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Abstract. A "dimensional reduction" (DR) method is introduced for analyzing lightning field 

changes (AEs) whereby the number of unknowns in a discrete two-charge model is reduced 

from the standard eight (x, y, z, Q, x', y', z', Q') to just four (x, y, z, Q) . The four unknowns 

(x, y, z, Q) are found by performing a numerical minimization of a chi-square function. At each 

step of the minimization, an Overdetermined Fixed Matrix (OFM) method is used to 

immediately retrieve the best "residual source" (x', y', z', Q') , given the values of (x, y, z, Q) . In 

this way, all 8 parameters (x, y, z, Q, x', y', z', Q') are found, yet a numerical search of only 4 

parameters (x, y ,  z, Q) is required. The DR method has been used to analyze lightning-caused 

AEs derived from multiple ground-based electric field measurements at the NASA Kennedy 

Space Center (KSC) and USAF Eastern Range (ER). The accuracy of the DR method has been 

assessed by comparing retrievals with data provided by the Lightning Detection And Ranging 

(LDAR) system at the KSC-ER, and from least squares error estimation theory, and the method 

is shown to be a useful "stand-alone" charge retrieval tool. Since more than one charge 

distribution describes a finite set of AEs (i.e., solutions are non-unique), and since there can 

exist appreciable differences in the physical characteristics of these solutions, not all DR- 

solutions are physically acceptable. Hence, an alternative and more accurate method of analysis 

is introduced that uses LDAR data to constrain the geometry of the charge solutions, thereby 

removing physically unacceptable retrievals. The charge solutions derived froin this method are 

shown to compare well with independent satellite- and ground-based observations of lightning in 

several Florida storms. 



1. Introduction 

Lightning-caused changes in the surface electric field have been used to determine the 

characteristics (magnitude, polarity, location) of the charges that are effectively deposited by 

lightning [e.g., Wilson, 1916, 1920; Workman and Holzer, 1942; Jacobson and Krider, 1976; 

Krehbiel et al., 1979; Krehbiel, 1981, 1986; Maier and Krider, 1986; Koshak and Krider, 1989, 

1994; Murphy et al., 1996; Koshak et al., 19991. Conventional charge retrieval algorithms 

minimize a nonlinear, chi-square function to find the optimum parameters, e.g. charge locations 

and values, of an assumed model of the source. Retrieval accuracy depends in part on the model 

and on the error in the lightning-caused electric field changes ( U s ) .  For the ground-based 

network of electric field sensors (field mills) at the NASA Kennedy Space Center (KSC) and the 

USAF Eastern Range (ER), and for the algorithm used to compute the AEs from the electric 

field records (e.g., see Koshak and Krider, 1989), the estimated error in AE is typically under 

15%. Normally, a simple charge model is used to fit the AEs to within this error, and if this 

approach is successful, it complies with a principle known as Occa~n's Razor. The 1 4 ~ ~  century 

English philosopher and Franciscan monk William of Occam, has stated "Pluralitas nolz est 

ponelzda sine ~zeccesitate" or "plurality should not be posited without necessity." From this point 

of view, a simple model composed of just one or two spherically symmetric sources would be 

better than a more complicated solution if the simple solution described the observed AEs to 

within 15%. In effect, Occam's Razor uses only the simplest models to describe the observations 

and ignores all other possibilities. 

In this paper, section 2 briefly reviews the goodness-of-fit method that is customarily 

used to determine the optimum parameters of a charge model, and includes a description of the 

one-charge model (also called the point-charge or "Q-model"), and the two-charge model. 



Section 3a reviews a 4-station analytic method that can be used to find the parameters of the one- 

charge model (Krehbiel et al., 1979), section 3b generalizes this method to 4 or more stations, 

and section 3c describes an Overdetermined Fixed Matrix (OFM) approach that is most 

desirable. Section 4 discusses tests of the OFM method using simulated sources with and without 

random errors in the M s .  Section 5 introduces a "Dimensional Reduction" (DR) method that 

uses the OFM approach to effectively reduce the number of unknowns in a general eight 

parameter (two-charge) model to just four unknown parameters. Section 6 uses the DR method 

to analyze over one hundred lightning flashes in a thunderstorm at the KSC-ER and then 

discusses the advantages and limitations of the DR method. 

As an alternative to the DR method, section 7 introduces a simple charge retrieval 

algorithm that uses KSC-ER Lightning Detection And Ranging (LDAR) data to constrain the 

charge locations, and a linear least-squares matrix inversion to determine the charge values. 

Section 8 applies this (computationally fast) method to derive charge solutions for a variety of 

Florida thunderstorms, and compares the results to independent satellite- and ground-based 

lightning observations. Finally, section 9 summarizes this work. . 

2. Goodness-of-Pit Analyses 

A method for retrieving the optimum parameters of an assumed lightning charge model 

by numerically minimizing a nonlinear, chi-square error function was introduced by Jacobson 

and Krider (1976). Given 172 field change observations at the ground (i.e., AE,, i = 1, ..., nz) the 

reduced chi-square function is 



where M,(a) is the model field change at the it" site, and cri is the observation error in aE, . The 

model Mi  is a function of n unlcnown model parameters that are contained in the n-vector 

a = (a,, ..., a,,). The difference (m - 1 2 )  is termed the "degrees of freedom." 

Simple examples of the model Mi(a) , and the ones of greatest interest here, are the one- 

and two-charge models. Denoting the one-charge model by the subscript "I", it can be written 

where (Xi, q )  is the location of the observation Mi , and a, = (x, y, z, Q) . This model assumes 

that the ground is a flat conducting plane of infinite extent. We use the standard physics 

convention so that MI, is the change in the vertical electric field at the it" site; hence, a 

monopolar cloud-to-ground lightning that transfers negative charge to ground would effectively 

deposit a single positive charge ( Q > 0 ) at location (x, y, z) above the conducting plane, and 

thereby results in a negative change in field, MI; < 0 .  Using superposition and (2), the 8- 

parameter two-charge model can be written as 

Q'z' + 
[(Xi -XI)' +(Y;. - y')2 +Z 

where a, = (x, y, z, Q, x', y', z', Q') . 

According to the statistical theory discussed in Bevington and Robinson (2003, Chapter 

1 I), a value of x2 G 1 implies that the model-fitting function Mj(a) in (1) is a good description 

of the observations provided that the values of 0; are accurately estimated. 



