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Abstract 
Fulfilling NASA's new vision for space 

exploration requires the development of sustainable, 
flexible and fault tolerant spacecraft control 
systems. The traditional development paradigm 
consists of the purchase or fabrication of hardware 
boards with fixed processor and/or Digital Signal 
Processing (DSP) components interconnected via a 
standardized bus system. This is foliowed by the 
purchase and/or development of software. 

Th-iradigm has several disadvantages f F - -  
the development of systems to support NASA's 
new vision. Building a system to be fault tolerant 
increases the complexity and decreases the 
performance of included software. Standard bus 
design and conventional implementation produces 
natural bottlenecks. Configuring hardware 
components in systems containing common 
processors and DSPs is difficult initially and 
expensive or impossible to change later. 

The existence of Hardware Description 
Languages (HDLs), the recent increase in 
performance, density and radiation tolerance of 
Field Programmable Gate Arrays (FPGAs), and 
Intellectual Property (IP) Cores provides the 
technology for reprogrammable Systems on a Chip 
(SOC). This technology supports a paradigm better 
suited for NASA's vision. Hardware and software 
production are melded for more effective 
development; they can both evolve together over 
time. 

Designers incorporating this technology into 
future avionics can benefit from its flexibility. 
Systems can be designed with improved fault 
isolation and tolerance using hardware instead of 
software. Also, these designs can be protected from 
obsolescence problems where maintenance is 
compromised via component and vendor 
availability. 

To investigate the flexibility of this 
technology, the core of the Central Processing Unit 
and InputIOutput Processor of the Space Shuttle 
AP 101 S Computer were prototyped in Verilog 
HDL and synthesized into an Altera Stratix FPGA. 

1. Introduction 
NASA's Constellation is the collection of 

systems that work together to support the new 
vision for the exploration of the Moon, Mars, and 
the outer solar system. These systems include 
launch v e h 3 l e s , i ~ l ~ i c l e s ,  crew 
habitats, robotic systems and ground systems. They 
are to be implemented in a long-term development 
methodology. The goal of this strategy is "to 
develop new capabilities in a manner that is 
pragmatic - so that new capabilities can be 
developed and used to advance exploration in the 
near term - while also being flexible, in order to 
incorporate new technologies and respond with 
agility to scientific discoveries. . . NASA's 
acquisition strategy encourages the use of open- 
systems architectures that facilitate upgrades and 
augmentation while enabling interoperability 
among systems6'[1]. 

These systems will require advanced and high 
performance data processing elements due to the 
distance of mission and the need for more advanced 
and autonomous operations. Furthermore, these 
systems must be highly reliable and evolvable. For 
data processing, the traditional development 
paradigm of using hardware with fixed processing 
elements followed by software development is 
acceptable, but provides less flexibility in support 
of NASA's development strategy. The primary 
culprit is the use of fixed processing elements and 
configurations that are more difficult to change and 
evolve after they have been established. The 
existence of Hardware Description Languages 
(HDLs), the recent increase in performance, density 
and radiation tolerance of Field Programmable Gate 
Arrays (FPGAs), and Intellectual property (IP) 



Cores provides the technology for reprogrammable 
Systems on a Chip (SOC). This technology 
provides for more flexible and evolvable designs. 

This paper discusses the advantages of 
incorporzting SOC technology into future space 
avionics. It also suggests some approaches to 
simplifying the software of systems by removing 
complexity from applications, and moving Real 
Time Operating Systems from a single processor to 
a collection of FPGAs. It includes a demonstration 
of the flexibility of this technology via the 
implementation of the major components of the 
Space Shuttle APlOlS Computer in Verilog HDL 
and its synthesis into an Altera Stratix FPGA. It 
closes with a discussion of how this implementation 
could be incorporated into the avionics of a future 
launch vehicie reusing components of the existing 
Space Shuttle Transportation System. 

-- 

2. Traditional Development 
Paradigms1 Platforms And NASA's 
New Vision 

The traditional development process for 
embedded data processing systems begins with the 
purchase or fabrication of hardware boards with 
fixed processor and/or Digital Signal Processing 
(DSP) components interconnected via a 
standardized bus system. This is followed by the 
purchase and/or development of software. 
Development of the entire system proceeds in a 
stepwise fashion with the initially established 
hardware platform later constraining the software 
development effort. The inflexibility of the fixed 
hardware components along with the inherent 
bottlenecks of standardized bus systems often 
constrains on the adaptability and performance of 
the data processing system. 

