) diluted with 
triethylene glycol dimethacrylate (TEGDM) in order to obtain an appropriate working viscosity for filling 
dental cavities. However, more diluents adversely affected the dental composite properties. The initial 
study91 only compared the Bis-GMA with methylated 3F Bis-GMA and methylated Bis-GMA. That study 
found the 3F version provided the correct viscosity range by only using 6.5 to 14% TEGDM diluent 
compared to 27.5 to 33.5% TEGDM diluent needed for Bis-GMA. The methylated Bis-GMA was too 
fluid, even without any TEGDM diluent, to be used. This dramatic viscosity lowering effect was 
accomplished while still providing comparable contact angle, lowest shrinkage during polymerization 
(6.39 lowered to 5.35%) and lowest water uptake (3.05 lowered to 0.91%), presumably due to the fluorine 
content of 3F. The later work90 then incorporated the 6F and phenyl phosphine oxide Bis-GMAs along 
with the hydrogen substituted acrylates to complete the twelve resin set. In the later expanded data set,90 
the new results showed that now the methylated 6F Bis-GMA was superior to the previously superior 
methylated 3F Bis-GMA in both lower viscosity (0.8 versus 3.7 pascal seconds), lower shrinkage (4.4 
versus 6.3%-undoubtly due to the 6F Bis-GMA did not require any TEGDM dilution), and a comparable 
low moisture uptake (0.18 versus 0.16%). Thus, 3F technology again came out second best compared to 
6F technology as has often happened previously in many other 3F applications. It should also be noted 
that the lower viscosity for the 6F resin versus 3F is in agreement with the resin remelt viscosity discussed 
in section 3.1.4, and with the 3F PETI resins discussed in section 3.2.4, but not in agreement with the 
lower processing viscosity when using reactive diluents as discussed in section 3.2.4. 

3.4.5   3F Perfluorocyclobutane Poly (aryl ether)s for Wave Guides 
The synthesis capability of 3F technology was also further demonstrated by using a similar route to 

the 3FBP to synthesize a pendant 3F trisphenol.92 Para hydroxyl TFA was reacted with phenol to form an 
additional pendant type 3F compound where all the groups are the same, the 3F trisphenol, in an 85% 
yield. The 3F trisphenol was then converted to the tri-potassium salt, followed by the nucleophilic 
displacement reaction on 1,2-dibromotetrafluoroethane to form the tris (2-bromotetrafluoroethoxy) 
derivative of 3F trisphenol in a 77% yield. A dehalogenation reaction with zinc then formed the tris 
perfluoro vinyl 3F phenyl ether in a 67% yield. The ease of these syntheses in high yields again reflects 
highly on the versatility of 3F synthesis technology.  

A series of five difunctional perfluoro vinyl ethers, based on various bisphenols containing fluorine, 
including 6FBP but not 3FBP, was also synthesized.92 These type of highly fluorinated polymers are 
desirable because their low amount of carbon hydrogen bonds minimizes optical loss and provides the 
low CTE and high Tg needed for optical waveguide materials. However, all the difunctional ones 
provided soluble perfluorocyclobutane containing poly (aryl ethers) of Tg from 91 to 131 °C after the 
cyclodimerization polymerization. Only the 3F tris perfluoro vinyl ether provided the desirable high Tg 
(> 400 °C), but was insoluble after both solution and bulk polymerizations. To circumvent the insolubility 
problem, the 3F tris perfluoro vinyl ether was dimerized as a partial reaction step, thereafter cast into 
films before completing the thermal polymerization. By this technique, the 3F tris perfluoro vinyl ether 
provided the lowest CTE (89 ppm/°C versus 104 to 151 ppm/°C) and the highest TGA-TOS in 
air/nitrogen (449/452 °C versus 382 to 420/399 to 450 °C) while providing a low birefringence (0.0008), 
and negligible near IR absorbance at 1550 nm compared to the five non 3F perfluorovinyl ethers. Only 
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the 6F bis perfluoro vinyl ether provided a lower (–0.0005) birefringence, so the author92 suggested the 
next work should be to combine the 6F bis perfluoro vinyl ether with 3F tris perfluoro vinyl ether to 
obtain the correct balance of properties for optical waveguide applications. 

3.4.6   3F Polycyanurates 
Another derivative of the 3FBP building block is the biscyanate,93 prepared as one of a series of 

bisphenols used to prepare dicyanate monomers in unspecified yields, each from their corresponding 
bisphenols containing phenyl phosphine oxide, sulfone, carbonyl, diphenoxy phenyl sulfone, and 3F 
linkages. The 3F dicyanate monomer was prepared as one of a series of five dicyanates, each by reacting 
cyanogen bromide and the corresponding bisphenol at low temperature. After cyclotrimerization of the–
OCN group to form the polycyanurates, the 3F polycyanurate provided the highest Tg, widest processing 
window and second highest TGA-TOS, but only the phenyl phosphine oxide dicyanurate provided any 
char yield in air TGA (32% at 750 °C compared to 0% for the other four polycyanurates) as reported in 
reference 93. Thus, 3F again lost out, as later efforts were towards the phenyl phosphine oxide monomer 
for low flammability resins. 

3.4.7   3F Polyquinolines 
Another derivative of the 3FBP building block is the diacetyl compound,94 prepared as one of the two 

monomer types used for polyquinolines. It was prepared by the nucleophilic substitution reaction of the 
3FBP salt on 4-fluoroacetophenone as shown in figure 27. This 3F monomer was then condensed with a 
derivative of 3FDAM building block, the 3F diamino diphenylacetyl or 3F diamino diacetyl monomer, to 
produce 3F polyquinolines in examples 3 and 8 of a patent.94 The patent also reported the work with the 
corresponding 6F monomers for a total of eight fluorinated linkage monomer combinations, besides using 
the diamino diacetyls or diphenylacetyls without fluorinated linkages, further expanding the 
polyquinolines claimed/reported. As long as there was a 3F or 6F in one or the other linkage, the 
polyquinolines formed had high Tg (200 to 350 °C), low DE, low moisture uptake and good solubility in 
chloroform, toluene, N,N-dimethylacetamide (DMAc) and NMP. Also claimed in reference 94 are 
numerous examples of AB acetophenone/ortho aminoketone type monomers, including those with 3F and 
6F linkages; however, the examples did not make it clear which AB type monomers had been really 
synthesized. 

