
Source of Acquisition
NASA Johnson Space Center

USE OF FIELD PROGRAMMABLE GATE ARRAY TECHNOLOGY IN
FUTURE: SPACE AVIONICS

Rosc~e C. Fe;~gzsoiz, Robert T ~ t e , LTfztted S'ace Alliazce, LLC

Houston, Texas

Abstract
Fulfilling NASA's new vision for space

exploration requires the development of sustainable,
flexible and fault tolerant spacecraft control
systems. The traditional development paradigm
consists of the purchase or fabrication of hardware
boards with fixed processor and/or Digital Signal
Processing (DSP) components interconnected via a
standardized bus system. This is foliowed by the
purchase and/or development of software.

Th-iradigm has several disadvantages f F - -
the development of systems to support NASA's
new vision. Building a system to be fault tolerant
increases the complexity and decreases the
performance of included software. Standard bus
design and conventional implementation produces
natural bottlenecks. Configuring hardware
components in systems containing common
processors and DSPs is difficult initially and
expensive or impossible to change later.

The existence of Hardware Description
Languages (HDLs), the recent increase in
performance, density and radiation tolerance of
Field Programmable Gate Arrays (FPGAs), and
Intellectual Property (IP) Cores provides the
technology for reprogrammable Systems on a Chip
(SOC). This technology supports a paradigm better
suited for NASA's vision. Hardware and software
production are melded for more effective
development; they can both evolve together over
time.

Designers incorporating this technology into
future avionics can benefit from its flexibility.
Systems can be designed with improved fault
isolation and tolerance using hardware instead of
software. Also, these designs can be protected from
obsolescence problems where maintenance is
compromised via component and vendor
availability.

To investigate the flexibility of this
technology, the core of the Central Processing Unit
and InputIOutput Processor of the Space Shuttle
AP 101 S Computer were prototyped in Verilog
HDL and synthesized into an Altera Stratix FPGA.

1. Introduction
NASA's Constellation is the collection of

systems that work together to support the new
vision for the exploration of the Moon, Mars, and
the outer solar system. These systems include
launch v e h 3 l e s , i ~ l ~ i c l e s , crew
habitats, robotic systems and ground systems. They
are to be implemented in a long-term development
methodology. The goal of this strategy is "to
develop new capabilities in a manner that is
pragmatic - so that new capabilities can be
developed and used to advance exploration in the
near term - while also being flexible, in order to
incorporate new technologies and respond with
agility to scientific discoveries. . . NASA's
acquisition strategy encourages the use of open-
systems architectures that facilitate upgrades and
augmentation while enabling interoperability
among systems6'[1].

These systems will require advanced and high
performance data processing elements due to the
distance of mission and the need for more advanced
and autonomous operations. Furthermore, these
systems must be highly reliable and evolvable. For
data processing, the traditional development
paradigm of using hardware with fixed processing
elements followed by software development is
acceptable, but provides less flexibility in support
of NASA's development strategy. The primary
culprit is the use of fixed processing elements and
configurations that are more difficult to change and
evolve after they have been established. The
existence of Hardware Description Languages
(HDLs), the recent increase in performance, density
and radiation tolerance of Field Programmable Gate
Arrays (FPGAs), and Intellectual property (IP)

Cores provides the technology for reprogrammable
Systems on a Chip (SOC). This technology
provides for more flexible and evolvable designs.

This paper discusses the advantages of
incorporzting SOC technology into future space
avionics. It also suggests some approaches to
simplifying the software of systems by removing
complexity from applications, and moving Real
Time Operating Systems from a single processor to
a collection of FPGAs. It includes a demonstration
of the flexibility of this technology via the
implementation of the major components of the
Space Shuttle APlOlS Computer in Verilog HDL
and its synthesis into an Altera Stratix FPGA. It
closes with a discussion of how this implementation
could be incorporated into the avionics of a future
launch vehicie reusing components of the existing
Space Shuttle Transportation System.

--

2. Traditional Development
Paradigms1 Platforms And NASA's
New Vision

The traditional development process for
embedded data processing systems begins with the
purchase or fabrication of hardware boards with
fixed processor and/or Digital Signal Processing
(DSP) components interconnected via a
standardized bus system. This is followed by the
purchase and/or development of software.
Development of the entire system proceeds in a
stepwise fashion with the initially established
hardware platform later constraining the software
development effort. The inflexibility of the fixed
hardware components along with the inherent
bottlenecks of standardized bus systems often
constrains on the adaptability and performance of
the data processing system.