To understand how well one must model a given set of AEs so that x2 z 1, suppose that 

the error in AE is constant, that is, oi = o ; i = 1, ..., m . In this case (1) becomes 

and a "good fit" (i.e., x2 z 1 ) implies that 

z (Mi (a) - m i ) '  - (rn - n)c2  . 
i=l 

In addition, note that the rms modeling error, R  (in Vlm), is 

Substituting the right hand side of (5) into (6) gives the approximate value of R required to 

obtain a "good fit," that is, 

R z t o  D "good fit" ; l < n < n z ,  (7) 

where 5 = (1 - n/m)1/2 .  For the nz = 3 1 sensors in the field measuring network at the KSC-ER, 

5 takes on the values shown in Table 1. Note that R  must always be less than o to be viewed 

as a good fit; i.e., 0 5 5 < 1 always holds. In addition, note that 5 decreases as rz increases. This 

means that a complicated model must describe the AEs more accurately than a simple model in 

order to be regarded as a "good fit." For example, the one-charge model (rz = 4) has 5 = 0.933, 

but the two-charge model (n = 8) has 5 = 0.861. The improvement in modeling accuracy that is 



required to maintain a "good fit" is not linear in 71. As rz increases, 5 decreases at a progressively 

faster rate because the derivative de/d?z is inversely proportional to 6 ,  i.e. 

In summary, when applying models of increasing complexity, one must be sure that they 

can reduce the value of R by an amount that is sufficient to obtain a good fit. In the limit as 

n -+ 7n, the model must describe the Ms perfectly in order to achieve a good fit. Again, rather 

than increasing the model complexity, n, Occam's Razor suggests one should reduce model 

complexity as much as possible while still trying to maintain a good fit. 

3. Analytic Solution to the Point Charge Model 

a. Four station solutio7z 

Appendix 1 of Krehbiel et al. (1979) describes an analytic method for determining the 

four unknown parameters of the Q-model from four ground-based observations of AE. This 

approach generalized an earlier method due to Fitzgerald (1957) that had certain limitations. By 

replacing the model field changes M,i in (2) with the (absolute value of) the real field changes 

AEi produced by a monopolar flash, one obtains 

Rearranging terms, and then differencing pairs of the i = 1, ..., 4 equations, Krehbiel et al. (1979) 

obtained 



where U, = [ ( 4 ~ ~ ~ ) - ~ / ~ ( 1  AEi 1"" - I I - " ' ) ,  and q = (21~1 z)'" . mote: Krehbiel et al. actually 

omit all the absolute value signs shown here, thereby restricting their result to the case Q > 0 .  

The results shown here are valid for any polarity of Q .  ] Taking a combination of 4 sensors 2 at 

a time gives 4!/(2!2!) or 6 possible combinations. Krehbiel et al. pick 3 of these 6 to obtain 3 

equations in 3 unknowns, i.e. 

I ?(XI  - X 2 )  2(" Y2)  ";I["] pl + " - X ;  - " 1  
2 ( X 1 - X , )  2 (6 -Y3  U13 y = X ; + $ ~ - X ; - ~ ~  , 
2 ( X , - X , )  2(6-Y , )  U,, q x ; + Y , ~ - x ~ - Y ~ ~  

or in matrix-vector notation 

A v = b .  

The column vector solution for the unknowns is v  = col(x, y, 7 )  = ~ - l b  . Substituting the (x, y) 

derived from this solution into (9) and noting that I Q ~ Z  = j q3 i2 ,  one can determine z  . With z  

and the definition of 7 one obtains 1 ~ 1 .  The sign of Q is the same as the sign of the AEs, hence, 

the problem is solved. Note that this method can only be used when the AEs have the same 

polarity, i.e., the solution is only possible for a monopole source. 

b. Overdeterilzined Variable Matrix (OVM) approaclz 

As discussed above, Krehbiel et al. (1979) used four ground-based AE observations to 

obtain the four unknown parameters (x, y, z, Q) in the Q-model. However, retrieval accuracy can 

be improved if all nz observations are used at the same time. This assumes that the observation 



errors are all similar in magnitude, and that the distances between the observation sites are 

sufficiently large so that the A matrix is not ill-conditioned. Inversion of an ill-conditioned 

matrix produces large retrieval errors because small eigenvalues magnify observation errors 

(Twomey, 1977; Chapter 6). 

Instead of extending their analytic solution to analyze all nz observations of AE at the 

same time, Krehbiel et al. (1979) computed several four-station solutions using different 

combinations of sensors, and then averaged the results. This approach is unconventional in 

inversion theory (Twomey, 1977), and it is also computationally intensive. For m = 31 sensors 

(the number of field mills in the network at the KSC-ER), there are nz!l[(nz - 4)!4!] = 31,465 

four-station solutions to compute. It is preferable to extend the difference scheme in (1 1) so that 

all nz observations can be analyzed at the same time; this gives the overdetermined system of 

equations 

Defining again the matrix on the left hand side as A ,  and the vector on the right hand side as b ,  

one can pre-multiply (1 3) by (the transpose of A )  and invert to obtain the solution 

v = (L) - 'Ab . (14) 

This is a least-squares solution (Twomey, 1977; Chapter 6), and the optimum values of 

(x, y,z,Q) can be computed from v as discussed in section 3a. Again, since the solution (14) 

uses all nz observations to obtain the four model parameters, it is expected to provide a more 

realistic answer than any single solution derived from (12). Furthermore, external constraints can 



be added to the solution process if desired (see Twomey 119771 for an introduction to 

constrained linear inversions). 

c. Overdeternzined Fixed Matrix ( O N )  approaclz 

The difference equations (10) were formed in order to remove the nonlinear terms x2 ,  y 2 ,  

and z 2  ; however, these differences are not required to solve the problem analytically. An 

alternate and more practical solution (that we will ultimately use in section 5 to follow) can be 

found. We begin with (9), i.e., we assume that the source producing the AEs is a monopole so 

that all the field changes have the same sign. Raising (9) to the -% power gives 

where 

For i = 1, ..., m sensors, (15) yields the ( ~ z  x 4) system 

that can be written in matrix-vector form as 

d = Ts 



Premultiplying (1 8) by F and inverting gives 

where N = ( Y T ) - ' ~  is termed the "network matrix" because its elements are determined only 

by the geometry of the sensor network. The model parameters can be obtained from the elements 

of s = (s, , s2,  s3, s4 )  as follows 

Note that the sign of Q is the same as any of the AEs, for example AE,/IAE, as shown in the 

last equation of (20). 

A distinct advantage of the solution in (19) over that provided in (14) is that the network 

matrix N need orzly be computed once (for a given network geometry), whereas the matrix A 

must be computed for each lightning flash because it contains the AE observations. Since the 

retrieval accuracy of a matrix inversion depends on the mathematical condition of the matrix, it 

is clearly better to have this condition fixed (and well understood), as in the case of N , rather 

than have it vary from flash to flash as with A .  Of course, if any sensor fails or is removed from 

the analysis for any other reason, then N will change. 