3.4.8   3F Polybenzoxazoles 
The 3FBP building block was also derivativized into another 3F monomer, the 3F bis aminophenol,54 

for use in synthesizing polybenzoxazoles (PBOs). The original 3F workers11, 37 prepared the dinitro 3FBP 
(example 8 of reference 37) in a 74% yield by nitrating the 3FBP in acetic acid/nitric acid to form the 
3,3’-dinitro 3FBP. Later workers obtained the same result in a 95% crude yield (75% recrystallized 
yield), followed by catalytic reduction to the 3,3’-diamino 3F bisphenol (3FAP) monomer in a 99% crude 
yield (30% reprecipitated yield).54 The high yields and reaction ease reflect highly upon the capability of 
3F synthesis technology; in this case, avoiding nitrating the 3F pendant phenyl, as the phenol ring is much 
more reactive toward electrophilic substitution than the 3F phenyl ring. This is opposite of what is seen 
during the nitric acid oxidation of the 3F tetramethyl precursor to 3FDA, in which the 3F pendant phenyl 
nitrates as easily as the methylated phenyls oxidize during nitric acid oxidation (section 2.1 and 
references 7 and 8). 

Polymerizations in tetrahydrofuran (THF)/NMP with terephthaloyl chloride (TC) produced the poly 
o-hydroxyl amide (PHA) followed by cyclization to the PBO by using o-dichlorobenzene to azetropically 
remove the water formed.54 The complete characterization of the resulting PBO and six additional 3F 
containing PBOs was reported in a subsequent paper95 as follows: one 3F monomer, 3FAP, was 
polymerized with TC, isophthaloyl chloride (IC), 3F diacid chloride (3FAC), 6F diacid chloride (6FAC), 
and diphenyl ether diacid chloride (ODB) while the other 3F monomer, 3FAC, was prepared54 by the  
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reaction of thionyl chloride and 3FDCA building block and then polymerized with 3FAP, 3,3’-diamino 
6F bisphenol (6FAP) and 3,3’-dihydroxybenzidine (DHB). 

The paper95 reported the inherent viscosity of the PHAs and the intrinsic viscosity of the resulting 
cyclized PBOs along with the Tg and TGA-Td-5% loss. This data is shown in table 12. In all five 
comparisons of 3FAP versus 6FAP monomers, the PBO intrinsic viscosity was always lower for the 3F 
analogs, and the 3F PBOs were thus slightly more soluble but gave poorer films than their corresponding 
6F systems; presumably all these effects being due to the lower 3F molecular weight as evidenced by the 
lower inherent viscosities. In all the comparisons containing 3FAC versus 6FAC monomers, the PBO 
intrinsic viscosity was only less for the DHB/3FAC versus 6FAC solution (0.45 versus 0.52); instead 
being greater when both monomers contained fluorinated linkages, i.e., 3FAP/3FAC versus 6FAC was 
0.27 versus 0.26 and 6FAP/3FAC versus 6FAC was 0.48 versus 0.41. Much the same was true for the 
inherent viscosities of the PHAs. In all cases, the 3F inherent viscosity was less than the 6F inherent 
viscosity except for DHB/3FAC versus 6FAC (0.73 versus 0.61) and 3FAP/3FAC versus 6FAC (0.29 
versus 0.27). The authors95 also suggest the lower intrinsic PBO viscosities compared to the 
corresponding higher inherent PHA viscosities are due to degradation during the benzoxazole cyclization, 
but they also admitted that the evidence is somewhat weak. The apples-to-oranges comparison of the two 
different viscosities (intrinsic versus inherent) tends to negate the comparison between the two polymer 
types and the subsequent claims for polymer degradation during the cyclization reaction to benzoxazoles. 
A later paper96 republished this data, without the DHB polymers, but with an additional table of solubility 
data. They did note that the 3F PBOs tended to be more soluble than the 6F PBOs and also included more 
extensive data on the polymerization method used. 

More interestingly, Tg data of the five 3FAP versus 6FAP polymer pairs in table 12 shows that the 3F 
Tg was always at least equal to and often greater than the 6F analog. However, the three 3FAC versus 
6FAC comparisons possible in table 12 show the 3F Tg was roughly equal to or less than the 6F analog, 
i.e., DHB/3FAC versus 6FAC was 350 versus 345 °C, 3FAP/3FAC versus 6FAC was 330 versus 334 °C 
while 6FAP/3FAC versus 6FAC was 310 versus 336 °C. The later paper96 summarized the Tg data saying 
the 3F versus 6F Tgs were all similar except the 6FAP/3FAC versus 6FAC as noted above. Earlier, the 3F 
versus 6F polyimide Tg conclusion in section 3.1.1 stated that 3FDA and 6FDA polyimide Tgs were 
virtually identical while the 3FDAM and 6FDAM polyimide Tgs were consistently higher by 15 to 30 °C 
for the 3FDAM polyimides. If one views the 3FAC as the same para ring structure as 3FDAM and views 
cyclized 3FAP as the same ring structure as 3FDA (minus the carbonyls), then the Tg results might show 
the same trend, i.e., 3FAP/3FAC corresponds to 3FDA/3FDAM, for when a thermal-induced segmental 
polymer chain rotation is allowed at the 3F or 6F linkage, to define the Tg. Instead the trend seems 
reversed; for polyimides with the 3FDA gave the same polyimide Tg as 6FDAwhile 3FAP gave a higher 
Tg than 6FAP. Conversely, 3FDAM gave higher polyimide Tg than 6FDAM, while 3FAC gave only 
equal or lower Tg than 6FAC. Thus, any quest for higher Tg (3F versus 6F linkages) needs to be 
examined in each polymer type rather than predicting results by analogy to similar polymer ring 
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structures. Of much less interest, the TGA-Td-5%loss reported95 ranged from 509 to 547 °C without a 
consistent trend of which would be greater for each 3F/6F PBO pair reported in table 12. 