NASA will need to develop flexible and
sustainable systems to implement its space
exploration vision. This effort must provide very
reliable systems that are evolvable for long-term
development and maintenance. These systems must
be highly automated and self-sustaining to support
missions beyond low Earth orbit.

The traditional approach to embedded system
development can be inefficient in a long-term
development environment. Early decisions on fixed
processing elements (Processors and/or DSPs) drive

vendor selections and purchases drive vendor
selection and purchases. A long-term marriage
between these fixed processing elements and
s ~ f t x ~ i r e results frem the develepme~t effert, which
can mean that the longevity of a system can come to
depend on these ve~dors for both iipgades zfid
long-term support. There is no guarzntee that fume
versions of the fixed processing elements will be
backwards compatible or that they will continue to
be supported. Using high-level languages for
software can remedy these dependencies; however,
this is not totally true for embedded systems. These
systems usually interface with low-level hardware
and for performance reasons contain software
written in the native language of the fixed processor
elements.

The use offnese fixed processing elements is
usually accompanied by other components to
- s u ~ o ~ ~ t e r ~ o m e ~ ~ i ~ - u s i a g a s t a n d
system. This topology is a centralized architecture
where a processing element communicates with
peripherals and memory over a memory bus and a
shared I/O bus. However, the drawback to this
architecture is that the shared bus concept results in
bottleneck problems [2]. This can be a hindrance
for data processing systems that need to process
high volumes of data.

A standardized bus system requires
components to support interconnectivity in fixed
processing elements. This results in a centralized
architecture where a processing element
communicates with peripherals and memory over a
memory bus and a shared I/O bus. This traditional
shared bus architecture can result in bottleneck
problems [2], which is a hindrance for data
processing systems that need to process high
volumes of data. Such systems can end up with
hardware-dependent software to overcome these
bottlenecks

A standard architecture for software in
embedded systems consists of application software
layered on top of a real time operating system. The
primary job of the real time operating system is to
interface with the hardware and provide an
environment where multiple applicztions can
execute on a processor as if each were the sole
owner of the processor. This architecture also helps
protect the applications from each others' faults..
These systems must be designed carefully to

manage against problems such as process starvation
in a single processor.

The development effort of the recently
cancelled Space Shuttle Cockpit Avionics Upgrade
Project provides real world examples of the
shortcoming of traditional stepwise development of
processing systems. The goal of this project was to
increase the situational awareness of the crew via
increased on-board intelligence and automation,
similar to what will be needed for NASA's new
vision. The core-processing element for the system
was the PowerPC 7455 processor. This was the
best available processor in its class for speed and
radiation tolerance, and the architecture of the
single board computer was based on this family of
processors. However, while the PowerPC 7455
cache memory contained parity protection, its cache
tags did not. The project had to use software

- - - - - - - - - - - - m i t i g a $ i o n f e ~ h n ~ ~ r k a r w d - t ~ m k ~
These techniques increased the complexity of the
overall software design. As another example, the
increased on-board intelligence and automation led
to a need to process large amounts of data, and
algorithms requiring expensive math operations.
The project quickly encountered 110 bottleneck
problems and had to resort to compromises. Also,
some of the math intensive operations led to
performance problems on one of the fastest
embedded processors available on the market. The
project overcame these challenges, but at the cost of
schedule.

There is a high probability that NASA will
face these challenges in the development of its new
vision. The traditional development paradigm does
not prevent success, but consideration of SOC
technology can provide an easier road to success.

3. System On A Chip And FPGA
Technology Primer

System on a Chip refers to the integration of
varying electronic circuits onto a single chip to
form a system. This differs from building an
electronic product by the assembling of various
chips and components on a circuit board. The
tools commonly used to implement this capability
consist of Hardware Description Languages
(HDLs) and targeted logic devices such as
Application Specific Integrated Circuits (ASICs)

and Field Programmable Arrays (FPGAs). ASICs
have traditionally been expensive to implement,
so the rise in the density and performance of
F?GAi 2nd thgir !ow cost are mking them the
favorite option [3]. This paper will focus on the
- 7 - n- n A n ;r\n ~ a e of FPGAs as the target lo5i \, U~VICICIS.