In summary, (20) provides a way to use all nz AE observations to infer the optimum 

source parameters (x, y, z, Q). Whereas the method discussed in section 3b obtains a solution by 

removing the nonlinear terms (x2 ,  y 2 ,  and z 2 )  through differencing, and results in a variable A 

matrix from flash to flash, the OFM method provided in this section demonstrates that a solution 



can be obtained without having to remove the nonlinear terms. The OFM approach eliminates 

the variable A matrix altogether, and effectively replaces it with the "fixed" network matrix N . 

This matrix only has to be computed once for any given network geometry, and it is not difficult 

or time consuming to compute because it involves the inversion of one small (4 x 4) matrix TT . 

After N is conzputed for a particular network, ?.lo other nzatrik inversions are reqzlirerl to 

retrieve r?zonopolarflaslzes detected by that networek. All the AE values are contained in the d 

vector and each monopolar solution is obtained from the productNd = s , followed by application 

of (20). 

4. Simulated Tests of the OFM Approach 

Before using the OFM method to help analyze natural lightning, we tested it on a number 

of simulated monopole sources that were placed over the sensor network at the KSC-ER. With 

no errors in the simulated AE observations, the OFM method retrieved the parameters of an 

arbitrary monopole exactly (apart from very small round-off errors). When a 5% random error 

was added to each of the simulated AE observations, the AE modeling errors and solution 

retrieval errors shown in Figure 1 were obtained. 

To cover the region in Figure 1, we placed sources on a horizontal grid that had 

dimensions 59 km x 59 km (resolution 1 km) and an altitude of 6.5 km. The error statistics were 

generated by analyzing 100 monopole sources (each 25 C) at each grid point. To obtain a set of 

simulated AE observations from a source, we computed the field at each site due to the source, 

and then added a random error to each field value. The random errors were chosen from a normal 

distribution that had a mean of zero, and a standard deviation equal to 5% of the field value. The 

percent AE modeling error, P, given in Figure 1 a is defined as P 1 0 0  x 1 AE - MJ//AEI, where 



AE and M are nz-vectors of the simulated and model field changes, respectively. Using the key 

in Figure 2, note that horizontal and vertical errors in the retrieved distances are only 0.1 to 0.5 

km over the network, and the errors in Q are less than 1 C over a substantial portion of the grid. 

For the most part, the errors in horizontal distance, altitude, and Q increase outside the network. 

This behavior is typical for all inversion algorithms (see, for example, the tests of the multipole 

method in Appendix A of Koshak et al., 1999). In addition, note that it is more appropriate to 

plot P (Figure la) rather than the reduced chi-square. This is because the retrieval errors are 

directly calculated in these simulations, so the chi-square statistical theory for rating solution 

quality and estir~zatirzg retrieval errors is not needed. Nonetheless, P and 2 are mathematically 

dependant variables. For an assumed fixed o equal to 5% of the rms AE value for a monopolar 

flash, the green regions in Figure l a  (P - 5% to 10%) correspond to a range in 2' of 1.15 to 

4.59 which typically indicates physically reasonable fits. 

Because the OFM approach is essentially a single matrix inversion method for retrieving 

monopoles, it (reasonably) requires that all AEs be nonzero and of the same polarity. In addition, 

errors in AE can cause the difference (s,s, -[si +si]) in (20) to be negative, and this produces a 

complex number for the altitude, z. Errors in AE can also make the difference too small or too 

large, thereby producing a value of z that is erroneous based on physical grounds. Hence, if any 

of the above conditions (one or more zero AEs, bipolar AEs, a complex or unphysical z) occur, 

that test source has been ignored and another source has been generated as a replacement. To 

generate the statistics in Figure 1, we had to replace 96,179 sources. That is, we analyzed a total 

of 456,179 monopoles, removed 96,179, and this leave a total sample size of 360,000 (100 

monopoles times 3600 grid points) for the statistics in Figure 1. 



In summary, Figure 1 shows that the OFM method provides a nice way to analyze the 

field changes produced by a single point (or spherically symmetric) change in the cloud charge 

distribution, but because AE observation errors (random andlor systematic) can "rupture" this 

pattern, the OFM method cannot invert all cases. However, in those cases where random errors 

are the primary cause of such a rupture, it is possible to add artificial random errors to the 

simulated observations in an attempt to remove some of the random errors that are responsible 

for the rupture. This removal process or "monopole unmasking" is an unorthodox technique 

because one is combating errors by adding more errors, however we have found it to be very 

useful. For example, we have re-run the same monopole simulation, but this time whenever we 

encountered a ruptured set of simulated AE values, we added a random 6% error to them, and 

then analyzed them again using the OFM method. If the pattern was still ruptured, we again 

added a 6% error to the (original) simulated measurements and re-analyzed them again with the 

OFM method. This process was repeated (up to 100 times) to see if the OFM method could 

eventually find a solution. We call this process the "extended OFM method," and Figure 3 shows 

the results of this approach. The retrieval errors in Figure 3 are generally similar to those in 

Figure 1 (which indicates that adding errors can be useful in finding the hidden symmetry of 

monopole patterns). Whereas the standard OFM method could not analyze 96,179 (i.e., 

96,179/456,179 = 21.08%) monopoles due to ruptures, the extended OFM method had only 198 

(i.e., 1981360198 = 0.05%) that it could not analyze. 



5. Dimensional Reduction (DR) Method 

a. Model complexity versus model capability 

One can define the conzplexity, rz , of a given charge model to be tlze izz~inber of unknowlz 

paraineters that it contains. For example, the one-charge model in (2) has n = 4 because it 

contains four unknown parameters ( x ,  y, z, Q )  . By comparison, the two-charge model in (3) has 

n = 8 and is rather complex. As 11 increases, the model must do a progressively better job of 

describing the AEs in order to obtain a "good fit" (see (7) and Table 1). If a model has the same 

number of parameters as there are measurements; i.e., n = nz , the model must describe the AEs 

exactly in order to achieve a "good fit." So two disadvantages of a complex model are that it 

must meet stringent requirements to obtain a "good fit," and it does not obey Occam's Razor. 

The capability, K ,  of a particular model is tlze iiunzber of charge parameters that tlze 

inodel can describe. For example, the one- and two-charge models  have^ = 4 and K = 8, 

respectively and for these two models, K = rz  . In general however, K need not always equal n . 

For example, tlze OFM lnetlzod (see section 3c) can be used to reduce nzodel coinplexity witl~ozlt 

reducing tlze nzodel capability, and we term this approaclz "di~nensional reduction" (DR) 

because the number of unknowns in the chi-square error function is reduced (see section 5b for 

more details). 