 

TABLE 12.—SOLUTION AND THERMAL PROPERTIES OF 3F AND 6F CONTAINING POLYBENZOXAZOLES 

 
Polybenzoxazoles ηinh

a 
dl/g 

[η]b 

dl/g 
Tg 
°C 

5% Weight Loss 
°C 

6FAP-ODB 0.92 1.08∗ 280 534 
3FAP-ODB 0.48 0.29 299 547 
6FAP-3FAC 0.44 0.48 310 529 
3FAP-3FAC 0.29 0.27 330 514 
6FAP-IC 0.62 0.54∗ 296 512 
3FAP-IC 0.31 0.26 301 524 
6FAP-TC 0.65 0.45∗ 361 531 
3FAP-TC 0.37 0.20∗ 369 536 
6FAP-6FAC 0.56 0.41∗ 336 531 
3FAP-6FAC 0.27 0.26 334 520 
DHB-6FAC 0.61 0.52 345 534 
DHB-3FAC 0.73 0.45 350 509 
aInherent viscosity of PHA measured in NMP 
bIntrinsic viscosity of PBO measured in NMP (unless starred) 
∗Measured in m-cresol 

 
Similar to above, the 3FBP building block was also used to synthesize three other 3F PHAs and 

PBOs. However, in this report,97 the 3FBP was expanded to a longer 3F diacid chloride (while above it 
was nitrated and reduced to the 3F bis aminophenol, 3FAP). The synthesis was done98 by the nucleophilic 
displacement of 3FBP on p-fluorobenzonitrile in 72% yield, followed by alkaline hydrolysis to the 3F 
diacid analog of 3FBDAF, 1,1-bis[4-(4-carboxyphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane 
(3FBDCF), in 98% yield. The diacid was then reported97 to convert to the 3F diacid chloride in almost 
quantitative yield by reaction thionyl chloride. As mentioned before, the widening variety of 3F 
monomers reflects very highly on the versatility and ease of 3F synthetic technology. 

A series of three, 3F PHAs and their cyclized PBOs were then prepared using 3FBDCF polymerized 
with 6FAP, DHB, and 3,3’-diamino-4,4’-dihydroxy-biphenyl (p-DHB). The inherent viscosity (0.5 g/dl in 
DMAc) of the PHAs was 0.39, 0.62, and 0.98, respectively, after which all viscosities (0.5 g/dl in 
concentrated sulfuric acid (con. H2S04)) decreased after cyclization to PBOs to 0.29, 0.54, and 0.66, 
respectively. The three, 3F PHAs were all soluble in NMP, DMAc, N,N-dimethyl formamide (DMF), 
dimethylsulfoxide (DMSO), while the 6FAP PHA was also soluble in THF and m-cresol, probably from 
its low molecular weight as indicated by the lowest PHA viscosity. After cyclization to PBOs, the three 
3F PBOs were only soluble in con. H2SO4, except the 6FAP was also soluble in nonacid solvents, 
probably because both monomers contain fluorinated connecting linkages. The film properties of DHB 
and p-DHB PHAs were TS 88 and 82 MPa, E both 18% and TM 2.3 and 2.1 GPa, respectively. After 
thermal cyclization to PBOs, the film mechanical properties changed to TS 81 and 99 MPa, E 7 and 9%, 
and TM both 2.2 GPa, respectively. The 6FAP PHA and PBO did not cast suitable films for mechanical 
testing. X-ray analysis of all six 3F polymers showed they were amorphous. The 6FAP, DHB, and p-
DHB/3FBDCF PHAs films were characterized by DSC for Tg (129, 130, and 137 °C, respectively), 
Tendotherm, onset (234, 245, and 248 °C, respectively) and Tendotherm, max (296, 280, and 299 °C, respectively). 
The 6FAP, DHB, and p-DHB/3FBDCF PBOs films were characterized by DSC for Tg (222, 236, and 231 
°C, respectively), by TMA for Tsoftening (Ts = 211, 245, and 240 °C, respectively), and by TGA for Td-10% 
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loss (air = 542, 549, and 539 °C; nitrogen = 556, 562, and 561 °C, respectively) and char yield (nitrogen = 
63, 68, and 67%, respectively). 

In the same paper,97 the analogous PHA and PBO polymers were prepared using the methyl analog of 
3FBDCF monomer. The characterization of the methyl PHA versus 3FBDCF PHA exhibited similar 
viscosity, similar film mechanical properties (except lower TS and E for the 6FAP/methyl analog), higher 
Tgs, and similar Tendotherm onset and maximum. The methyl PBOs compared to 3FBDCF PBOs exhibited much 
lower viscosity, similar film mechanical properties (TS, E, and TM), similar Tg, similar Ts and similar Td-

10% in air and nitrogen and similar char yield. The complete comparative characterization data for the 3F 
and methyl analog polymers is listed in tables 1 to 3 of reference 97. 