NASA will need to develop flexible and 
sustainable systems to implement its space 
exploration vision. This effort must provide very 
reliable systems that are evolvable for long-term 
development and maintenance. These systems must 
be highly automated and self-sustaining to support 
missions beyond low Earth orbit. 

The traditional approach to embedded system 
development can be inefficient in a long-term 
development environment. Early decisions on fixed 
processing elements (Processors and/or DSPs) drive 

vendor selections and purchases drive vendor 
selection and purchases. A long-term marriage 
between these fixed processing elements and 
s ~ f t x ~ i r e  results frem the develepme~t effert, which 
can mean that the longevity of a system can come to 
depend on these ve~dors for both iipgades zfid 
long-term support. There is no guarzntee that fume 
versions of the fixed processing elements will be 
backwards compatible or that they will continue to 
be supported. Using high-level languages for 
software can remedy these dependencies; however, 
this is not totally true for embedded systems. These 
systems usually interface with low-level hardware 
and for performance reasons contain software 
written in the native language of the fixed processor 
elements. 

The use offnese fixed processing elements is 
usually accompanied by other components to 
- s u ~ o ~ ~ t e r ~ o m e ~ ~ i ~ - u s i a g a s t a n d  
system. This topology is a centralized architecture 
where a processing element communicates with 
peripherals and memory over a memory bus and a 
shared I/O bus. However, the drawback to this 
architecture is that the shared bus concept results in 
bottleneck problems [2]. This can be a hindrance 
for data processing systems that need to process 
high volumes of data. 

A standardized bus system requires 
components to support interconnectivity in fixed 
processing elements. This results in a centralized 
architecture where a processing element 
communicates with peripherals and memory over a 
memory bus and a shared I/O bus. This traditional 
shared bus architecture can result in bottleneck 
problems [2], which is a hindrance for data 
processing systems that need to process high 
volumes of data. Such systems can end up with 
hardware-dependent software to overcome these 
bottlenecks 

A standard architecture for software in 
embedded systems consists of application software 
layered on top of a real time operating system. The 
primary job of the real time operating system is to 
interface with the hardware and provide an 
environment where multiple applicztions can 
execute on a processor as if each were the sole 
owner of the processor. This architecture also helps 
protect the applications from each others' faults.. 
These systems must be designed carefully to 



manage against problems such as process starvation 
in a single processor. 

The development effort of the recently 
cancelled Space Shuttle Cockpit Avionics Upgrade 
Project provides real world examples of the 
shortcoming of traditional stepwise development of 
processing systems. The goal of this project was to 
increase the situational awareness of the crew via 
increased on-board intelligence and automation, 
similar to what will be needed for NASA's new 
vision. The core-processing element for the system 
was the PowerPC 7455 processor. This was the 
best available processor in its class for speed and 
radiation tolerance, and the architecture of the 
single board computer was based on this family of 
processors. However, while the PowerPC 7455 
cache memory contained parity protection, its cache 
tags did not. The project had to use software 

- - - - - - - - - - - - m i t i g a $ i o n f e ~ h n ~ ~ r k a r w d - t ~ m k ~  
These techniques increased the complexity of the 
overall software design. As another example, the 
increased on-board intelligence and automation led 
to a need to process large amounts of data, and 
algorithms requiring expensive math operations. 
The project quickly encountered 110 bottleneck 
problems and had to resort to compromises. Also, 
some of the math intensive operations led to 
performance problems on one of the fastest 
embedded processors available on the market. The 
project overcame these challenges, but at the cost of 
schedule. 

There is a high probability that NASA will 
face these challenges in the development of its new 
vision. The traditional development paradigm does 
not prevent success, but consideration of SOC 
technology can provide an easier road to success. 

3. System On A Chip And FPGA 
Technology Primer 

System on a Chip refers to the integration of 
varying electronic circuits onto a single chip to 
form a system. This differs from building an 
electronic product by the assembling of various 
chips and components on a circuit board. The 
tools commonly used to implement this capability 
consist of Hardware Description Languages 
(HDLs) and targeted logic devices such as 
Application Specific Integrated Circuits (ASICs) 

and Field Programmable Arrays (FPGAs). ASICs 
have traditionally been expensive to implement, 
so the rise in the density and performance of 
F?GAi 2nd thgir !ow cost are mking them the 
favorite option [3]. This paper will focus on the 
- 7 -  n- n A n  ;r\n ~ a e  of FPGAs as the target lo5i \, U~VICICIS. 