Given the above definitions, one desires to use a model that has minimum complexity, 

but sufficient capability. Because the one-charge model has just 4 unknown parameters, it cannot 

model many lightning events (e.g., intracloud discharges). Conversely, the two-charge model can 

describe many types of events (cloud-to-ground and intracloud discharges), but it has a high 

degree of complexity (n = 8).  In between these cases, there is the 6-parameter 

( x ,  y, Z, p, , py , pI  ) point dipole rnodel (Fitzgerald, 1957), the 7-parameter (x, y, z, x', y', z', Q) 



discrete d@ole nzodel (Wilson, 19 16), and the 7-parameter (x, y, z, Q, p, , p, , p,  ) inult@ole 

nzodel (Koshak et al., 1999). All of these models are more capable than the one-charge model but 

less complex than the two-charge model. 

b. The DR nzodel 

It is possible to construct a model with complexity n = 4 ,  yet a capability K = 8.  

Consider an idealized lightning flash that deposits two point charges a, m (x, y,z,Q) and 

a; = (x', y1,z',Q'), and that is perfectly described by the two-charge model in (3). Using (2), the 

AEs at the ground due to this flash can be written as AEi = M,,(a,) +M,,(aI). Therefore, given 

a, and the Mi values, the point source a; ljzust be clzoserz such that M,,(aI) = Mi - M,,(a,), 

where the difference, hE, -Mli(a,) , is termed the "residual." In other words, the two charges are 

interdependent, and one can write a', = (x', y', z', Q') = (xr(a,), yl(a,), zl(a,), Qr(aI)) , or in vector 

function notation, a', = ai(a,). This interdependence motivates the definition of the 4-parameter 

"DR-model," Di(a,) , given by 

where Y(a,) is a composite function defined by 

Hence, D,(a,) represents the superposition of fields produced from two point sources, yet it 

contains only four unknowns. It differs from the standard two-charge model 



M,, (a,) = M,, (a,, a;) given in (3) because the relationship a', = a', (a,) has been used to reduce 

model complexity; section 5c below discusses how the relationship a; = a',(a,) is determined. 

Since Di(a,) is only a 4-parameter model, a good fit can be achieved when R s 0.9330, and this 

is easier to achieve than the value R s 0.8610 associated with the 8-parameter two-charge model 

M,,(a,,a;) (see Table 1). Finally, P is a very large constant that represents a physically 

unrealistic field change value that Di(a,) is driven to if a, strays outside a physically reasonable 

vector space V ; see section 5d for further discussion on how a, is constrained. 

c. Finding tlze optinzunz point sources 

In the DR method, the optimum source parameters a, = (x, y, z, Q) are found by 

minimizing the reduced chi-square function 

We perform a grid search of a slab that intersects the negative charge region ("N-region"; 

Williams, 1989) as shown in Figure 4. The grid search is followed by a Powell minimization 

(Press et a]., 1992) that iteratively adjusts the parameters in a, until the minimum is found. If a, 

strays outside the hypervolume V given in (21), then the value of X2 increases dramatically (i.e., 

X2 cc P2 for a, V ). At eaclz step of the rrumerical nzinii?zizatiorz, tlze para~?zeters (x', y', z', Q') 

are retrieved using the OFM nzetlzod, with the components of d redefined as follows 

-213 
d, -= d, (a,) = IAE, - M,, (a,)/ . 



That is, instead of di depending onAEi, it now depends on the residual (hE, -MI,). In effect, 

the field change pattern is split up into two parts: one part that is described by the source 

(x, y,z,Q), and the other part (or residual field change pattern) that is described by the source 

(x', y', z', Q') . If the residuals are of mixed polarity (or have any other "ruptures" as discussed in 

section 4), then a, will not be regarded as acceptable and/or the errors in AE will be viewed as 

pathological. 

Note that the DR method can also be used to effectively reduce a 3-charge (12 parameter) 

model down to 8 unknown parameters. In this case, 4 - di(a2) = IAEi - ~ , , ( a ~ ) l ,  where M2,(a2) 

is the two-charge model in (3). In general, the DR method can convert any N-charge (4N 

parameter) model to a (4N-4 parameter) model by using the following definition 

where a(N-,) = (x, , y, , Z,, QI, XN-I 9 YN-I 9 z ~ - ~  QN-1 

d Constraint details 

Recall that we impose constraints on the source parameters (x, y, z, Q) = a,,  where 

a, E V ,  and V is an "acceptable vector space." Our constraints are straightforward, but highly 

advantageous: the source location (x, y,z) is restricted to the N-region of a thundercloud, and 

the value of Q is restricted to values commonly observed or inferred for the N-region. 

Since most lightning flashes begin within or near the N-region of the thundercloud, there 

is little loss in generality by imposing these constraints. In fact, because the N-region usually has 

a small vertical extent and is less diffuse than the upper positive or P-region, and because Q > 0 



normally holds in the N-region, these constraints substantially reduce the size of V .  A smaller 

V means it is easier to minimize the chi-square function, and this translates into reduced 

computer time, and improved accuracy. Because it is difficult to accurately retrieve the charge 

parameters when the source is not located over or near the measuring network (Koshak and 

Krider, 1999), a horizontal range constraint can also be imposed. Such a constraint further 

reduces the size of V . 

Applying these ideas, and keeping in mind the results of prior investigations (e.g., 

Koshak and Krider, 1989), the following constraints (on both a, and a;) can be imposed when 

analyzing warm-season storms at the KSC-ER: 

(a) -30 km 5 (x and y) I: 30 km 
(b) 5 k m s z 5  8krn 
(c) O<Qs1OOC 
(d) -30 km 5 (x' and y') 5 30 km 
(e) 4 km 5 z' 5 16 km 
(f) O < ~ ~ ' ~ < l 0 0  C 

Again, if during the numerical minimization of the chi-square function, any element of a, 

violates any of the above constraints, where a: = a; (a,), the chi-square is assigned a large value 

proportional to P2.  The chi-square must also be assigned a large value if the residual field change 

pattern is ruptured (see section 4). For example, if the field changes are of mixed polarity, OFM 

retrievals of a; will not be possible, and the chi-square must be assigned a large value. 

Note that the restrictions on the altitude, z, in (b) above are fairly tight, but z' can vary 

over a much larger range, (e). This is by design because the OFM method can cover a larger 

altitude range more quickly and more thoroughly than a numerical minimization procedure. For 

example, it would not be wise to initialize the a, source by placing it in the P-region of a 



thunderstorm because we know that this region is likely to be larger than the N-region, and 

therefore it would take more numerical iterations to minimize the chi-square function, all else 

being equal. 

e. Solzitiorz reJinenzent and associated errors 

After minimizing the chi-square, a (preliminary) two-charge solution given by 

a,, = (x,,y,, zc, Q,) = (rc,Qc) and a;, = (xL,yL,zf ,QL) = (rf,Q:) is obtained. To improve this 

solution, a cubical box (dimension 1 km) is centered on each of the charge locations (r,,rf) . We 

then sample 5000 locations within each box; one sample is the center of the box, and the 

remaining 4999 samples are randomly selected. From each pair of sampled locations 

(rj,rj), j = 1, ..., 5000, we construct the kernel matrix K j  = K(r,,rj), and compute the standard 

linear least-squares charge retrieval 

[see Koshak et al. (1999) for a description of the kernel matrix and linear charge retrieval 

theory]. Of the 5000 solutions { (Qj,rj,Ql,, r;) , j = 1, ..., 5000 ), the solution that produces a 

minimum in the chi-square is saved as the optimum solution. Note that r, = rc and r,' - rf ; i.e., 

the value j = 1 corresponds to the center of each box. However, Q, and Q,' are from the chi- 

square minimization process using the OFM approach and therefore are not equivalent, in 

general, to the respective linear least-squares values Q, and Q,' . 