3.4.9   3F Polyamides 
The 3FDAM building block has also been polymerized with TC to prepare polyamides, in this case 

called polyterephthalamides. The paper99 reported the polymerization of 3FDAM and 6FDAM with TC in 
NMP, then comparing the 3F/6F results of intrinsic viscosity (0.40 versus 0.41), Tg (332 versus  
323 °C), ITA at 400 °C (1.7 versus 1.8%/hr) and TGA-Td-5% loss (both 460 °C). The results were virtually 
identical, except that the 3F Tg was 9 °C higher, which agrees with the polyimide Tg results that 3FDAM 
provides higher Tg than 6FDAM (section 3.1.1). These aramids, along with the BDAF/TC and 9,9-
dianiline fluorene/TC polyamides, were reported to have high thermal stability and could be redisolved in 
polar aprotic solvents. They also all formed fingernail creaseable films. Thus, as has been seen before in 
many polymer types, 3F appears not to provide any clearcut advantage versus the existing 6F technology, 
other than the lower cost and the one step 3FDAM monomer synthesis route discussed (originally 
reported11 and discussed in section 2.1). Not even the advantageous easier polymerizability1, 12 (section 
2.1) of 3FDAM versus 6FDAM due to the higher reactivity14–15 was observed or mentioned in  
reference 99. 

Another paper recently reported98 a more extensive set of 3F modified polyamides using both the 3F 
analog of BDAF (prepared as discussed in section 3.3.7 and reference 53) and the 3F diacid analog of 
BDAF, 3FBDCF (prepared as discussed in section 3.4.8 and reference 98). Using the diamine, 3FBDAF , 
nine polyamides were prepared by the phosphorylation technique with TA, IA, DPDCA, 6FDCA, 4,4’-
oxydibenzoic acid (OBA), 4,4’-sulfonyldibenzoic acid (SBA), 5-tert-butylisophthalic acid (t-BIA), 2,6-
naphthalenedicarboxylic acid (26NA) and 1,4-naphthalenedicarboxylic acid (14NA). Using the diacid, 
3FBDCF, eight more polyamides were also prepared by the phosphorylation technique with  
PPDA, MPDA, ODA, benzidine (BZ), 1,4-bis(4-aminophenoxy)benzene (p-BAB), 1,3-bis(4-
aminophenoxy)benzene (m-BAB), 4,4’-bis(4-aminophenoxy)biphenyl (BABB), and bis [4-(4-
aminophenoxy)phenyl]ether (BAPE). All were shown to be amorphorus by x-ray analysis. The  
seventeen polyamides were extensively characterized for inherent viscosity (0.51 to 1.54 dl./g), Mw 
(36,200 to 80,000), Mn (17,200 to 64,300), molecular weight peak maximums (20,400 to 135,000), 
solubility (NMP, DMAc, DMF, DMSO, m-cresol, and THF; most were soluble in all solvents), yield 
strength (83 to 97 MPa), TS (76 to 94 MPa), E (6 to 69%), M (1.70 to 2.22 GPa), Tg (eight 3FBDCF = 
185 to 266 °C, and nine 3FBDAF = 220 to 260 °C), Ts (eight 3FBDCF = 190 to 268 °C and nine 
3FBDAF = 222 to 259 °C), Td-10% (air = 502 to 548 °C, nitrogen = 509 to 563 °C), and char yield (57 to 
67%). The complete characterization data is in tables 1 to 3 in reference 98. 

In addition to the 3F polyamides, reference 98 also compared the polyamide Tgs and stability via 
TGA of the methyl analog of 3FBDAF and 3FBDCF with their respective trifluoromethyl analogs 
(discussed above). The methyl monomers were synthesized, polymerized and fully characterized in 
reference 100. The comparison of methyl to trifluoromethyl polyamide Tg and Td data is in table 3 of 
reference 98. The results showed that the methyl analog polyamides Tg was usually lower by as much as 
43 °C and Td in air was always lower by as much as 65 °C and the Td in nitrogen was mostly lower by as 
much as 65 °C. 
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3.4.10   3F Polyphenylenes 

At the American Chemical Society Polycondensation ’98 meeting September 27–30, 1998, in 
Annapolis, Maryland, a talk was presented that reported the polymerization of aromatic dihalides to form 
6F based polyphenylenes by the use of nickel catalyzed couplings of the aromatic dihalides. Data was 
also presented about the extensive characterization of the linear 6F polyphenylenes, however during the 
presentation a slide showed that the same chemistry had also been done with the analogous 3F dihalide 
monomer, with the final paper to be published later. However, when the paper101 was published, it did not 
also present the limited analogous 3F polyphenylene data, so this review can only say that 3F 
polyphenylenes have been studied similar to the 6F polyphenylenes in reference 101. It is not known if 
there has been any work planned or on-going towards preparing a 3F aromatic trihalide for use as a 
branching point in the linear 3F or 6F polyphenylenes. However, this is an obvious feasible application of 
3F as a synthesis technology, as discussed in this review, by using the 3F pendant phenyl to introduce the 
third halide for use as the branching site. From all the discussion within this review, it should be an easy, 
high yield, one step reaction for 3 or 4 chloro trifluoroacetophenone to react with chlorobenzene to 
prepare the 3F triaryl chloride in one high yield step for use in small amounts to branch 3F or 6F 
polyphenylenes by polymerization techniques in reference 101. A number of trifunctional 3F compounds 
have been previously prepared as discussed in section 3.3, but the trihalide has not been previously 
prepared. The pendant phenyl has already been demonstrated in section 3.3.3 as a site to introduce 
ethynyl groups for crosslinking polyimides in order to control and modify subsequent polymer properties. 
Thus, this could easily be another demonstration of the capability of superior 3F synthesis technology and 
the use of a tris monomer to control and modify subsequent polymer properties. 

3.4.11   3F Polybenzimidazoles and 3F Pyrones 
Although polybenzimidazoles (PBI) and pyrones seem to be obvious uses for the 3F building blocks, 

3F DCA, and 3FDA, reports of their reaction with any number of aromatic tetraamines to produce PBIs 
and pyrones was not found in the literature. If they do exist somewhere, our apologies for our failure to 
locate them in order to incorporate them into this review. 

