Remote Controlled Orbiter Capability

The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.
Remote Control Orbiter Capability

AIAA Briefing

05/11/07

M. Garske/NASA RCO Project Manager and Design Engineer

R. de la Torre/Boeing IDS GNC Entry Engineer
The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.
Michael T. Garske – NASA, Space Shuttle Program, Orbiter Project Office
281-483-0790
michael.t.garske@nasa.gov

Mr. Garske has almost 23 years of combined experience in NASA working for the Space Shuttle Program in engineering, operations, and management from two NASA centers - Kennedy and Johnson Space Centers. He earned his B.S. in Technical Physics and A.A. in Astronomy from Southwest Missouri State University in 1983 and a M.S. in Engineering Management from University of Central Florida in 1990. He is the Senior Project Manager for the Orbiter Project Office and is the Project Manager for RCO. He’s earned many NASA awards including the NASA Exceptional Service Medal and the NASA Space Flight Awareness Award.

Rafael de la Torre – Boeing IDS, Space Exploration Division

Mr. de la Torre has over 9 years experience in the Space Shuttle Program as a contractor at the Kennedy and Johnson Space Centers. He has been analyzing the Space Shuttle Orbiter Entry GN&C system and Orbiter entry and landing performance for the last 7 years. In addition to his analysis activities, his current responsibilities include ownership of several flight software functions related to the entry GN&C system, including approach and landing guidance and the head-up display. He earned his B.S. in Aerospace Engineering from Embry-Riddle Aeronautical University in 2000 and M.S. in Physics from The University of Houston - Clear Lake in 2007. He has been a key contributor to developing, implementing and testing GN&C-related software modifications in support of RCO.
Introduction

• Initial assumption or risk is that the Orbiter Tile Protection System (TPS) could suffer damage such that re-entry with flight crew would be too risky, even if repaired

• The Space Shuttle Program (SSP) Mission Management Team (MMT) would declare a Safe Haven and begin crew rescue operations via another shuttle launch

• Meanwhile, the “compromised” Orbiter would be a surrogate to the stranded crew and ISS crew and its resources depleted to minimum required to support a re-entry/breakup for an ocean ditch

• Space Shuttle Program was searching for easy concept to retrieve/recover a compromised Orbiter and not discard a valuable asset

• The Remote Control Orbiter (RCO) capability was developed and implemented to provide the SSP the capability to land the Orbiter without a flight crew in an emergency situation
 – Uses the Autoland functionality

• The Space Shuttle Program has requested a capability to recover the vehicle in lieu of an ocean ditch when a Safe Haven has been declared – Salvage operation
Overview

The Orbiter flight deck panels that are used to manually control the following functions were targeted to be reconfigured:

- APU start/run
- Air Data Probe (ADP) deploy
- Main Landing Gear (MLG) arm/down
- Drag Chute arm/deploy
- Fuel Cell reactant valve closure

- The reconfiguration is accomplished by the flight crew performing an In-Flight Maintenance (IFM) procedure to install a pre-fabricated cable and loading special software designed to support capability

- RCO IFM installs a cable to provide electrical connectivity from Ground Control Interface Logic (GCIL) avionics box up to the flight deck panel switches
 - Enables ground controllers to control the targeted functions via command uplink
 - Allows flight software to control certain targeted functions

- The cable is 28 feet long, weighs 5.4 lbs, and is stowed on the ISS for emergency use

- RCO IFM Cable with its supporting flight software change will provide the SSP the capability to land the Orbiter without a flight crew in an emergency situation
• RCO IFM Cable supports an emergency contingency operation
• RCO IFM Cable must be single fault tolerant for functions that:
 – Affect crew safety (while docked or during undocking operations)
 – Affect the safety of people on the ground
• Zero fault tolerance for RCO IFM Cable functions that protect from loss of Vehicle
• The landing site shall be Vandenberg.
• Systems certification is not performed.
• The RCO Cable shall be installed as an In Flight Maintenance (IFM).
• SAIL functional verification testing shall be performed
• Build one cable for flight and one for SAIL.
 – Stow one flight cable onboard ISS.
One RCO IFM cable for SAIL to support integration of hardware/software avionics testing, IFM verification and one cable for flight.

Recommended Feedthru (port side) for SAIL:
Route and secure with tie wraps, velcro straps, and duct tape.