Hardware Description Lmguages are
specialized programming languages used to
model and design digital hardware. Large
companies use them to design complex digital
systems such as computer central processing
units, computer peripherals and cell phones. An
HDL allows the engineer to model hardware
functionality as a software program. The model
can then be run on a computer to see if the design
will work as intended. Problems can be corrected
in the model, and the corrections verified in
simulation. Examples of these languages include
Verilog and VKDL. An emerging trend is the use
of tradZiGEl h i i l eve l programming languages
such as "C" to model and represent hardware

The basic development flow for creating
these systems consists of providing HDL files as
input to a tool set that synthesizes the design into
a format to be loaded and realized on an FPGA.
The process is similar in concept to the
compilation and linkage of software to execute on
a target processor. These tool sets normally
provide support for debugging, simulation,
optimization, timing analysis, and integration.
Examples of such tools sets are the Embedded
Development Kit and Platform Studio by Xilinx
and Quartus I1 by Altera.

FPGAs are progranmable digital logic
devices. In a nutshell, their fundamental
technology consists of arrays of logic elements
and registers, along with a configurable
interconnection matrix. Design implementation
involves configuration of the interconnections.
FPGAs use SRAM, Flash Memory, or antifuse
programming technology to capture the
configuration. SRAM and Flash Memory FPGAs
use memory for device configuration. Memory
cells are used to control a transistor at a crossover
point on the interconnect matrix. While both
SRAM and flash memory FPGAs are
reprogrammable, the SRAM devices will lose
their configuration when power is removed. Also,
SRAM devices require a non-volatile
configuration memory unit to store configuration

data. This data must be loaded into the SRAM
device before use. A flash FPGA does not require
this additional complexity. Antihse programming
devices re I ? O ~ r ~ n r ~ ~ a ~ t n ~ b l e . x vYA .. I- The intercrcoraect
matrix is maintained using fusible material. The
configfiration design is "bbiuTed in" after
programming [4]. Besides supporting custom
logic, FPGAs are now providing support for
embedded multipliers, memory, regional clock
systems, and IO.

For the harsh environment of space, there
are FPGAs that are radiation tolerant. Single event
upsets (SEUs) occur when a charged sub-atomic
particle strikes a flip-flop or an SRAM cell. This
threat comes from the abundance of heavy ions
and protons in the background galactic cosmic
radiation and in the solar wind [5] . For FPGAs,
upsets must be considered for both configuration
(single event functional interrupt, or SEFI) and
logic.

Radiation testing of FPGAs performed by
iRoc Technologies indicates that antifuse
programming and flash memory FPGAs' SEFI
performance is very good [6]. Actel is a prime
producer of antifuse and flash FPGAs, Its
products have been proven in space applications
such as Atlas 11, Echostar, SBIRS-High,
International Space Station, Hubble Space
Telescope and the Mars Pathfinder. The
subsystems involved include command and data
handling, attitude reference and control,
communication payload, and scientific
instruments [7].

SRAM FPGAs can use mitigation
techniques to manage SEFI events in radiation-
heavy environments. The most common is
configuration bitstream repair. This consists of
cyclically reading the FPGA's bitstream
configuration data and checking against a
reference for discrepancies [6]. Xilinx has
families of FPGAs that provide non-intrusive
access to the configuration bitstream of the device
[XI. Altera provides a family of FPGAs with built
in cyclic configuration bitstream checking [9].
Triple module redundancy (TMR) is a technique
that can be used to check for upsets to logic and
memory subsystems. In TMR, elements such as
flip-flops are implemented three times in parallel
and a voting circuit compares the outputs 161.
Xilinx provides support tools for the seamless

incorporation of TMR into designs [lo]. SRAM
FPGAs from Xilinx have been successfully used
in the space environment. The most recent success
.re their US^ i11 th: Spirit 29d OppeTtmity Mars
Rovers missions. The Xilinx devices are used to
co~tro! the pyi-otechic devices on the la~der,
several motor control functions on the rover,
including controllers for the wheels, steering, and
antenna gimbals [1 11. Another example is its use
on the Optus Communications Satellite for signal
processing [12].

Figure 1. Artist Rendering of Mars over'

Intellectual Property Cores provide pre-
packaged design components to be incorporated
into SOC designs such as the examples above.
Examples include embedded processors, Digital
Signal Processors, bus interface units, and
communication support. Engineers can pick and
choose IP Cores to incorporate into designs for
synthesis. "Soft" designs are purchased instead of
silicon. For examples, IP cores for PowerPC 405
CPUs can be incorporated into Xilinx SOC
systems and Nios RISC CPUs into Altera SOC
systems.

' Courtesy of NASA JPL

4. Benefits Of Systern On A Chip And
FPGA Technology In NASA's New
Vision

The implementation of NASA's new vision
will require evolvable and high performance data
processing systems for aviofiics. SOC and FPGA
technology can provide a design methodology
better suited to support these needs.