4. Concluding Remarks 
In spite of 3F polyimides clearly being thermo-oxidatively inferior as replacements for 6F polyimides 

for jet engine applications, all the activity generated after our initial 3F polyimide publication1 could 
easily have lead to development of 3F technology as the next generation of low cost, intermediate use 
temperature fluorinated resins. This includes a wide variety of specialty 3F polymer applications for 
aerospace and microelectronics because of the lower cost than commercial 6F technology and their 
expanded synthetic versatility over 6F resins. Thus, it appears that everything 6F does for polymers, 
except improved TOS and lower dielectric, 3F technology can also achieve. Unfortunately, other than the 
ability to functionalize the pendant 3F phenyl group to control or modify polymer properties, a clear 
technical advantage of 3F versus 6F polymers remains elusive, leaving 3F as the “poor mans” 6F polymer 
technology due to potential lower 3F starting material and synthesis costs. Today, 3F technology still 
awaits the identification and the subsequent development of additional polymer applications that can not 
be done using existing 6F polymer technology, instead of being just another “me too” technology. 
Hopefully, this article will cause that progress to happen. As a result of work to date, nine U.S. patents2–7, 

9, 37, 43 have been issued to the U.S. Government with one licensed9 to industry. Also, technical 
interactions with associates have independently resulted in the issue of nine US patents8, 10, 21, 33–34, 51, 57, 70, 

94 to industry. However, without specialized 3F applications being identified, the current state of 3F 
technology will not be likely to compete or displace the 6F technology that is firmly in place in the 
marketplace. The market being so small, yet mature, no room seems to exist for the competing 3F 
polymers technologies. The lower cost and superior expanded synthetic capability of 3F technology has 
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been clearly demonstrated. Further use of 3F technology clearly depends on creative identification of new 
opportunities where 3F technology can succeed. 

References 
1. Alston, W.B. and Gratz, R.F., in “Recent Advances in Polyimide Science and Technology,” Society 

Plastic Engineers Publications, NY, pp. 1–15, 1987. 
2. Alston, W.B. and Gratz, R.F., U.S. Patent no. 4,758,380, July 19, 1988. 
3. Alston, W.B. and Gratz, R.F., U.S. Patent no. 4,885,116, Dec. 12, 1989. 
4. Alston, W.B. and Gratz, R.F., U.S. Patent no. 4,912,238, Mar. 27, 1990. 
5. Alston, W.B. and Gratz, R.F., U.S. Patent no. 5,861,540, Jan. 19, 1999. 
6. Alston, W.B. and Gratz, R.F., U.S. Patent no. 4,845,167, July 4, 1989. 
7. Alston, W.B. and Gratz, R.F., U.S. Patent no. 5,011,955, April 30, 1991. 
8. Scola, D.A., U.S. Patent no. 4,742,152, May 3, 1988. 
9. Alston, W.B. and Gratz, R.F., U.S. Patent no. 5,334,733, Aug. 2, 1994. 
10. Scola, D.A., U.S. Patent no. 4,863,640, Sept. 5, 1989. 
11. Kray, W.D. and Rosser, R.W., J. Organic Chemistry, vol. 42, no. 7, pp. 1186–1189, April 1977. 
12. Grubbs, H.J., Monomer Synthesis and Polymer Pyrolysis, Ph.D. Thesis, Virginia Polytechnic 

Institute and State University, July 1992. 
13. Boschan, R.H., Marrocco, M., and McGrath J., Thermally Stable Organic Polymers, ARO Contract 

Final Report DAALO3-92-C-0021, June 1994. 
14. Fjare, D.E., American Chemical Society Polymer Preprints, vol. 34, no. 1, pp. 373–374, Mar. 1993. 
15. Fjare, D.E., Macromolecules, vol. 26, no. 19, pp. 5143–5148, Oct. 1993. 
16. Ansari, A.S., Turk, M.J., Alston, W.B., Frimer, A.A., and Scheiman, D.A., in “HITEMP Review 

1995”, NASA CP-10178, pp. 10–1 to 10–11, Oct. 1995. 
17. Alston, W.B., American Chemical Society Polymer Preprints, vol. 27, no. 2, pp. 410–411, Oct. 1986. 
18. Alston, W.B., in” High Temperature Polymer Matrix Composites”, NASA CP-2385, pp. 187–205, 

Sept. 1985. 
19. Alston, W.B., International Technical Society for the Advancement of Material and Process 

Engineering (SAMPE) Conference Series, vol. 18, pp. 1006–1014, Oct. 1986. 
20. Alston, W.B., American Chemical Society Polymer Preprints, vol. 33, no. 1, pp. 428–430,  

Apr. 1992. 
21. Scola, D.A., U.S. Patent no. 4,801,682, Jan. 31, 1989. 
22. Hu, A.J., Hao, J.Y., He, T., and Yang, S.Y., Macromolecules, vol. 32, no. 24, pp. 8046–8051,  

Dec. 1999. 
23. Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A., and Scheiman, D.A., J. Polymer 

Science, Part A: Polymer Chemistry, vol. 37, no. 21, pp. 3943–3956, Nov. 1999. 
24. McGrath, J.E., Grubbs, H., Rogers, M.E., Mercier, R., Joseph, W.A., Alston, W., Rodriguez, D., 

and Wilkes, G.L., American Chemical Society Polymer Preprints, vol. 32, no. 2, pp. 103–104, June 
1991. 

25. Rogers, M.E., Grubbs, H., Brennan, A., Rodrigues, Wilkes, and McGrath, J. E., in “Advances in 
Polyimide Science and Technology,” Technomic Publishing Co., Inc., Lancaster, PA, pp. 33–40, 
1993. 

26. Rogers, M.E., Woodard, M.H., Brennan, A., Cham, P.M., Marand, H., and McGrath, J.E., 
American Chemical Society Polymer Preprints, vol. 33, no. 1, pp. 461–462, April 1992. 