Recommended feedthru (starboard) for Flight:
Route and secure with tie wraps, velcro straps, and duct tape.
RCO Cable Routing

SPACe SHUPUTLE PROGRAM
Orbiter Project Office
NASA Johnson Space Center, Houston, Texas

RCO Cable Routing

PNL F6A3 (Landing Gear Controls)

Middeck Avionics Bay 3A GCIL hookup
• SW changes targeted only necessary items
 – Critical and could not be uplinked
 – Time-critical commands
• Changes implemented via phased approach
 – OI-30 STS-117
 • Special Flight Software patch
 • OMS Burn enable window expansion for Deorbit burn (15 sec – 3 min)
 • State Vector info transfer from G3 to S2 during entry ops for antenna management
 – OI-32 STS-120
 • OI-30 changes baselined in FSW
 • RCO Inhibit/Enable ITEM entry added to display for activation of FSW functions
 – OI-33 TBD
 • Automates landing gear and drag chute arm & deploy
 • Incorporates GPS during rollout for lateral tracking
• History making event…First time G3 and S2 GPC memory configuration combination was used for entry and landing
• Verified Flight Software mods are ready to support STS-117 with OI-30
• Verified Flight Software mods are ready to support STS-120 with OI-32
• Verified hardware interfaces (voltage and current levels)
• Test run of IFM installation and procedure with STS-121 Crew
• Also, undock and back away steps, including PLBD closure via manual uplink commands were run and validated
Unique Ops Guidelines

• Orbit SM controlling PL MDMs through landing (No BFS loaded/running)
 – Supports Antenna Management for communications
 – Supports PLBD closure
 – Hardware configuration constraints prevent use of BFS
 – SM is more robust operating system

• Vandenberg selected as landing site
 – Lowest risk to the public or ground resources due to water approach
 – Needs MLS equipment installed to support autoland software
 – Orbiter FSW mods (OI-33) enable GPS during landing rollout

• Autoland GNC capability will be utilized
 – Approach & Landing pitch and roll guidance
 – Automated landing gear and drag chute deploy (OI-33)
 – Auto derotation and nose-wheel steering during rollout
Ops Overview

• On Orbit - Safe Haven Declared, Salvage the Orbiter
 – Docked with ISS
 – Some level of TPS repairs could be performed
 – Prepare Orbiter for remote controlled capability
 • Perform IFM’s (undock and RCO) and cockpit switchlist (entry)
 • Enable RCO Flight Software
 – Crew Egress to ISS, close and secure hatch
 • Handover Orbiter control to MCC ground flight controllers
 – Undock & Separate Orbiter from ISS
 • Ground uplinks DEU’s normally performed by crew keyboard entries
• Pre-DeOrbit Burn setups
 – Configure GPC’s to G3/S2 memory configuration (Note: no BFS)
 • Load and activate TFL 172 downlink telemetry format (normally 164)
 – Uplink and load DeOrbit targets
 – Uplink Stored Programmed Commands
 • SPC’s are uplinked and stored onboard for timed execution…ground uses trajectory prediction tools to predict the time for execution of the following RCO functions:
 – Air Data Probes Deployment
 – Landing Gear Deployment (OI-30, OI-32)
 – Drag Chute Deployment (OI-30, OI-32)
 – Fuel Cell Shutdown
 – Close Payload Bay Doors
 – Start three APU’s via Real Time Command uplink
Ops Overview Continued

• Perform De-Orbit Burn
 – Command GPC’s to GNC Major Mode 303 and to SM Major Mode 201
 – APU’s to norm Press (HYD Pressure to normal) via uplink RTC
 – Command GPC’s to GNC Major Mode 304
• Entry Interface, 400,000 ft.
• At Mach 5, the Air Data Probes deploy via onboard SPC
• At Mach 2.5 enter the TAEM interface
• Approach and Landing interface at Touchdown minus ~80 seconds
• At 2000 ft., the Landing Gear is armed and deployed *
• Touchdown
 – Arm and deploy drag chute*
 – Auto derotation and steering (using GPS in OI-33)
• Landing Rollout complete
 – Orbiter Power down via onboard SPC to close Fuel Cell Reactant valves