Because a linear least-squares solution (26) has been used to find the charge values, 

standard linear least-squares estimation theory can be used to estimate the errors in these values. 



Specifically, the covariance matrix C EZ (&-'K)-' (also known as the inverse curvature matrix) 

contains diagonal elements that are the variances of each of the retrieved charges, and the square 

root of these variances provide estimates of the charge errors. Here, r is a (nz x nz) diagonal 

matrix whose diagonal elements are the squared observation errors oj? , i = 1, ..., n z  . Of course, 

error estimates derived from C are only valid if the charge locations themselves are reasonably 

accurate (and the model is perfect). 

6. Application of the DR Method 

We have used the DR method to analyze a 30 minute interval (20:30-21:OO UTC) of a 

warm-season Florida thunderstorm that occurred at the KSC-ER on 21 September 1998. Sensors 

#1 and #32 were faulty during this period and were not included in the analysis. Flashes that 

produced a AE > 100 Vlm at 2 or more sites were analyzed; i.e., a total of 154 flashes. Of these, 

11 5 flashes produced a reduced chi-square less than 5; the average reduced chi-square for these 

115 solutions was 1.058 with a standard deviation of 1.017. [We used a chi-square threshold of 5 

because there is uncertainty in the value of o in (4), and because many solutions meeting this 

criterion were physically reasonable.] 

The altitudes of the 115 charge solutions (large circles) are plotted in Figure 5 together 

with LDAR data (small dots). Positive charge deposition is denoted with red circles, and 

negative deposition with blue. Larger circles indicate greater amounts of charge deposition; i.e., 

the radius r of each circle has been scaled to the vertical axis (see Koshak and Krider, 1989) and 

is a solution to the breakdown field equation $ = ~ l ( 4 - r ~ )  with E, = 400 kVIm. The LDAR 

system maps the source locations of the VHF radio impulses produced by both intracloud (IC) 

and cloud-to-ground (CG) lightning with a time-resolution of about 100 ps and a spatial accuracy 



of hundreds of meters or less for flashes that are within or near the perimeter of the KSC-ER 

field mill network (Maier et al., 1995). For lightning that is within about 40 km of the KSC-ER, 

the LDAR location accuracy is better than 1 km (see Boccippio et al., 2001, Parts 1 and 2 for 

additional details on LDAR performance). The LDAR data are color-coded according to time in 

the plot projection. 

To understand the quality of the charge solutions in Figure 5, we have examined 

individual plots of each flash to see how well the lightning charge locations and the LDAR data 

agree. Given that the AE and LDAR data are completely independent datasets, it was 

encouraging to find that a high percentage of the model solutions had (x, y) locations that were 

within 1 km of, or co-aligned with, the (x,y) positions of LDAR sources. Overall, we found that 

there were three types of solutions: (I) those that lined up well with LDAR sources in x, y, and z, 

(11) those that lined up well in x and y but had offsets in z , and (111) those that had offsets in x, 

y, and z. 

Figures 6, 7, and 8 show examples of solution types I, I1 and 111, respectively. Most 

offsets in z (Figures 7 and 8) were caused by a fundamental "dipole ambiguity." For example, 

consider a vertically oriented cloud discharge that produces a dipole moment change (20C)(3km) 

= 60 C-km. If the charge transfer is reduced to 15C and the discharge length is increased to 4 km, 

the dipole moment does not change; i.e., (1 5C)(41m) = 60 Ckm, and it is possible (depending on 

source location and network geometry) that the two AE patterns associated with these two 

sources are nearly indistinguishable. Moreover, any small features that distinguish the patterns 

can be completely removed by errors in AE. Hence, fundamental ambiguities arise whenever 

different dipole sources effectively produce the same set of AE values. For all the solutions in 

Figures 6-8, the charge retrieval errors (i.e. the square root of the diagonal elements of the 



covariance matrix C )  were typically less than 1 C. Of course, this magnitude of error applies 

primarily to type I (Figure 6) where the charge locations are reasonably accurate and the linear 

least squares error estimation theory can be used. 

Of the 1 15 flashes, 21 (18.3%) were exceptional fits (type I), 61 (53.0 %) could be fit 

reasonably well (type 11), and 25 (21.7%) were type 111. Additionally, 5 (4.3%) were complicated 

flashes that were too difficult to categorize into any one of the three main types, and 3 (2.6%) 

were false triggers in the electric field dataset (i.e. the AEs were not associated with LDAR 

events). Since in this case study a total of 82 (71.3%) could be fit either reasonably or 

exceptionally well, we believe that the DR method is a valuable tool for describing lightning 

field changes. 

In section 7 to follow, we will describe how we use LDAR data to constrain the charge 

location model parameters so that, by definition, they do not contain offsets in position. These 

charge retrievals will then be compared to both satellite- and ground-based lightning 

observations in section 8. 

7. LDAR-Constrained (LC) Method 

Because lightning effectively deposits charge within thundercloud charge centers and 

because LDAR traces the geometrical development of the lightning channel with high precision, 

the LDAR data provides an ideal constraint for finding the best model charge solutions. In 

particular, LDAR data can be used to help determine both the horizontal and vertical positions of 

the model charges, thereby eliminating dipole ambiguities. 

The LDAR-constrained (LC) charge retrieval method is straightforward. LDAR data for 

individual flashes are displayed on the computer monitor, and a mouse is used to click the 



expected locations of the charge centers (usually the endpoints of the LDAR-mapped lightning 

channel). For example, a typical vertical or slanted cloud discharge between the N- and P- 

regions would receive two mouse clicks, one at the lower end of the channel within the N-region, 

and one at the upper end within the P-region. Calling these endpoint locations r, and r,', 

respectively, we center a cubical box (dimension 1 km) about each of these locations and 

internally sample the box volumes exactly as described in section 5e. That is, we'compute 5000 

solutions ( (Qj ,rj, Q(., r;) , j = 1, ..., 5000 ), and the solution that produces a minimum in the chi- 

square is saved as the optimum solution. Hence, the discharge orientation is obviously tightly 

constrained by the LDAR channel endpoints, but the model charges are allowed to deviate a bit 

from these endpoints in order to obtain a better fit to the AE observations. 