27. Alston, W.B. and Gratz, R.F., NASA Technical Memorandum TM 89875 and AVSCOM Technical 
Report TR 87-C-7, in “Recent Advances in Polyimides and Other High Performance Polymers,” 
American Chemical Society Interdisciplinary Symposium, Poster Abstract no. 1, Reno, NV,  
July 1987. 



NASA/TM—2006-214235 41

28. Alston, W.B. and Gratz, R.F., NASA Technical Memorandum 102353 and AVSCOM Technical 
Report 89-C-017, in “First Pacific Polymer Conference Preprints,” vol. 1, pp. 313–314, Lahaina, 
Maui, HI, Dec. 1989. 

29. Alston, W.B. and Gratz, R.F., NASA Tech Briefs magazine, vol. 11, no. 9, p. 52, Sept. 1987. 
30. Microcalorimetry Data courtesy of Dr. Richard Lyon, Federal Aviation Administration. 
31. Scola, D.A., J. Polymer Science, Part A: Polymer Science, vol. 31, no. 8, pp. 1997–2008,  

July 1993. 
32. Scola, D.A. and Wai, M., J. Applied Polymer Science, vol. 52, no. 3, pp. 421–429, April 1994. 
33. Scola, D.A., U.S. Patent no. 5,298,600, Mar. 29, 1994. 
34. Scola, D.A., U.S. Patent no. 5,298,601, Mar. 29, 1994. 
35. Simone, C.D. and Scola, D.A., Macromolecules, vol. 36, no. 18, pp. 6780–6790, September 2003. 
36. Hongbo, L., Simone, C.D., and Scola, D.A., J. Polymer Science, Part A: Polymer Chemistry,  

vol. 41, no. 17, pp. 2630–2649, Sept. 2003. 
37. Frosch, R.A., Kray, W.D., and Rosser, W., U.S. Patent no. 4,307,024, Dec. 22, 1981. 
38. Rosser, R.W. and Kray, W.D., NASA Tech Briefs magazine, vol. 4, no. 2. p. 228, summer 1979. 
39. St. Clair, A.K., St. Clair, T.L., and Slemp, W.S., in “Recent Advances in Polyimide Science and 

Technology,” Society Plastic Engineers Publications, NY, pp. 16–36, 1987. 
40. Hoyt, A.E. and Huang, S.J., American Chemical Society Polymer Preprints, vol. 35, no. 1,  

pp. 343–344, Mar. 1994. 
41. Hoyt, A.E. and Huang, S.J., American Chemical Society Polymeric Materials Science and 

Engineering, vol. 68, pp. 131–132, spring (Apr.) 1993. 
42. Jensen, B.J. and Hergenrother, P.M., and Nwokogu, G., Polymer, vol. 34, no. 3, pp. 630–635,  

Feb. 1993. 
43. Jensen, B.J. and Hergenrother, P.M., U.S. Patent no. 5,344,982, Sept. 6, 1994. 
44. Jensen, B.J., Hergenrother, P.M., and Nwokogu, G.,J. Material Science. Pure Applied Chemistry, 

vol. A30, no. 6–7, pp. 449–458, 1993. 
45. Meeks, T.M., Davis, C.L., Reichenbach, L.M., and Gratz, R.F., Virginia Journal of Science, vol. 42, 

no. 2, pp. 201, 1991. 
46. Sotzing, G.A. and Gratz, R.F., Proceedings of Seventh National Conference on Undergraduate 

Research, vol. 3, pp. 1237–1241, Salt Lake City, UT, Mar. 25–27, 1993. 
47. Sotzing, G.A. and Gratz, R.F., Virginia Journal of Science, vol. 44, no. 2, p. 135, 1993. 
48. Vaccaro, E., Synthesis and Characterization of Fluorinated Polyaminoquinones and Fluorinated 

Polyimides, Ph.D. Thesis, University of Connecticut, 2000. 
49. McGrady, K.A. and Gratz, R.F., Virginia Journal of Science, vol. 39, no. 2, p. 140, 1988. 
50. Crews, M.L. and Gratz, R.F., Virginia Journal of Science, vol. 40, no. 2, p. 68, 1989. 
51. Burgoyne, Jr., W.F. and Langsam, M., U.S. Patent no. 4,990,667, Feb. 5, 1991. 
52. Alston, W.B. and Gratz, R.F., in “HITEMP REVIEW 1989,” NASA CP–10039, pp. 13–1 to 13–11, 

Oct. 1989. 
53. Woodard, M.H., Rogers, M.E., Brandom, D.K., Wilkes, G.L., and McGrath, J.E., American 

Chemical Society Polymer Preprints, vol. 33, no. 2, pp. 333–334, Aug., 1992. 
54. McGrath, J.E., Grubbs, H., Rogers, M.E., Gungor, A., Joseph, W.A., Mercier, R., Rodrigues, D. 

Wilkes, G.L., and Brennan, A., International Technical Society for the Advancement of  Material 
and Process Engineering (SAMPE) Conference Series, vol. 23, pp. 119–132, Oct. 1991. 

55. Lyle, G.D., Grubbs, H., Tchatchoua, C., and McGrath, J.E., American Chemical Society Polymeric 
Materials: Science and Engineering, vol. 69, pp. 238–239, Fall (Aug.) 1993. 

56. Jensen, B.J. and Hergenrother, P.M., American Chemical Society Polymer Preprints, vol. 34, no. 1, 
pp. 461–462, Mar. 1993. 

57. Burgoyne, Jr., W.F. and Langsam, M., U.S. Patent no. 4,897,092, Jan. 30, 1990. 
58. Pfeifer, J. and Rhode, O., in “Recent Advances in Polyimide Science and Technology,” Society 

Plastic Engineers Publications, NY, pp. 336–350, 1987. 