4.1. Reduction In Risk Of Obsolescence
The hardware designs for SOC systems are

represented in HDLs. These are eventually
synthesized into bitstreams and are used to program
the FPGA. This allows for a legacy design that can
be re-targeted to future FPGAs with increased
performance and densities. It also allows for legacy
designs to be incorporated into new development
pl?itFormSw1fhf E f E f b l i t y for design tW=m--
enhanced capability. The investment made in
software and the supporting infrastructure can be
preserved across the lifecycle of the project, instead
of the current processing platform. NASA makes
huge investments in the man rating of avionics
(both hardware and software) via development,
maintenance, and verification costs. For upgrades,
the majority of the cost can be limited to the
recertification of the hardware, allowing for more
efficient and safe incorporation of some new
technologies.

4.2. Better Supports Lortg-Term Development
The representation of hardware design in

HDLs and the programmability of FPGAs provide
the tools for evolvable data processing systems.
Long-term development can result in an iterative
approach where lessons learned and bugs found on
previous iterations are applied and fixed on future
iterations. This concept works well for software, but
not for fixed silicon hardware. To adapt to changes
in fixed silicon components, either software
workarounds must be provided or replacement
devices must be located. However, with an SOC the
designer can make design changes to HDL to adapt
hardware. Modified HDL can be realized in FPGAs
because they are re-programmable. SRAM FPGAs
provide the most flexibility from a device point of
view. However, it is even more feasible to modify
HDL, program a radiation-resistant antifuse FPGA,

and replace existing board components than to
resort to software workarounds or fixed silicon
device replacement.

4.3. Better. Fla-ibility To S~pport High
Perforrtz a12 ce Systems

Systems made up of fixed silicon processors,
DSPs, and traditional shared bus architectures and
protocols hsve worked well in avionics systems for
decades. However, as the data processing
requirements of these systems have increased, the
overall performance has decreased due to
serialization. HDLs and FPGAs offer the ability to
design systems that utilize parallel processing to
boost performance.

ID bottlenecks zre one of the biggest iribitors
in the performance of traditional data processing

s y s k ~ s ~ e v _ r e s _ ~ I t & o m the serial nature of the
standard shared bus architecture. In this
architecture, a single arbitrator controls
communication among one or more bus masters and
slaves. Since the bus is shared, only a single master
may control the bus at any one time. An arbitrator is
responsible for granting access. When a master has
control of the bus, all other masters on the bus must
wait for the completion of the transaction before it
is possible to proceed with their transactions. This
serial scheme can result in bottlenecks in systems
requiring high data throughput. FPGA systems
provide various techniques to overcome this
limitation. Since FPGA systems allow for the
consolidation of components into a single unit,
these systems can take advantage of the internal
routing structures to produce non-traditional bus
systems. An example is the design of the Altera
Avalon Bus. This bus uses the concept of
simultaneous multi-master bus architecture. "The
system does not have shared bus lines like
traditional microprocessor-based systems. Instead,
each master-slave pair has a dedicated connection
between them. When a peripheral must accept data
from multiple sources .. multiplexers (not tristates)
feed the appropriate signal into the peripherals.. .
Because master and slave peripherals are connected
with dedicated paths, muitiple masters can be active
at the same time and can simultaneously transfer
data to their slaves" [13]. Of course a bottleneck
can occur in this particular scheme if multiple
masters request the same source at a high

frequency, but the bottleneck does not inhibit the
flow of data for non-related data transfers. This
flexibility allows for other design solutions around
th is pmblem as we!!. FOT exampie, RapidIQ is a
high performance interconnect technology for
p,-- :- J-L- L-c ,,--.- n c dssi~lg uit~a U C L W C C ~ I ~IUGCSSULS, UO?~ , 5j;steiiis
memory and peripheral devices within a system. It
allows for performance for up to 10 Gigabits per
second and beyond. There are IP cores available to
support this technology in FPGAs [14].

FPGA systems also provide support for
computation intensive operations. Advanced data
processing algorithms can require a large number of
multiply and add operations. These can be
performed in basic processors, but DSPs have been
optimized for these operations. However, the serial
nature of both these devices can iimit performance.
FPGAs are now providing dedicated circuitry to

------su~f3-dtd&dded-1ffu&lplyandadk
operations. This allows for the parallel crunching of
algorithms, which can provide an enormous
performance boost. For example, Xilinx has
families of FPGAs that can perform 256 MAC
operations in a single clock cycle, vs. 256 clock
cycles for a dedicated DSP [15].