8. SateIIite-Observed Flashes 

The results of the LC method have been compared to the locations of optical pulses 

detected by the Lightning Imaging Sensor (LIS) on the low Earth-orbiting Tropical Rainfall 

Measuring Mission (TRMM) satellite (Christian et al., 1999). Several flashes from different 

storms that occurred near the KSC-ER have been studied in detail. To augment this investigation, 

we have also compared both datasets to data provided by the U.S. National Lightning Detection 

~ e t w o r k ~ ~ '  (NLDN) and the Cloud-to-Ground (CG) Lightning Surveillance System (CGLSS) that 

covers the region of the KSC-ER. Of course, the charge solutions have also been compared to 

the LDAR data that have been used to constrain the charge locations. The CGLSS and NLDN 

systems locate the ground strike points of the individual return strokes in CG flashes with an 

accuracy of a few hundred meters (see, for example, Cummins et al., 1998a,b). Also, Thomas et 



al. (2000) have found good overall agreement between Lightning Mapping Array (LMA, a 

system similar to LDAR) sources and LIS flash locations in Oklahoma. 

Although it is rather rare to have a TRMM overpass at the same time a thunderstorm is in 

progress at the KSC-ER, 7 such periods have been identified within the years 1998-1999 and 

were analyzed for this study (see Table 2). Each overpass lasted from 2 to 3 minutes, and the 

total observation time was 15 minutes. The KSC-ER field mill (FM) network detected a total of 

94 discharges (each producing AE > 100 V/m at 2 or more FM sites) during this 15 minute 

period, and the LDAR system detected all 94 of these discharges. Figure 9 shows examples of 

two overpasses from the unique perspective of the LIS low-Earth orbit; both the LIS background 

image in the near infrared and the density of LIS-detected flashes are provided. 

The CGLSS data were not available for days 180, 219, and 229, but when they were 

available, there were always more CG events in the CGLSS dataset than were detected by the 

NLDN. Also, many of the 94 discharges were cloud flashes that were not reported by the CGLSS 

or NLDN unless they were incorrectly classified. 

The lightning flashes that were not reported by LIS were divided into two categories, a 

Legitimate Miss (LM) or a Not Processed (NP) type. Typically, the LMs were due to LIS data 

post-filtering, "pixel splitting" of radiance, and/or cloud attenuation. The NPs were due to LIS 

buffer overflows, flashes (just) outside LIS field-of-view, and spacecraft incidents (e.g. telemetry 

bit errors, and spacecraft attitude maneuvers). Of the 94 discharges in our case study, 93 appear 

to be regular "flashes," and one was a small breakdown event that preceded a normal CG flash. 

Of the 93 flashes, LIS did not report 17, and of these, we estimate that 6 were LMs, and 11 were 

NPs. The NPs were mostly due to buffer overflows and/or outside field-of-view cases, although 

one flash was probably lost due to a bit error in the spacecraft telemetry. 



Lightning charges were computed for all 94 discharges and compared to the patterns of 

AE obtained from the field mill network, the spatial-temporal development of the LDAR 

sources, with the locations of LIS optical events, and with the NLDN and CGLSS ground strike 

points, when available. As expected, the LDAR-constrained charge retrievals had locations that 

were in very good agreement with data obtained from the other lightning detection systems. With 

an assumed o equal to 15% of the typical (rms) field change value, the median and average 

reduced chi-square for the 94 flashes was 3.69 and 9.54, respectively. A total of 55 (- 60 %) of 

the 94 flashes had reduced chi-square values less than 5, and were good solutions. We also found 

physically reasonable solutions for larger reduced chi-square values (see Figures 11 and 13 to 

follow). Additionally, it is important to note that when one adds external constraints (e.g. LDAR 

data) to the retrieval process, it is common to have an increase in the chi-square value. This is 

because the (now constrained) model parameters can no longer be adjusted in any way desired to 

mathematically minimize the chi-square. Therefore, when applying valid external constraints 

(such as LDAR data), it is incorrect to infer that any increases in chi-square imply a lower 

quality solution and/or a physically unrealistic model, especially when AE errors are actually 

large when assumed to be reasonably small. 

Figures 10-15 show detailed results for 6 of the 94 discharges that were analyzed using 

the LC method. The red and blue circles show the locations of the positive and negative 

lightning-charges, Q and Q', respectively, that the lightning effectively deposited in the 

thundercloud. The values of Q and Q' are given at the top of each plot in Coulombs. The 

curved lines in the plan views on the lower left show the contours of AE in V/m; red contours 

indicate positive values, and blue contours indicate negative values. The reduced chi-square 

values associated with the solutions in Figures 10-15 are, respectively: 1.82, 11.8, 0.93, 6.55, 



0.79, and 4.4. The panels on the upper right show plots of altitude versus time (in GMT) with 

color coding; the total time is 2 seconds in each plot except for Figure 11 which is 1 second. The 

large squares show the (x, y) locations of the LIS optical events, and the large diamonds are the 

LIS flash locations. Since the LIS sensor does not directly observe the altitude of a flash, the 

optical events and locations are placed near the top of each altitude cross section plot for 

optimum readability, and to remind the reader that these data are derived from a satellite that is 

viewing the KSC-ER from above. The small dots show the locations of LDAR sources, and each 

dot has been color-coded with respect to time using the same color sequence as in Figure 5. The 

small squares show the locations of the first LDAR source (black) and last (orange) in the 

discharge. The black and orange "X" symbols show the locations of negative ground strike 

points from NLDN and CGLSS, respectively; a "-I-" symbol indicates that the ground flash had a 

positive polarity. 

The discharges in Figures 10-1 5 were selected because they include both CG and cloud 

flashes, and because they occur to the north (Figure lo), south (Figure 1 I), east (Figure 12), west 

(Figure 13), and over (Figure 14) the network. The discharge in Figure 14 is particularly 

interesting because it is a small breakdown event that precedes a CG flash. Even though the flash 

types and locations are diverse, the LDAR dataset provides good location constraints so that the 

linear least-square charge retrievals are physically reasonable in both magnitude and polarity. 