Hardware Description Lmguages are 
specialized programming languages used to 
model and design digital hardware. Large 
companies use them to design complex digital 
systems such as computer central processing 
units, computer peripherals and cell phones. An 
HDL allows the engineer to model hardware 
functionality as a software program. The model 
can then be run on a computer to see if the design 
will work as intended. Problems can be corrected 
in the model, and the corrections verified in 
simulation. Examples of these languages include 
Verilog and VKDL. An emerging trend is the use 
of tradZiGEl h i i l eve l  programming languages 
such as "C" to model and represent hardware 

The basic development flow for creating 
these systems consists of providing HDL files as 
input to a tool set that synthesizes the design into 
a format to be loaded and realized on an FPGA. 
The process is similar in concept to the 
compilation and linkage of software to execute on 
a target processor. These tool sets normally 
provide support for debugging, simulation, 
optimization, timing analysis, and integration. 
Examples of such tools sets are the Embedded 
Development Kit and Platform Studio by Xilinx 
and Quartus I1 by Altera. 

FPGAs are progranmable digital logic 
devices. In a nutshell, their fundamental 
technology consists of arrays of logic elements 
and registers, along with a configurable 
interconnection matrix. Design implementation 
involves configuration of the interconnections. 
FPGAs use SRAM, Flash Memory, or antifuse 
programming technology to capture the 
configuration. SRAM and Flash Memory FPGAs 
use memory for device configuration. Memory 
cells are used to control a transistor at a crossover 
point on the interconnect matrix. While both 
SRAM and flash memory FPGAs are 
reprogrammable, the SRAM devices will lose 
their configuration when power is removed. Also, 
SRAM devices require a non-volatile 
configuration memory unit to store configuration 



data. This data must be loaded into the SRAM 
device before use. A flash FPGA does not require 
this additional complexity. Antihse programming 
devices  re I ? O ~  r ~ n r ~ ~ a ~ t n ~ b l e .  x vYA .. I- The intercrcoraect 
matrix is maintained using fusible material. The 
configfiration design is "bbiuTed in" after 
programming [4]. Besides supporting custom 
logic, FPGAs are now providing support for 
embedded multipliers, memory, regional clock 
systems, and IO. 

For the harsh environment of space, there 
are FPGAs that are radiation tolerant. Single event 
upsets (SEUs) occur when a charged sub-atomic 
particle strikes a flip-flop or an SRAM cell. This 
threat comes from the abundance of heavy ions 
and protons in the background galactic cosmic 
radiation and in the solar wind [5] .  For FPGAs, 
upsets must be considered for both configuration 
(single event functional interrupt, or SEFI) and 
logic. 

Radiation testing of FPGAs performed by 
iRoc Technologies indicates that antifuse 
programming and flash memory FPGAs' SEFI 
performance is very good [6]. Actel is a prime 
producer of antifuse and flash FPGAs, Its 
products have been proven in space applications 
such as Atlas 11, Echostar, SBIRS-High, 
International Space Station, Hubble Space 
Telescope and the Mars Pathfinder. The 
subsystems involved include command and data 
handling, attitude reference and control, 
communication payload, and scientific 
instruments [7]. 

SRAM FPGAs can use mitigation 
techniques to manage SEFI events in radiation- 
heavy environments. The most common is 
configuration bitstream repair. This consists of 
cyclically reading the FPGA's bitstream 
configuration data and checking against a 
reference for discrepancies [6]. Xilinx has 
families of FPGAs that provide non-intrusive 
access to the configuration bitstream of the device 
[XI. Altera provides a family of FPGAs with built 
in cyclic configuration bitstream checking [9]. 
Triple module redundancy (TMR) is a technique 
that can be used to check for upsets to logic and 
memory subsystems. In TMR, elements such as 
flip-flops are implemented three times in parallel 
and a voting circuit compares the outputs 161. 
Xilinx provides support tools for the seamless 

incorporation of TMR into designs [lo]. SRAM 
FPGAs from Xilinx have been successfully used 
in the space environment. The most recent success 
.re their  US^ i11 th: Spirit 29d OppeTtmity Mars 
Rovers missions. The Xilinx devices are used to 
co~tro! the pyi-otechic devices on the la~der, 
several motor control functions on the rover, 
including controllers for the wheels, steering, and 
antenna gimbals [1 11. Another example is its use 
on the Optus Communications Satellite for signal 
processing [12]. 