*via onboard SPC through OI-32, Automated for OI-33
Risks/concerns

- None at the Cable level
- Only partial checkout capability prior to use can be accommodated on-orbit
- Overflight risk NOT an issue for MMT and Agency with water approach to Vandenberg
- Vandenberg support facilities near runway could sustain damage
- RCO IFM Cable loss of function/result table:

<table>
<thead>
<tr>
<th>Function</th>
<th>Loss Of Function/Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start APUs</td>
<td>Activate 3 prior to de-orbit burn. If 2 of 2 APU strings do not activate, execute ocean ditch</td>
<td>Loss of Orbiter in ocean</td>
</tr>
<tr>
<td>Deploy Air Data Probe</td>
<td>If air data probes fails to deploy, take Navigation Derived Air Data</td>
<td>Potential loss of Orbiter within landing site</td>
</tr>
<tr>
<td>Arm, Deploy Landing Gear</td>
<td>Should gear fail, then landing will be with gear up</td>
<td>Loss of Orbiter on runway and potential facilities damage</td>
</tr>
<tr>
<td>Deploy Drag Chute</td>
<td>If Drag chute fails to deploy, then runway rollout will be long</td>
<td>Exceeding runway length may cause damage to Orbiter</td>
</tr>
<tr>
<td>Emergency Power Down</td>
<td>Fuel cell(s) expected to overheat, if heat rejection lost, prior to running out of cryo while still producing power.</td>
<td>Potential loss of Orbiter on runway due to Fuel Cell overtemp.</td>
</tr>
</tbody>
</table>
Summary

- The RCO IFM Cable with its supporting flight software change will provide the SSP the capability to land the Orbiter without a flight crew in an emergency situation.
- The RCO IFM Cable and concept provides the benefit of recovering a high valued asset in lieu of discarding in the ocean.
Backup
TPS Re-enforced Carbon-Carbon (RCC)

TPS Tile
Command/driver Overview

Orbiter GCIL/LCA Drivers

RCO IFM Cable

Orbiter Flight Deck Panel Functions

** Note Fuel Cell 2 is already down MN A to MN B buss tie

* Note PI-1 LCA driver will be diode latched ON when activated.
RCO Cable Design Analysis