We believe that the discharge in Figure 11 is a cloud flash, rather than a positive CG as 

indicated by NLDNICGLSS. This belief is supported by several factors: (I)  the charge retrievals 

are roughly equal and opposite; i.e., a 10% charge retrieval error is possible*, (2) no LDAR 

* Taking the charge values literally implies that almost 4 C (40.070 C - 36.123 C) of 
negative charge is deposited to ground, thereby contradicting the polarity inferred by 
NLDNICGLS S . 



sources are below about 5 km, and (3) there are similarities in the field change characteristics of 

positive CGs and normal vertical cloud flashes. Previous investigators have recommended 

classifying positive flashes with peak currents less than 10 kA as cloud discharges [Cummins et 

al., 1998b; Zajac and Rutledge, 20011; and a 15 kA threshold has been more recently used 

(Cummins personal communication, 2006). Since the peak currents inferred by NLDN and 

CGLSS are 15.3, and 14.0 kA, respectively, for the flash in Figure 11, this is one example where 

application of a simple 10 kA threshold criterion would appear inadequate. 

An analysis of the LIS raw data shows that the LIS instrument likely detected the small 

discharge in Figure 14, but that it was later removed by the LIS data processing algorithm. 

Because this discharge was less than 0.9 s before, and within 10 km of, the CG flash provided in 

Figure 15, we think that these discharges might be physically correlated to one another. From 

this point of view, the small discharge in Figure 14 is not considered a "legitimate flash" on its 

own, and one can argue that LIS properly reported just the primary portion of the overall 

phenomenon. 

9. Summary 

We have introduced an Overdetermined Fixed Matrix (OFM) method for finding the 

optimum parameters of a 4-parameter Q-model. This method offers two distinct advantages over 

a previous 4-station solution scheme: first, one can use more than four AE observations to 

obtain a highly constrained source retrieval. Second, the inverse matrix is "fixed" which means it 

does not depend on the values of AE (as in the previous 4-station solution scheme), and hence 

the matrix does not change from flash to flash. Because the matrix only depends on the 

measurement network geometry, only one matrix inversion is required for any given network. 



This speeds up computations, and it also allows one to more thoroughly understand the retrieval 

errors associated with any particular network geometry since the eigenvalues of a fixed matrix 

are fixed (see Chapter 6 of Twomey, 1977 regarding the importance of eigenanalyses in linear 

retrievals). 

We have shown that the OFM method accurately retrieves the parameters of simulated, 

single-charge sources in the presence of AE errors. For 25 C monopoles placed 6.5 km over the 

field mill network at the KSC-ER, the horizontal ( x , y )  and vertical (2) retrieval errors were each 

less than 0.5 km and the charge retrieval error was less than 1 C. As with most analysis methods, 

retrieval errors increase for sources located off the network, and continue to increase with source 

range. 

Most importantly, the OFM method has been used to reduce the complexity (number of 

model parameters) of a two-charge model. This "dimensional reduction" (DR) approach 

significantly reduces the computational burden because the number of unknown parameters in 

the chi-square function is reduced from 8 to just 4. Because of this reduction in dimension, there 

is a reduced chance of getting "stuck" in a local minimum of the chi-square function (because 

there are fewer unknowns), and consequently the DR method has the potential to significantly 

reduce retrieval errors. 

One should note that the DR method is not simply a practical approach for solving charge 

retrieval problems. Rather, it introduces a fundamental, yet subtle, aspect of lightning charge 

modeling: the distinction between "model complexity" and "model capability." Model 

complexity is the nu~lzber of unknown charge parartzeters corztairzed irz tlze nzodel, whereas model 

capability is the nzlr~zber of charge parameters tlze nzodel car? describe. F o r  example, the model 

provided in (21) has 4 unknown charge parameters (complexity = 4), but it can describe 8 charge 



parameters (capability = 8).] We also showed that when the complexity of a model increases, one 

is forced to model the AEs more accurately in order to obtain a good fit (see (7) and Table 1). 

Since the DR method reduces model complexity but maintains model capability, it makes it 

easier to obtain a good fit. As an added benefit, the DR method also satisfies the simplicity 

principle of Occam's Razor. 

Finally, we have used the DR method to analyze over one-hundred lightning flashes in a 

Florida thunderstorm, and it produced a high percentage of physically reasonable solutions, as 

judged by comparisons with LDAR data. Unfortunately, several DR solutions suffered from a 

fundamental "dipole ambiguityyy that produces vertical offsets in the retrieved charge altitudes 

relative to those that are inferred from the LDAR dataset. This problem has been solved by 

using LDAR data to constrain the location of the lightning charges, and the resulting "LDAR- 

constrained" charge solutions have been compared to LIS optical sources and the locations of the 

ground strike points obtained from the NLDN and the CGLSS at the KSC-ER. We have given 

examples of these comparisons for several Florida thunderstorms, and in the future we expect 

that additional comparisons will provide relationships between lightning charges and the optical 

radiance, the number of LDAR sources, and in the case of CG flashes, the peak current and 

multiplicity. 
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Figure Caption List 

Fig. 1. Monte Carlo error analyses of monopole sources retrieved with the OFM approach 

showing (a) average percent AE modeling error, (b) rms horizontal distance error, (c) rms 

altitude errors, and (d) rms charge errors. The color key corresponding to these figures is shown 

in Figure 2. The error statistics are derived for 100 randomized sources at each grid point, with a 

grid resolution of 1 krn. 

Fig. 2. The key applied to Figure 1 (and Figure 3 to follow) that associates color to error values 

for the three error categories shown. 

Fig. 3. Same type of error analysis as in Figure 1 except that a 6% random error was purposely 

added to the simulated AEs (in several independent trials) in order to nullify some of the 

simulated observation errors. This resulted in significantly increasing the number of monopole 

sources successfully modeled. 

Fig. 4. A summary of Dimensional Reduction (DR) where eight unknowns 

(x, y, z, Q, x', y', zl, Q1) are converted to just four (x, y, z, Q) using the OFM method. An example 

of one of the residuals is shown in purple. As the chi square function (23) is minimized, the 

source, a, (which produces field M,,(a,) at the ground), approaches both the location and 

magnitude of the lower thundercloud charge, and the OFM-retrieved source, a:, approaches the 

location and magnitude of the upper thundercloud charge. 



Fig. 5. Altitude vs. time plot of the DR-retrieved charges and associated LDAR data for a 30 

minute period of a thunderstorm that occurred on 21 September 1998. The red circles indicate 

positive changes in cloud charge, and the blue circles indicate negative changes. The small dots 

are the LDAR radio pulses (color coded with time). See Figures 6-8 below for further details on 

individual flashes. 

Fig. 6. Examples of charge solutions derived from the DR method (and picked from the results in 

Figure 5) that compare well with LDAR data. 

Fig. 7. Examples of charge solutions derived from the DR method (and picked from the results in 

Figure 5) that show charge location offset errors in the vertical relative to LDAR data. 

Fig. 8. Examples of flashes derived from the DR method (and picked from the results in Figure 

5) that show charge location offset errors in the horizontal and vertical relative to LDAR data. 

Fig. 9. Examples of two LIS overpasses of KSC on (a) 14 May 1999, and (b) 21 September 

1998. The background cloud image is not always collected if lightning rates are high. A total of 7 

overpasses (on seven different storm days) were analyzed in this study. 