Figure 1. Artist Rendering of Mars   over' 

Intellectual Property Cores provide pre- 
packaged design components to be incorporated 
into SOC designs such as the examples above. 
Examples include embedded processors, Digital 
Signal Processors, bus interface units, and 
communication support. Engineers can pick and 
choose IP Cores to incorporate into designs for 
synthesis. "Soft" designs are purchased instead of 
silicon. For examples, IP cores for PowerPC 405 
CPUs can be incorporated into Xilinx SOC 
systems and Nios RISC CPUs into Altera SOC 
systems. 

' Courtesy of NASA JPL 



4. Benefits Of Systern On A Chip And 
FPGA Technology In NASA's New 
Vision 

The implementation of NASA's new vision 
will require evolvable and high performance data 
processing systems for aviofiics. SOC and FPGA 
technology can provide a design methodology 
better suited to support these needs. 

4.1. Reduction In Risk Of Obsolescence 
The hardware designs for SOC systems are 

represented in HDLs. These are eventually 
synthesized into bitstreams and are used to program 
the FPGA. This allows for a legacy design that can 
be re-targeted to future FPGAs with increased 
performance and densities. It also allows for legacy 
designs to be incorporated into new development 
pl?itFormSw1fhf E f E f b l i t y  for design tW=m-- 
enhanced capability. The investment made in 
software and the supporting infrastructure can be 
preserved across the lifecycle of the project, instead 
of the current processing platform. NASA makes 
huge investments in the man rating of avionics 
(both hardware and software) via development, 
maintenance, and verification costs. For upgrades, 
the majority of the cost can be limited to the 
recertification of the hardware, allowing for more 
efficient and safe incorporation of some new 
technologies. 

4.2. Better Supports Lortg-Term Development 
The representation of hardware design in 

HDLs and the programmability of FPGAs provide 
the tools for evolvable data processing systems. 
Long-term development can result in an iterative 
approach where lessons learned and bugs found on 
previous iterations are applied and fixed on future 
iterations. This concept works well for software, but 
not for fixed silicon hardware. To adapt to changes 
in fixed silicon components, either software 
workarounds must be provided or replacement 
devices must be located. However, with an SOC the 
designer can make design changes to HDL to adapt 
hardware. Modified HDL can be realized in FPGAs 
because they are re-programmable. SRAM FPGAs 
provide the most flexibility from a device point of 
view. However, it is even more feasible to modify 
HDL, program a radiation-resistant antifuse FPGA, 

and replace existing board components than to 
resort to software workarounds or fixed silicon 
device replacement. 

4.3. Better. Fla-ibility To S~pport  High 
Perforrtz a12 ce Systems 

Systems made up of fixed silicon processors, 
DSPs, and traditional shared bus architectures and 
protocols hsve worked well in avionics systems for 
decades. However, as the data processing 
requirements of these systems have increased, the 
overall performance has decreased due to 
serialization. HDLs and FPGAs offer the ability to 
design systems that utilize parallel processing to 
boost performance. 

ID bottlenecks zre one of the biggest iribitors 
in the performance of traditional data processing 

s y s k ~ s ~ e v _ r e s _ ~ I t & o m  the serial nature of the 
standard shared bus architecture. In this 
architecture, a single arbitrator controls 
communication among one or more bus masters and 
slaves. Since the bus is shared, only a single master 
may control the bus at any one time. An arbitrator is 
responsible for granting access. When a master has 
control of the bus, all other masters on the bus must 
wait for the completion of the transaction before it 
is possible to proceed with their transactions. This 
serial scheme can result in bottlenecks in systems 
requiring high data throughput. FPGA systems 
provide various techniques to overcome this 
limitation. Since FPGA systems allow for the 
consolidation of components into a single unit, 
these systems can take advantage of the internal 
routing structures to produce non-traditional bus 
systems. An example is the design of the Altera 
Avalon Bus. This bus uses the concept of 
simultaneous multi-master bus architecture. "The 
system does not have shared bus lines like 
traditional microprocessor-based systems. Instead, 
each master-slave pair has a dedicated connection 
between them. When a peripheral must accept data 
from multiple sources .. multiplexers (not tristates) 
feed the appropriate signal into the peripherals.. . 
Because master and slave peripherals are connected 
with dedicated paths, muitiple masters can be active 
at the same time and can simultaneously transfer 
data to their slaves" [13]. Of course a bottleneck 
can occur in this particular scheme if multiple 
masters request the same source at a high 