NASA/TM—2006-214235 42

59. Meier, I.K. and Langsam, M., J. Polymer Science: Part A: Polymer Chemistry, vol. 31, no. 1,  
pp. 83–89, Jan. 1993. 

60. 3FDA gas separator data courtesy of Dr. Michael Langsam, Air Products, Inc., reported in DOE 
final report DE- FC 36-94 GD 1004. 

61. Trofimenko, S., Proceedings of Fourth International Conference on Polyimides, Ellenville, NY,  
pp. I–3 and 4, 1991. 

62. Trofimenko, S. in “Advances in Polyimide Science and Technology,” Technomic Publishing Co., 
Inc. Lancaster, PA, pp. 3–14, 1993. 

63. Trofimenko, S., U.S. Patent no. 5,051,520, September 24, 1991. 
64. Auman, B.C. and Trofimenko, S., American Chemical Society Polymeric Materials Science and 

Engineering, vol. 66, pp. 253–254, spring (Apr.) 1992. 
65. Trofimenko, S. and Auman, B.C., Macromolecules, vol. 27, no. 5, pp. 1136–1146, Feb. 1994. 
66. Auman, B.C. and Trofimenko, S. American Chemical Society Polymer Preprints, vol. 33, no. 2, pp. 

244–245, Aug. 1992. 
67. Auman, B.C. in “Advances in Polyimide Science and Technology,” Technomic Publishing Co., 

Inc., Lancaster, PA, pp. 15–32, 1993. 
68. Feiring, A.E., Auman, B.C., and Wonchoba, E.R., American Chemical Society Polymer Preprints, 

vol. 34, no. 1, pp. 393–394, Mar. 1993. 
69. Feiring, A.E., Auman, B.C., and Wonchoba, E.R., Macromolecules, vol. 26, no. 11, pp. 2779–2784, 

May 1993. 
70. Auman, B.C., U.S. Patent 5,324,810, June 28, 1994. 
71. Auman, B.C., Higley, D.P., Scherer, K.V., Jr., McCord, E.F., and Shaw, W.H., Jr., Polymer, vol. 

36, no. 3, pp. 651–656, Feb. 1995. 
72. Lakshmanan, P., Srinivas, S., Wilkes, G.L., McGrath, J.E., Carter, K.R., Sanchez, M.I., DiPietro, 

R., and Labadie, J.W., American Chemical Society Polymeric Materials Science and Engineering, 
vol. 72, pp. 264–265, spring (Apr.) 1995. 

73. Auman, B.C and Trofimenko, S. in American Chemical Society Symposium Series, vol. 537,  
pp. 494–506, 1994. 

74. Brink, M.H. Brandom, D.K., Wilkes, G.L., and McGrath, J.E., Polymer, vol. 35, no. 23,  
pp. 5018–5023, Nov. 1994. 

75. Brink, M.H., Brandom, D.K., Wilkes, G.L., and McGrath, J.E., American Chemical Society 
Polymer Preprints, vol. 34, no. 1, pp. 391–392, Mar. 1993. 

76. Charlier, Y., Hedrick, J.L., Russell, T.P., DiPietro, R., and Jerome, R., American Chemical Society 
Polymeric Materials Science and Engineering, vol. 72, pp. 389–390, spring (Apr.) 1995. 

77. Hedrick, J.L., Russell, T.P., Sanchez, M., DiPietro, R., Swanson, S., Mecerreyes, D., and Jerome, 
R., Macromolecules, vol. 29, no. 10, pp. 3642–3646, Oct.1996. 

78. Hedrick, J.L., Charlier, Y., DiPietro, R., Jayaraman, S., and McGrath, J.E., Journal Polymer 
Science, Part A, vol. 34, no. 14, pp. 2867–2877, Oct. 1996. 

79. Jayaraman, S., Srinivas, S., Wilkes, G.L, McGrath, J.E., Hedrick, J.L., Volksen, W., and Labadie, 
J., American Chemical Society Polymer Preprints, vol. 35, no. 1, pp. 347–348, Mar. 1994. 

80. Charlier, Y., Hedrick, J.L., Russell, T.P., Swanson, S., Sanchez, M., and Jerome, R., Polymer,  
vol. 36, no. 6, pp. 1315–1320, Mar. 1995. 

81. Plummer, C.J. G., Hilborn, J.G., and Hedrick, J.L., Polymer, vol. 36, no. 12, pp 2485–2489, J 
une 1995. 

82. Fodor, J.S., Briber, R.M., Russell, T.P., Carter, K.R., Hedrick, J.L., and Miller, R.D., Journal of 
Polymer Science, Part B: Polymer Physics, vol. 35, no. 7, pp. 1067–1076, May 1997. 

83. Plummer, C.J. G., Hedrick, J.L., Kausch, H.H., and Hilborn, J.G., Journal Polymer Science, 
Polymer Physics Edition, vol. 33 . no. 12, pp. 1813–1820, Sept. 1995. 



NASA/TM—2006-214235 43

84. Hedrick, J.L., Carter, K.R., Labadie, J.W., Miller, R.D., Volksen, W., Hawker, C.J., Yoon, D.Y., 
Russell, T.P., McGrath, J.E., and Briber, R.M., Progress in Polyimide Science II, Advances in 
Polymer Science, no. 141, pp. 1–43, Springer Verlag Publishers, Berlin, 1999. 

85. Korshak, V.V., Knunyants, I.L., Vinogradova, S.V., Gambaryan, N.P., Pankratov, V.A., and 
Livshits, B.R., Author’s certificate no. 170662, “Byulleten” Izobretenii, vol. 9, p. 77, 1965. 