HDL and FPGAs also offer other options such
as implementing software algorithms in hardware.
Products are available where designers can
implement algorithn~s in the "C" language to be
synthesized into a FPGA directly [16]. Tests have
been performed that show algorithms implemented
in hardware in an FPGA have executed 28 times
faster than the same algorithms executing as
software on a processor running a clock 15 times
faster than the FPGA [15].

5. Increasing Fault Tolerance,
Reliability, And Fault Analysis Using
System On A Chip And FPGA
Technology In NASA's New Vision

SOC and FPGA technology provides the
flexibility to increase the reliability and fault
tolerance of data processing systems. It also
provides the flexibility to design systems with
increased insight for fault analysis.

5.1. Increasing Fault Tolerance arzd
Reliability

The hardware for traditional data processing
systems consists of dedicated fixed components that
are interfaced using a shared bus. The standard
centralized architecture normally has a processor
and its peripherals interconnected on a shared bus
using bus controllers. Each of these devices usually
exists as a separate package.

SOC and FPGA technology allows for the
creation of de-centralized technologies, which can
provide better fault tolerance and reliability. They
allow for the consolidation of processing elements
and peripherals into a single chip. This
consolidation provides relief into the design of
radiation tolerant boards. For example, all device
components on a board should be radiation tolerant.
A designer must ensure that all necessary
components that are p r o v i m m e various
vendors are radiation tolerant. However, a SOC
design can be completely synthesized into the same
radiation tolerant FPGA. A board containing
multiple SOC devices can communicate using high
speed chip to chip interconnect protocols such as
RapidIO. Depending on one's design, this can
minimize the threat of single point failures. For
example, in the traditional centralized hardware
architecture, a failure of a dedicated bus interface
device can cripple the entire system. With a de-
centralized architecture, consideration must be
given to memory usage and interfacing. In a
traditional system, there is usually a single memory
address space used by one or multiple processing
elements. However, a designer can take advantage
of FPGAs with embedded memory resources to
produce isolated systems that interface via a high-
speed protocol. If the memory capacity is inefficient
or non-existent in the FPGA, then it may be feasible
to interface each FPGA with its own memory space.

A de-centralized design utilizing SOCs can
also produce more reliable systems via the Keep it
Simple, Stupid (KISS) paradigm. Simpler systems
are less likely to fail than more complicated ones.
Real Time Operating Systems are used to allow
multiple software applications to share limited
resources such as processors and peripherals.
However, for these entities to coexist, mechanisms
are needed to manage access to shared resources.
For example, semaphores, tasks locks, etc. are used

in software to manage the use of global objects by
multiple processes. Design oversight can lead to
problems such as deadlocks. Also, proper analysis
mist be perfamed &iring design to prevent rintime
issues such as process starvation. These issues have
been seen time and time again in real time systems.
Using de-centralization, software can be broken up
into individual simpler components that execute in
parallel on multiple hardware components. This can
occur either within a single SOC or on several
interacting SOCs. A single SOC system can consist
of multiple processors executing individual
software applications. Both systems can provide
interaction via message passing constructs.
Software components can be partitioned to execute
on self-contained units according to performance
and criticality req~iremects. -4 smaller number of
components can be designed to compete for the
same processor resources. Also, improved fault
tolerance is provided because these individually
simpler interacting components are isolated by
hardware. ARINC 653 standard systems provide
improvement for the traditional paradigm, but a
failure of the CoreOS or a single component of the
hardware can disable the entire system.

5.2. Increasing Fault Analysis
Being able to detect faults is an important

aspect of highly reliable systems. However, being
able to analyze wlzy a fault occurred is even more
important. Fault analysis of software failures can be
a very complicated and difficult venture. A
conlmon method of analyzing why faults occur in
software is to understand software execution paths.
This is normally achieved by leaving
"breadcrumbs" via data logging during production
runtime, or by using a debugger to "single step"
through an execution path. "Breadcrumbs" usually
do not leave enough information during runtime to
analyze complex problems. A debugger is a post
mortem tool, used by a developer attempting to
recreate the problem. However, the developer may
not be able re-create the exact combinations of real
time scenarios that caused the problem. Designers
can use the flexibility of EIDLs and FPGG4s to
create system add-ons that can provide better
information for fault analysis for both production
and non-production runtime environments. As an
example, a designer can modify the processor or
processors of a system to interface with a

component that tracks the branches of software
executing in run-time without any performance
degradation. This external hardware component
could build znd mzi;;tzin execution trees i:: memay
based on branches. There are three ways to take
advantage of this system. First, it could be used to
analyze the execution paths of the software to
determine the root cause of problem. Next, it could
be used during the software verification phase to
track which software paths have been verified. The
memory of verified paths could be loaded into
production systems where unexpected execution
paths not verified could be reported using the stored
execution paths as "expected" paths. The final use
could be for the indication of "wild execution
paths" during production use. The system could
report an error and configure itself to a safe mode.
Of course, real-time software updates (patches, etc.)
would have to be considered as a factor in a
production environment.