frequency, but the bottleneck does not inhibit the 
flow of data for non-related data transfers. This 
flexibility allows for other design solutions around 
th is pmblem as we!!. FOT exampie, RapidIQ is a 
high performance interconnect technology for 
p,-- :- J-L- L-c ,,--.- n c  dssi~lg uit~a U C L W C C ~ I  ~IUGCSSULS, UO?~ ,  5j;steiiis 
memory and peripheral devices within a system. It 
allows for performance for up to 10 Gigabits per 
second and beyond. There are IP cores available to 
support this technology in FPGAs [14]. 

FPGA systems also provide support for 
computation intensive operations. Advanced data 
processing algorithms can require a large number of 
multiply and add operations. These can be 
performed in basic processors, but DSPs have been 
optimized for these operations. However, the serial 
nature of both these devices can iimit performance. 
FPGAs are now providing dedicated circuitry to 

------su~f3-dtd&dded-1ffu&lplyandadk 
operations. This allows for the parallel crunching of 
algorithms, which can provide an enormous 
performance boost. For example, Xilinx has 
families of FPGAs that can perform 256 MAC 
operations in a single clock cycle, vs. 256 clock 
cycles for a dedicated DSP [15]. 

HDL and FPGAs also offer other options such 
as implementing software algorithms in hardware. 
Products are available where designers can 
implement algorithn~s in the "C" language to be 
synthesized into a FPGA directly [16]. Tests have 
been performed that show algorithms implemented 
in hardware in an FPGA have executed 28 times 
faster than the same algorithms executing as 
software on a processor running a clock 15 times 
faster than the FPGA [15]. 

5. Increasing Fault Tolerance, 
Reliability, And Fault Analysis Using 
System On A Chip And FPGA 
Technology In NASA's New Vision 

SOC and FPGA technology provides the 
flexibility to increase the reliability and fault 
tolerance of data processing systems. It also 
provides the flexibility to design systems with 
increased insight for fault analysis. 

5.1. Increasing Fault Tolerance arzd 
Reliability 

The hardware for traditional data processing 
systems consists of dedicated fixed components that 
are interfaced using a shared bus. The standard 
centralized architecture normally has a processor 
and its peripherals interconnected on a shared bus 
using bus controllers. Each of these devices usually 
exists as a separate package. 

SOC and FPGA technology allows for the 
creation of de-centralized technologies, which can 
provide better fault tolerance and reliability. They 
allow for the consolidation of processing elements 
and peripherals into a single chip. This 
consolidation provides relief into the design of 
radiation tolerant boards. For example, all device 
components on a board should be radiation tolerant. 
A designer must ensure that all necessary 
components that are p r o v i m m e  various 
vendors are radiation tolerant. However, a SOC 
design can be completely synthesized into the same 
radiation tolerant FPGA. A board containing 
multiple SOC devices can communicate using high 
speed chip to chip interconnect protocols such as 
RapidIO. Depending on one's design, this can 
minimize the threat of single point failures. For 
example, in the traditional centralized hardware 
architecture, a failure of a dedicated bus interface 
device can cripple the entire system. With a de- 
centralized architecture, consideration must be 
given to memory usage and interfacing. In a 
traditional system, there is usually a single memory 
address space used by one or multiple processing 
elements. However, a designer can take advantage 
of FPGAs with embedded memory resources to 
produce isolated systems that interface via a high- 
speed protocol. If the memory capacity is inefficient 
or non-existent in the FPGA, then it may be feasible 
to interface each FPGA with its own memory space. 