86. Korshak, V.V., Vinogradova, S.V., and Pankratov, V.A., Vysok. Soed., vol. 7, p. 1689, 1965. 
87. Korshak, V.V., Vinogradova, S.V., and Pankratov, V.A., DAN SSR, vol. 156, p. 880, 1964. 
88. Korshak, V.V., Manucharova, I.F., Vingradova, S.V., and Pankratov, V.A., Vysok. Soed, vol. 7, 

p. 1813, 1965. 
89. Korshak, V.V., Izvestiya AN SSSR, Seria Khimicheskay p. 1649, 1965. 
90. Kalachandra, S., Taylor, D.F., McGrath, J.E., Sankarapandian, M., and Shobha, H.K., American 

Chemical Society Polymer Preprints, vol. 38, no. 2, pp. 94–95, Sept. 1997. 
91. Kalachandra, S., Taylor, D.F., DePorter, C.D., Grubbs, H.J., and McGrath, J.E., American 

Chemical Society Polymer Preprints, vol. 33. no. 1, pp. 467–468, Apr. 1992. 
92. Li, B., Synthesis and Characterization of Polymers for Light Waveguide Applications, Ph.D. 

Thesis, University of Akron, pp. 60–64, 108–109, and 133–142, Dec. 2000. 
93. Abed, J.C., Mercier, R., Srinivasan, S.A., and McGrath, J.E., American Chemical Society Polymer 

Preprints, vol. 33, no. 2, pp. 233–234, Aug. 1992. 
94. Hendricks, N.H., U.S. Patent Number 5,247,050, September 21, 1993. 
95. Joesph, W.D., Abed, J.C., Mercier, R., and McGrath, J.E., American Chemical Society Polymer 

Preprints, vol. 34, no. 1, pp. 397–398, Mar. 1993. 
96. Joesph, W.D., Abed, J.C., Mercier, R., and McGrath, J.E., Polymer, vol. 35, no. 23, pp. 5046–5050, 

Nov. 1994. 
97. Hsiao, S.-H. and Chen, W.-T., Journal of Polymer Science, Part A: Polymer Chemistry, vol. 41,  

no. 7, pp. 914–921, Apr. 2003. 
98. Hsiao, S.-H. and Chen, W.-T., Journal of Polymer Science, Part A: Polymer Chemistry, vol. 41,  

no. 3, pp. 420–431, Feb.2003. 
99. Carter, K.R., Furuta, P.T., and Gong, V. Marcomolecules, vol. 31, no. 1, pp. 208–209, Jan. 1998.  
100. Hsiao, S.-H., Yang, C.-P., Chuang, M.-H., and Hsiao, H.-C., Journal of Polymer Science, Part A: 

Polymer Chemistry, vol. 38, no. 1, pp. 247–260, Jan. 2000. 
101. Havelka-Rivard, P.A., Nagai, K., Freeman, B.D., and Sheares, V.V., Marcomolecules, vol. 32,  

no. 20, pp. 6418–6424, Oct. 1999. 
 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
19-10-2006 

2. REPORT TYPE 
Technical Memorandum 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Advanced Polymers Containing the Phenyltrifluoroethylidene Connecting 
Group 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Alston, William, B.; Sivko, Gloria, S. 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
WBS-22-714-30-01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
John H. Glenn Research Center at Lewis Field 
Cleveland, Ohio 44135-3191 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
E-15029-1 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 
and 
U.S. Army Research Laboratory 
Adelphi, Maryland 20783-1145 

10. SPONSORING/MONITORS 
      ACRONYM(S) 
NASA, ARL 

11. SPONSORING/MONITORING 
      REPORT NUMBER 
NASA/TM-2006-214235; ARL-TR-3504 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified-Unlimited 
Subject Categories: 24 and 27 
Available electronically at http://gltrs.grc.nasa.gov 
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
A new, lower cost fluorinated dianhydride based on the phenyltrifluoroethylidene (3F) connecting linkage was invented by the principal 
author in the early 1980's. New 3F condensation and addition cured polyimides were synthesized with the newly discovered 3F dianhydride 
and the previously known 3F diamine. As controls, polyimides based on the somewhat analogous higher cost hexafluoroisopropylidene (6F) 
linkage were also prepared. The short term thermal oxidative stability (TOS), determined by thermal gravimetric analysis (TGA), and the 
glass transition temperatures (Tg) of 3F dianhydride polyimides were found to be similar to 6F dianhydride polyimides, but the Tg was 
slightly higher for 3F diamine polyimides than 6F diamine polyimides. Unfortunately, in real time testing, long term TOS of 3F polymers 
was clearly inferior to 6F polymers. This was due to a 3 to 5 fold greater rate of loss of trifluoromethyl group from 3F versus 6F linkages. 
However, at shorter times or lower temperatures, 3F TOS was almost comparable to 6F TOS. The wide scope of the 3F technology was also 
demonstrated to have distinct unique advantages over 6F technology through the use of the 3F pendant phenyl ring as a synthetic site to 
introduce other functional groups. These groups have been used for the control or modification of polymer properties; an advantage lacking 
within 6F technology. The synthetic ease by which 3F can be introduced into various types of monomers has lead to the explosion of 
advanced 3F polyimides and other high performance advanced 3F polymers in the prior decade of 3F polymer literature as cited herein; 
covering polyimides, substituted polyimides, at least ten types of nonpolyimide 3F polymer modifications, and also the government's nine 
3F U.S. patents and corporations' nine 3F U.S. patents.  
15. SUBJECT TERMS 
Glass transition temperatures; Fluorinated polymides; Polymer/composite thermo-oxidative stability; 3F ploymers/composites; 
Microelectronic and gas separator polyimides; High temperature polymers 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
      ABSTRACT 
 

18. NUMBER 
      OF 
      PAGES 

49 

19a. NAME OF RESPONSIBLE PERSON 
William B. Alston 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
216-433-3220 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18






	E-15029-1 Cover.pdf
	E-15029-1 pp1-43.pdf
	E-15029-1 RDP.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