- FMEA bent pin analysis performed
- Orbiter system circuit analysis performed
- Hazard analysis performed
- Materials certification completed
- Parts derating analysis performed
- EMI analysis performed
• RCO IFM Cable parts list (one cable)
 – 16 connectors with pins, backshells, and caps
 – ~800 ft 22AWG Nickel coated wire (MIL-W-22759/12-22-9)
 – 5 diodes (JANTX1N4942)
 – splices
 – Gortex outer jacket for cable protection
 – Velcro straps
 – Other small hardware misc…
• Other than the initial orbiter TPS damage causing Safe Haven, all other orbiter systems are fully functional
 – Avionics and Flight Control Systems redundancy not changed except:
 • PL1 MDM J6 demated due to Contingency Shuttle Crew Support (CSCS) IFM
• Risk assessment for Vehicle survivability during re-entry is somewhere between re-entry with crew onboard and ocean ditch
• Use Safe Haven IFM undocking approach
• Tasks historically performed by the Crew accommodated by:
 – Ground uplink (RTC’s and DEU Equivalents)
 – Ground uplink Stored Program Commands (SPC’s) to accommodate time critical events
• Crew will install IFM hardware and pre-configure necessary switches
• The Orbiter is ready to be commanded, re-enter, and land remotely, via ground control once the RCO IFM is installed
• Autoland functionality is NOT affected
<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Undock Preparation</td>
<td>Pre-Undock</td>
<td>IFM Installation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure DPS, GPC 5 to SM OPS 2 (SM MM 201)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ku-Band Antenna Stow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APU Config</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deactivate Star Trackers and close doors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H2O Loop Config</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FES Checkout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OMS/RCS Config</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NWS Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FES/NH3 Config</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure for Payload Bay Door closing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure TCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic Sys Config</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close Hatches</td>
</tr>
<tr>
<td>Separation Maneuver</td>
<td>Undock</td>
<td>Fire Aft Pitch RCS jets burst - attain 0.22 fps vel</td>
</tr>
<tr>
<td></td>
<td>Undock + 9 sec</td>
<td>Universal Pointing Item 21 at 2 ft separation</td>
</tr>
<tr>
<td></td>
<td>Undock + 2 min</td>
<td>Open DAP deadbands to configure for free drift</td>
</tr>
<tr>
<td></td>
<td>Undock + 32 min</td>
<td>Close DAP deadbands</td>
</tr>
<tr>
<td>Reboost Maneuver</td>
<td>Undock + 42 min</td>
<td>Maneuver to reboost burn attitude</td>
</tr>
<tr>
<td>Maneuver to comm attitude</td>
<td>TIG - 80 min</td>
<td>Maneuver to communications attitude</td>
</tr>
<tr>
<td>Configure DPS for Entry</td>
<td>TIG - 70 min</td>
<td>GNC GPCs to MM 301</td>
</tr>
<tr>
<td>Activity</td>
<td>TIG/El Time</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Uplink Deorbit Targets</td>
<td>TIG - 30 min</td>
<td>Uplink deorbit targets</td>
</tr>
<tr>
<td>Uplink SPCs</td>
<td></td>
<td>Uplink SM Stored Program Commands</td>
</tr>
<tr>
<td>Transition to GNC MM 302</td>
<td>TIG - 25 min</td>
<td>Uplink Cmd GNC GPCs to MM 302</td>
</tr>
<tr>
<td>Transition to SM MM 202</td>
<td>TIG - 24 min</td>
<td>Uplink Cmd SM GPC to MM 202</td>
</tr>
<tr>
<td>Load Deorbit Targets</td>
<td>TIG - 20 min</td>
<td>Uplink Load deorbit targets</td>
</tr>
<tr>
<td>Maneuver to Deorbit Attitude</td>
<td>TIG - 15 min</td>
<td>Maneuver to deorbit attitude</td>
</tr>
<tr>
<td>Close Payload Bay Doors</td>
<td>TIG - 15 min</td>
<td>Uplink SM OPS 202 Cmd to close Payload Bay doors</td>
</tr>
<tr>
<td>Start APU 1, 2 and 3</td>
<td>TIG - 5 min</td>
<td>Cmd APU 1, 2, and 3 Start – Uplink RTC</td>
</tr>
<tr>
<td>Deorbit Burn Exec</td>
<td>TIG - 60 sec</td>
<td>Uplink deorbit burn Exec Cmd</td>
</tr>
<tr>
<td>Transition to GNC MM 303</td>
<td>El - 15 min</td>
<td>Uplink Cmd GNC GPCs to MM 303</td>
</tr>
<tr>
<td>Transition to SM MM 201</td>
<td>El - 14 min</td>
<td>Uplink Cmd SM GPC to MM 201</td>
</tr>
<tr>
<td>APU Press</td>
<td>El - 13 min</td>
<td>APUs to Norm Press – uplink RTC</td>
</tr>
<tr>
<td>Maneuver to El - 5 Attitude</td>
<td>El - 10 min</td>
<td>Uplink Cmd to maneuver to El - 5 attitude</td>
</tr>
<tr>
<td>Cmd GNC GPCs to MM 304</td>
<td>El - 5 min</td>
<td>Uplink Cmd GNC GPCs to MM 304</td>
</tr>
<tr>
<td>Entry Interface</td>
<td>El</td>
<td>Entry Interface, h = 400,000 ft</td>
</tr>
<tr>
<td>Deploy Air Data Probe</td>
<td>M = 5</td>
<td>Arm and Deploy Air Data Probe - SM SPC</td>
</tr>
<tr>
<td>TAEM Interface</td>
<td>M = 2.5</td>
<td>TAEM Interface</td>
</tr>
<tr>
<td>Approach and Landing Interface</td>
<td>TD - 80 sec</td>
<td>Approach and Landing Interface</td>
</tr>
<tr>
<td>Arm/Deploy Landing Gear</td>
<td>h = 2000 ft</td>
<td>Arm and Deploy Landing Gear - SM SPC</td>
</tr>
<tr>
<td>Touchdown</td>
<td>TD</td>
<td>Touchdown</td>
</tr>
<tr>
<td>Arm/Deploy Drag Chute</td>
<td>TD + 7 sec</td>
<td>Arm/Deploy Drag Chute - SM SPC</td>
</tr>
<tr>
<td>Orbiter Powerdown</td>
<td>Rollout complete</td>
<td>Cmd Fuel Cell Reactant Valves Closed - SM SPC</td>
</tr>
</tbody>
</table>