A de-centralized design utilizing SOCs can 
also produce more reliable systems via the Keep it 
Simple, Stupid (KISS) paradigm. Simpler systems 
are less likely to fail than more complicated ones. 
Real Time Operating Systems are used to allow 
multiple software applications to share limited 
resources such as processors and peripherals. 
However, for these entities to coexist, mechanisms 
are needed to manage access to shared resources. 
For example, semaphores, tasks locks, etc. are used 



in software to manage the use of global objects by 
multiple processes. Design oversight can lead to 
problems such as deadlocks. Also, proper analysis 
mist be perfamed &iring design to prevent rintime 
issues such as process starvation. These issues have 
been seen time and time again in real time systems. 
Using de-centralization, software can be broken up 
into individual simpler components that execute in 
parallel on multiple hardware components. This can 
occur either within a single SOC or on several 
interacting SOCs. A single SOC system can consist 
of multiple processors executing individual 
software applications. Both systems can provide 
interaction via message passing constructs. 
Software components can be partitioned to execute 
on self-contained units according to performance 
and criticality req~iremects. -4 smaller number of 
components can be designed to compete for the 
same processor resources. Also, improved fault 
tolerance is provided because these individually 
simpler interacting components are isolated by 
hardware. ARINC 653 standard systems provide 
improvement for the traditional paradigm, but a 
failure of the CoreOS or a single component of the 
hardware can disable the entire system. 

5.2. Increasing Fault Analysis 
Being able to detect faults is an important 

aspect of highly reliable systems. However, being 
able to analyze wlzy a fault occurred is even more 
important. Fault analysis of software failures can be 
a very complicated and difficult venture. A 
conlmon method of analyzing why faults occur in 
software is to understand software execution paths. 
This is normally achieved by leaving 
"breadcrumbs" via data logging during production 
runtime, or by using a debugger to "single step" 
through an execution path. "Breadcrumbs" usually 
do not leave enough information during runtime to 
analyze complex problems. A debugger is a post 
mortem tool, used by a developer attempting to 
recreate the problem. However, the developer may 
not be able re-create the exact combinations of real 
time scenarios that caused the problem. Designers 
can use the flexibility of EIDLs and FPGG4s to 
create system add-ons that can provide better 
information for fault analysis for both production 
and non-production runtime environments. As an 
example, a designer can modify the processor or 
processors of a system to interface with a 

component that tracks the branches of software 
executing in run-time without any performance 
degradation. This external hardware component 
could build znd mzi;;tzin execution trees i:: memay 
based on branches. There are three ways to take 
advantage of this system. First, it could be used to 
analyze the execution paths of the software to 
determine the root cause of problem. Next, it could 
be used during the software verification phase to 
track which software paths have been verified. The 
memory of verified paths could be loaded into 
production systems where unexpected execution 
paths not verified could be reported using the stored 
execution paths as "expected" paths. The final use 
could be for the indication of "wild execution 
paths" during production use. The system could 
report an error and configure itself to a safe mode. 
Of course, real-time software updates (patches, etc.) 
would have to be considered as a factor in a 
production environment. 

6, Technology Demonstrator - Space 
Shuttle APlOlS Computer 
Components In FPGAs 

To investigate the promise and flexibility of 
SOC and FPGA technology, research based on 
technology from the current Space Shuttle Program 
was performed. The goal of the research was to 
design the core components of the Space Shuttle 
AP 10 1 S Computer in an HDL. The functionality of 
the HDL would then be tested via simulation and 
synthesis into an actual FPGA. 

The AP 10 1 S Computer serves as the primary 
platform for the Space Shuttle control system. The 
design is based on the IBM System1360 
mainframes. It consists of a Central Processing Unit 
(CPU) and an Input/Output Processor (IOP). The 
CPU provides instructions to support I 0  control, 
fixed point arithmetic, branching, shift operations, 
logical operations, floating point operations, and 
special operations. The IOP provides support for 24 
external communication channels over 1 Mbitsls 
MIA Buses. It also provides instructions used for 
the I 0  management control. Both the CPU and IOP 
share a 1 Mbyte memory space. 

The designs were implemented in Verilog 
KDL. The Quartus I1 design software by Altera 
Corporation was used for design, synthesis, and 



simulation at the device configuration file level. 
Icarus Verilog by Stephen Williams was used for 
pre-synthesis simulation (Verilog level). The Altera 
?-YTios 11 Development Kit, Str~tix Edition %as used 
for hardware tests. The FPGA device used in this 
kit was the Stratix EP1 S 1OF780. This device 
provides 10,570 Logic Elenests (LEs), 94 M512 
Ram Blocks (32 X 18 bits), 60 M4K Ram Blocks 
(128 x 36 bits), 1 M-Ram Block (4K X 144 bits), 6 
DSP Blocks, 48 Embedded Multipliers, 6 PLLs, and 
426 I 0  Pins. The EP1 S lOF780 is the smallest 
device of the Stratix family. The kit also provides 
external components such as 1 MB, 16 bit wide 
SRAM, an Ethernet controller, and serial controllers 
~171. 