6, Technology Demonstrator - Space
Shuttle APlOlS Computer
Components In FPGAs

To investigate the promise and flexibility of
SOC and FPGA technology, research based on
technology from the current Space Shuttle Program
was performed. The goal of the research was to
design the core components of the Space Shuttle
AP 10 1 S Computer in an HDL. The functionality of
the HDL would then be tested via simulation and
synthesis into an actual FPGA.

The AP 10 1 S Computer serves as the primary
platform for the Space Shuttle control system. The
design is based on the IBM System1360
mainframes. It consists of a Central Processing Unit
(CPU) and an Input/Output Processor (IOP). The
CPU provides instructions to support I 0 control,
fixed point arithmetic, branching, shift operations,
logical operations, floating point operations, and
special operations. The IOP provides support for 24
external communication channels over 1 Mbitsls
MIA Buses. It also provides instructions used for
the I 0 management control. Both the CPU and IOP
share a 1 Mbyte memory space.

The designs were implemented in Verilog
KDL. The Quartus I1 design software by Altera
Corporation was used for design, synthesis, and

simulation at the device configuration file level.
Icarus Verilog by Stephen Williams was used for
pre-synthesis simulation (Verilog level). The Altera
?-YTios 11 Development Kit, Str~tix Edition %as used
for hardware tests. The FPGA device used in this
kit was the Stratix EP1 S 1OF780. This device
provides 10,570 Logic Elenests (LEs), 94 M512
Ram Blocks (32 X 18 bits), 60 M4K Ram Blocks
(128 x 36 bits), 1 M-Ram Block (4K X 144 bits), 6
DSP Blocks, 48 Embedded Multipliers, 6 PLLs, and
426 I 0 Pins. The EP1 S lOF780 is the smallest
device of the Stratix family. The kit also provides
external components such as 1 MB, 16 bit wide
SRAM, an Ethernet controller, and serial controllers
~171.

To demonstrate flexibility, the CPU was
redesigned from the original version, while the IOP
design was based on the microcode of the original

----versis&h~e-~~~s~&ed~P4~-~~0deaUowe4----
for a design that could theoretically use the existing
IOP micro programs of the AP 10 1 S.

The major components of the CPU design
were the Microcode Controller, Instruction
Decoder, ALU, Branching Unit, AP 10 1 Memory
Controller, and the Register File. The CPU
instructions were micro-programmed and executed
by the Microcode Controller. The instruction micro-
progranls were stored using Stratix FPGA
embedded memory, which was interfaced to the
Microcode Controller. The Instruction Decoder was
designed to decode instructions to determine the
starting address of the nlicro-program for the
Microcode Controller. The ALU was implemented
to support both Fixed and IBM Floating Point
operations. It used Stratix embedded DSP blocks to
implement both multiplication and division
operations. The AP 10 1 Memory Controller was
designed to interface the CPU to the external 1 MB
of SRAM provided by the development kit. It
performed memory operations such as address
expansion, AP 10 1 effective address calculation,
instruction pre-fetching, and memory access. The
Branching Unit was used to update both the micro
and macro program counters and the Register File
siored ihe results f ~ r the macro instructions (Figure
2).

4ig-urd&1-OlS-C~~aStr-ati~~-GA

To provide a testing and debug interface for
insight into CPU operation, an Altera Nios II
processor was included in the FPGA design. The
Nios I1 processor was interfaced to access the 1 MB
memory space used the APl 01 S CPU. Arbitration
was provided by the Avalon Bus interface. The
Nios I1 processor was also interfaced with a serial
UART device for communication with the console
of an external computer.

The total synthesized size of the CPU was
5,500 LEs, 52% of the Stratix FPGA. The size of
the debug interface (Nios I1 processor and other
components) was 2,700 LEs. The total FPGA
resources used were 8,200 LEs or 78% of the
FPGA.

The operation of the CPU was tested using the
iVerilog simulation tool and on the Stratix device in
the development kit. For each case, APlOlS test
assembler programs were executed and monitored.
The test programs covered only a subset of the
instruction set. All tested instructions produced
expected results.