To demonstrate flexibility, the CPU was 
redesigned from the original version, while the IOP 
design was based on the microcode of the original 

----versis&h~e-~~~s~&ed~P4~-~~0deaUowe4---- 
for a design that could theoretically use the existing 
IOP micro programs of the AP 10 1 S. 

The major components of the CPU design 
were the Microcode Controller, Instruction 
Decoder, ALU, Branching Unit, AP 10 1 Memory 
Controller, and the Register File. The CPU 
instructions were micro-programmed and executed 
by the Microcode Controller. The instruction micro- 
progranls were stored using Stratix FPGA 
embedded memory, which was interfaced to the 
Microcode Controller. The Instruction Decoder was 
designed to decode instructions to determine the 
starting address of the nlicro-program for the 
Microcode Controller. The ALU was implemented 
to support both Fixed and IBM Floating Point 
operations. It used Stratix embedded DSP blocks to 
implement both multiplication and division 
operations. The AP 10 1 Memory Controller was 
designed to interface the CPU to the external 1 MB 
of SRAM provided by the development kit. It 
performed memory operations such as address 
expansion, AP 10 1 effective address calculation, 
instruction pre-fetching, and memory access. The 
Branching Unit was used to update both the micro 
and macro program counters and the Register File 
siored ihe results f ~ r  the macro instructions (Figure 
2). 

4ig-urd&1-OlS-C~~aStr-ati~~-GA 

To provide a testing and debug interface for 
insight into CPU operation, an Altera Nios II 
processor was included in the FPGA design. The 
Nios I1 processor was interfaced to access the 1 MB 
memory space used the APl 01 S CPU. Arbitration 
was provided by the Avalon Bus interface. The 
Nios I1 processor was also interfaced with a serial 
UART device for communication with the console 
of an external computer. 

The total synthesized size of the CPU was 
5,500 LEs, 52% of the Stratix FPGA. The size of 
the debug interface (Nios I1 processor and other 
components) was 2,700 LEs. The total FPGA 
resources used were 8,200 LEs or 78% of the 
FPGA. 

The operation of the CPU was tested using the 
iVerilog simulation tool and on the Stratix device in 
the development kit. For each case, APlOlS test 
assembler programs were executed and monitored. 
The test programs covered only a subset of the 
instruction set. All tested instructions produced 
expected results. 

The Quartus I1 Timing Analysis Tool analyzed 
a design clock period of 20 ns or 50 MHz. This 
clock signal was routed through two Phase Locked 
Loops (PLLs) to produce seven separate clock 
signals. The first clock (50 Mhz) was distributed to 
the Nios I1 processor and Avalon Bus. A 20 Mhz 
clock signal and five phased 4 Mkz clock signals 



were distributed to the AP 101 S CPU. The prototype 
CPU could match the real AP 10 1 S fastest 
instruction time one for one. However, the most of 
+I- ,. -..-+nC. 
LllG p ~ v ~ v ~ ~ e  CPU instrricti~ns were desiged t~ 
execute in fewer clock cycles. The prototype design 
did not implement a pipeiining scheme such as the 
actual AF 10 1 S. A detailed timing ailaljisis of each 
instruction was not performed, so no accurate 
timing data is available for comparison. 

The FPGA version of the IOP was designed to 
mimic the Micro Controller design of the actual 
AP 10 1 S. The infrastructure based on the micro- 
instruction formats was implemented using 
specifications from the APlO 1 S Workbook (IBM 
No. 85-C67-005). Test micro programs were 
written for the microcode controller and were 
simulated using the iVerilog simulation tool. The 
design did not provide support for the MIA, the 

- ~ ~ ~ t ~ & i s - r e s p m s ~ e - f o ~ s e ~ & g d a t a &  -- 

the BCE elements over the physical media. The 
synthesized size of the IOP components was 2500 
LEs of the Stratix FPGA. 

As of the time of this study, the entire system 
was not implemented and integrated into a complete 
unit based on the FPGA size (smallest in Stratix 
family) in the development kit. However, the study 
did implement core components of the APl 01 S in 
Verilog HDL and synthesized them into Stratix 
FPGAs. The AP 10 1 S CPU and IOP could be easily 
be implemented in a larger-sized Stratix device. A 
larger-sized device would also simplify the design; 
for example, the SRAM Controller could be 
removed by using embedded FPGA memory 
resources. However, the design could also be 
implemented by integrating more than one FPGA. 

A future activity is to develop an APlOlS 
Virtual Machine. The AP 10 1 S CPU and IOP will 
be implemented in software to execute on two Nios 
I1 processors embedded in the Stratix device of the 
development kit. Custom logic for the IBM 
floating-point style unit will be implemented and 
interfaced to one of the Nios I1 processing using the 
custom instruction interface. 

7. Theoretical Application For Space 
Shuttle APlOlS Computer In FPGAs 

In the 1980ts, the Space Shuttle Program 
upgraded its General Purpose Computer (GPC). 

The goal was to maintain the existing interface to 
minimize changes to the existing flight software, 
while at the same time improving the underlying 
tec1.~~!=gy, primari!y using discrete TTL !egis 
devices. Now, let's go back in time to this period 
and assiiiie that the project niodeled the G1C's 
CPU and IOP iil zn EEL to simlilzte the design. III 
fact, HDLs existed during this period as a 
hardware-modeling tool [18]. With this assumption 
that the design of the GPC existed in a HDL in the 
198OVs, let's move forward in time to the 2000's. 
Let's assume that during this period, NASA is in a 
bind where it needs to launch five 68 metric ton 
modules starting within 3 years to save the Space 
Station. NASA does not have an existing booster 
with the required hewy lift capability, and it cannot 
build a new one within this 3-year period. A viable 
option may be to use the components of the Shuttle 
Stack such as the SRBs. External Tank, and SSMEs 
as the heAvy lift vehicle and develop a new payload 
canister (Figure 3). However, this design would 
require additional avionics components not 
compatible with the bus architecture of the current 
system, and the avionics must be expendable. A 
crew must be launched along with the payload, so 
the system must be man-rated and must interface 
with the legacy system. NASA can upgrade the 
avionics to support the new system, but this would 
also require porting the existing flight software into 
a new platform. This seriously hampers the project, 
because a rehost of the software into a new platform 
and its verification for a man-rated system would be 
hard to achieve in the timeframe. 

A solution to this problem is to use the existing 
HDL of the GPC design to synthesize the legacy 
computer into FPGAs. This would allow for the 
reuse of the existing infrastructure and flight 
software. The project could then focus its effort on 
the development and verification of the new 
hardware and integration. This is compared to the 
development and verification of both new 
hardware, software, and infrastructure required for a 
rehost. Engineers could overcome the problem of 
the new bus architecture by modifying the HDL of 
the IOP to encapsulate the existing software from 
the changes. The HDL of the memory unit could be 
modified to create a new high-speed data interface 
to the payload. In general, this approach has a better 
chance of success when compared to the rehost of 
the system into new avionics and software in the 3- 



year time frame. Also, the synthesis of the GPC and 
its new supporting components into FPGAs will 
allow for the advent of expendable avionics 
har&xmr~ The FPCA c rmilrl h~ iicpA tn rrpatp a 
L A W  .. U.Y. LZIV L L -1 %" V V U I U  " Y  UUVU V VIVULY Y 

Flight Control Card to be inserted into a new 
avionics co~ilp'iiter (Figire 4). This thetiretical 
example shows hgw SOC aad FPGA technology 
helps solve the problem of obsolescence for long 
term projects. It also shows how the flexibility of 
the technology can allow for a system to evolve 
with minimum impact. 

Figure 3. Artist Rendering of an SDLV~ 

8. Conclusion 
SOC and FPGA technology should be 

considered to support the development of systems 
for NASA's new vision. The flexibility of this 
technology can reduce the risk of obsolescence, 
provide better support for a long-term development 
paradigm, provide the horsepower for high 
performance systems, and increase fault tolerance. 
The technology for FPGAs supports the harsh 
environment of space. A recent success story is 
their use in the Spirit and Opportunity Rovers 
currently in operation on the surface of Mars. 

Courtesy of NASA 

Figure 4. FPGA Technology in an SDLV 
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