The Quartus I1 Timing Analysis Tool analyzed
a design clock period of 20 ns or 50 MHz. This
clock signal was routed through two Phase Locked
Loops (PLLs) to produce seven separate clock
signals. The first clock (50 Mhz) was distributed to
the Nios I1 processor and Avalon Bus. A 20 Mhz
clock signal and five phased 4 Mkz clock signals

were distributed to the AP 101 S CPU. The prototype
CPU could match the real AP 10 1 S fastest
instruction time one for one. However, the most of
+I- ,. -..-+nC.
LllG p ~ v ~ v ~ ~ e CPU instrricti~ns were desiged t~
execute in fewer clock cycles. The prototype design
did not implement a pipeiining scheme such as the
actual AF 10 1 S. A detailed timing ailaljisis of each
instruction was not performed, so no accurate
timing data is available for comparison.

The FPGA version of the IOP was designed to
mimic the Micro Controller design of the actual
AP 10 1 S. The infrastructure based on the micro-
instruction formats was implemented using
specifications from the APlO 1 S Workbook (IBM
No. 85-C67-005). Test micro programs were
written for the microcode controller and were
simulated using the iVerilog simulation tool. The
design did not provide support for the MIA, the

- ~ ~ ~ t ~ & i s - r e s p m s ~ e - f o ~ s e ~ & g d a t a & --

the BCE elements over the physical media. The
synthesized size of the IOP components was 2500
LEs of the Stratix FPGA.

As of the time of this study, the entire system
was not implemented and integrated into a complete
unit based on the FPGA size (smallest in Stratix
family) in the development kit. However, the study
did implement core components of the APl 01 S in
Verilog HDL and synthesized them into Stratix
FPGAs. The AP 10 1 S CPU and IOP could be easily
be implemented in a larger-sized Stratix device. A
larger-sized device would also simplify the design;
for example, the SRAM Controller could be
removed by using embedded FPGA memory
resources. However, the design could also be
implemented by integrating more than one FPGA.

A future activity is to develop an APlOlS
Virtual Machine. The AP 10 1 S CPU and IOP will
be implemented in software to execute on two Nios
I1 processors embedded in the Stratix device of the
development kit. Custom logic for the IBM
floating-point style unit will be implemented and
interfaced to one of the Nios I1 processing using the
custom instruction interface.

7. Theoretical Application For Space
Shuttle APlOlS Computer In FPGAs

In the 1980ts, the Space Shuttle Program
upgraded its General Purpose Computer (GPC).

The goal was to maintain the existing interface to
minimize changes to the existing flight software,
while at the same time improving the underlying
tec1.~~!=gy, primari!y using discrete TTL !egis
devices. Now, let's go back in time to this period
and assiiiie that the project niodeled the G1C's
CPU and IOP iil zn EEL to simlilzte the design. III
fact, HDLs existed during this period as a
hardware-modeling tool [18]. With this assumption
that the design of the GPC existed in a HDL in the
198OVs, let's move forward in time to the 2000's.
Let's assume that during this period, NASA is in a
bind where it needs to launch five 68 metric ton
modules starting within 3 years to save the Space
Station. NASA does not have an existing booster
with the required hewy lift capability, and it cannot
build a new one within this 3-year period. A viable
option may be to use the components of the Shuttle
Stack such as the SRBs. External Tank, and SSMEs
as the heAvy lift vehicle and develop a new payload
canister (Figure 3). However, this design would
require additional avionics components not
compatible with the bus architecture of the current
system, and the avionics must be expendable. A
crew must be launched along with the payload, so
the system must be man-rated and must interface
with the legacy system. NASA can upgrade the
avionics to support the new system, but this would
also require porting the existing flight software into
a new platform. This seriously hampers the project,
because a rehost of the software into a new platform
and its verification for a man-rated system would be
hard to achieve in the timeframe.

A solution to this problem is to use the existing
HDL of the GPC design to synthesize the legacy
computer into FPGAs. This would allow for the
reuse of the existing infrastructure and flight
software. The project could then focus its effort on
the development and verification of the new
hardware and integration. This is compared to the
development and verification of both new
hardware, software, and infrastructure required for a
rehost. Engineers could overcome the problem of
the new bus architecture by modifying the HDL of
the IOP to encapsulate the existing software from
the changes. The HDL of the memory unit could be
modified to create a new high-speed data interface
to the payload. In general, this approach has a better
chance of success when compared to the rehost of
the system into new avionics and software in the 3-

year time frame. Also, the synthesis of the GPC and
its new supporting components into FPGAs will
allow for the advent of expendable avionics
har&xmr~ The FPCA c rmilrl h~ iicpA tn rrpatp a
L A W .. U.Y. LZIV L L -1 %" V V U I U " Y UUVU V VIVULY Y

Flight Control Card to be inserted into a new
avionics co~ilp'iiter (Figire 4). This thetiretical
example shows hgw SOC aad FPGA technology
helps solve the problem of obsolescence for long
term projects. It also shows how the flexibility of
the technology can allow for a system to evolve
with minimum impact.

Figure 3. Artist Rendering of an SDLV~

8. Conclusion
SOC and FPGA technology should be

considered to support the development of systems
for NASA's new vision. The flexibility of this
technology can reduce the risk of obsolescence,
provide better support for a long-term development
paradigm, provide the horsepower for high
performance systems, and increase fault tolerance.
The technology for FPGAs supports the harsh
environment of space. A recent success story is
their use in the Spirit and Opportunity Rovers
currently in operation on the surface of Mars.

Courtesy of NASA

Figure 4. FPGA Technology in an SDLV

Acknowledgments
The authors wish to thank Mark Lostracco,

Wendy Wilkinson, Brian Watson, Misty Wohl,
Benjamin Peterson, and Christy Limero for their
support of this work.

References
[I] National Aeronautics and Space Administration,
March 1,2005, Final Request for Proposal (RFP)
NNTOSAAO 1 J, Crew Exploration Vehicle, Phase 1
Contract - Statement of Objectives (Attachment J-
l), Washington, DC, pp. 2- 5.

[2] Mellanox, Kevin Deierling, April 2004,
Advanced System Architectures Drive Choice of
Switch Fabric Solution, RTC, pp. 22-25.

[3] Jaeger, Juergen, August 2004, FPGAs Flex
Their Processing M~?scles, COTS Journal, pp. 20-
24.

[4] Wang, Mao, August 16,2004, FPGAs Adapt to
Suite Low-Power Demands, Electronic Engineering
Times, p. 1 of printed version. \mm~.eetasia.com.

[5] O'Neill, Ken, August 2004, Designing Systems [18] Palnitkar, Samir, 1996, Verilog HDL - A
to Combat Single-Effect Upsets in Space and on the Guide to Digital Design and Synthesis, ISBN 0-13-
Ground, COTS Journal, pp. 54- 55. 451675-3, United States, Prentice Hall, p.4.

[6] O'Neill, Ken, August 2004, Designing Systems
to Combat Single-Effect Upsets in Space 2nd on the 9 n~-: - 7 A..J-.A:-- ,,* n---r
Ground, COTS Journal, pp.56-57. ~ z ; r U L ~ L ~ L L L A YLUILLCJ S ~ ~ J L C ~ ~ L J L u r y c , CILCC

October 30, 2005
[7] Actel Website, The Actel Space Heritage,
W L ~ Y .actel,c~om/products/aero/index.html#.

[8] Fuller, Earl, Micheal Caffrey, Anthony Salazar,
Carl Carmichael, Joe Fabula, Radiation Testing
Update, SEU Mitigation, and Availability Analysis
of the Virtex FPGA for Space Reconfigurable
Computing, MAPLD 2000, p.4.

[9] Altera Application Note 357, Error Detection
Using CRC in Altera FPGA Devices, pp.1-2.

[lo] Xilinx Website, Industry First Development
T n n l t n ~ r n a t e G e n e r a t i o n _ o f 2 x i p l e M o d u l e

Redundant (TMR) Designs for Re-Programmable
FPGAs,
www.xilim.com/products/milaeroItn~/index.htr~~.

[1 1] Xilinx Press Release 0412, January 22,2004,
Xilinx Chips Land on Mars,
mm~.xilinx.com/prs rlsldesign winf04 12 marsrov
er.htm.

[12] Xilinx Press Release 03 135, September 23,
2003, Xilinx FPGAs Flying Aboard Optus
Communications Satellite,
www.xilim.com/~rs rlsldesig11wi11,'03 135o~tus.ht
m. -

[13] Altera Application Note 184, Simultaneous
Multi-Mastering with the Avalon Bus, pp. 1-3.

1141 Xilinx Website, Rapid10 Overview,
~ww.xilinx.comlrapidio/index.l~tn~.

[I 51 Parnell, Karen, Roger Bryner, July 2 1,2004,
Comparing and Contrasting FPGA and
Microprocessor System Design and Development,
Xilinx, pp.18-19.

[16] Impulse Accelerated Technologies Website, C
Programming Tools for FPGAs,
w~vw.impulsec.com.

[17] Altera Website, Nios I1 Development Kit,
Stratix Edition,
~mm~.altera.co~~dproducts/devkits/alterdkit-
nios 1S1Oh.h.