Fig. 10. A CG flash located north of the KSC-ER FM network. The red and blue circles denote 

lightning-caused changes in thundercloud charge given by Q and Q' , respectively as derived by 

using LDAR constraints and linear least squares theory. The values of Q and Q' in coulombs , 

are given at the top of the plot. The large squares are individual LIS optical events and the large 



diamond is the LIS-derived flash location. The small dots indicate VHF source locations for the 

flash derived from the LDAR network; the small squares identify what VHF source occurred 

first (black) and last (orange) within the flash. The black and orange "Xs" mark the NLDN- and 

CGLSS- derived CG location, respectively. 

Fig. 11. An IC flash located well south of the KSC-ER network. See caption of Figure 10 for a 

description of the plot symbols. We believe this flash was incorrectly categorized as a positive 

CG by the NLDN and CGLSS systems (see main text for a discussion). 

Fig. 12. A CG flash (with IC component) located east of the KSC-ER network. See caption of 

Figure 10 for a description of the plot symbols. 

Fig. 13. An IC flash located slightly west of the KSC-ER network. See caption of Figure 10 for a 

description of the plot symbols. 

Fig. 14. A small discharge over the KSC-ER network that the LIS instrument detected, but that 

the LIS data processing algorithm removed. It precedes the CG shown in Figure 15 by less than 

0.9 s, and is also within about 10 km of the CG (see main text for more comments). The CGLSS 

and NLDN ground strike locations shown are associated with the CG that follows, but appear in 

this plot due to sensor timing errors. See caption of Figure 10 for a description of the plot 

symbols. 



Fig. 15. The CG that quickly follows, and is likely correlated with, the small discharge shown in 

Figure 14. The CGLSS and NLDN ground strike locations for this CG appear in Figure 14 due to 

sensor timing errors. See caption of Figure 10 for a description of the plot symbols. 



Values of the Coefficient 5 

Table 1. The numerical value of the coefficient 5 in equation (7) as a function of model 

complexity rz , when m = 3 1 sensors. The bolded values indicate the customary 1- and 2- charge 

models. 

2 
3 

4 (e.g., the 1-charge model) 
5 
6 
7 
8 (e.g., the 2-charge model) 
9 



Summary of Storm Periods 

Table 2. Summary of the Florida storm periods analyzed that were associated with LIS 

overpasses of the KSC-ER. 

Date Julian Day Time (GMT) # flashes # Bad 
(FM-derived) FMs 

21 Sep 1998 264 20:39-20:42 13 2 
08 May 1999 128 22:04-22:06 11 1 
14 May 1999 134 19:38-19:40 22 0 
1 1 Jun 1999 162 05:06-05:08 14 3 
29 Jun 1999 180 19:Ol-19:03 2 1 1 
07 Aug 1999 2 19 23:37-23:39 7 0 
17 Aug 1999 229 1758-1 8:00 6 0 

Total = 94 



Fig. 1. Monte Carlo error analyses of monopole sources retrieved with the OFM approach 
showing (a) average percent AE modeling error, (b) rms horizontal distance error, (c) rms 
altitude errors, and (d) rms charge errors. The color key corresponding to these figures is shown 
in Figure 2. The error statistics are derived for 100 randomized sources at each grid point, with a 
grid resolution of 1 km. 
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Fig. 2. The key applied to Figure 1 (and Figure 3 to follow) that associates color to error values 
for the three error categories shown. 



Fig. 3. Same type of error analysis as in Figure 1 except that a 6% random error was purposely 
added to the simulated AEs (in several independent trials) in order to nullifj some of the 
simulated observation errors. This resulted in significantly increasing the number of monopole 
sources successfully modeled. 
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Fig. 4. A summary of Dimensional Reduction (DR) where eight unknowns 
(x, y, z, Q, x', y', z', Q') are converted to just four (x, y, z, Q) using the OFM method. An example 
of one of the.residuals is shown in purple. As the chi square function (23) is minimized, the 
source, a, (which produces field M,,(a,) at the ground), approaches both the location and 

magnitude of the lower thundercloud charge, and the OFM-retrieved source, a;, approaches the 
location and magnitude of the upper thundercloud charge. 
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Fig. 5. Altitude vs. time plot of the DR-retrieved charges and associated LDAR data for a 30 
minute period of a thunderstorm that occurred on 21 September 1998. The red circles indicate 
positive changes in cloud charge, and the blue circles indicate negative changes. The small dots 
are the LDAR radio pulses (color coded with time). See Figures 6-8 below for further details on 
individual flashes. 



(a) 20 

Pig. 6. Examples of charge solutions derived from the DR method (and picked from the results in 
Figure 5) that compare well with LDAR data. 



Fig. 7. Examples of charge solutions derived from the DR method (and picked from the results 
in Figure 5) that show charge location offset errors in the vertical relative to LDAR data. 



(a) 20 -- - -- . - , - , -  - - -  , - , - -  

Fig. 8. Examples of flashes derived from the DR method (and picked from the results in Figure 
5) that show charge location offset errors in the horizontal and vertical relative to LDAR data. 
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Fig. 9. Examples of two LIS overpasses of KSC on (a) 14 May 1999, and (b) 21 September 
1998. The background cloud image is not always collected if lightning rates are high. A total of 7 
overpasses (on seven different storm days) were analyzed in this study. 



May 14,1999 (Day 134) 
Q=56.168, Q'=-8.209 
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Fig. 10. A CG flash located north of the KSC-ER FM network. The red and blue circles denote 
lightning-caused changes in thundercloud charge given by Q and Q' , respectively as derived by 
using LDAR constraints and linear least squares theory. The values of Q and Q' in coulombs 
are given at the top of the plot. The large squares are individual LIS optical events and the large 
diamond is the LIS-derived flash location. The small dots indicate VHF source locations for the 
flash derived from the LDAR network; the small squares identify what VHF source occurred 
first (black) and last (orange) within the flash. The black and orange "Xs" mark the NLDN- and 
CGLSS- derived CG location, respectively. 



Jlmc 11, 1999 (Day 162) 
Q-40.072, Q'=-36.123 

I: Time: 05:06:49.817 - 05:06:50.817 

Fig. 11. An IC flash located well south of the KSC-ER network. See caption of Figure 10 for a 
description of the plot symbols. We believe this flash was incorrectly categorized as a positive 
CG by the NLDN and CGLSS systems (see main text for a discussion). 



June 29,1999 (Day 180) 
Q=33.633, Q'=-3.760 

Fig. 12. A CG flash (with IC component) located east of the KSC-ER network. See caption of 
Figure 10 for a description of the plot symbols. 

25 

26 20 

15 $5 -. 
E 
1 

'P 
w 5 

lil 
t.l 

10 10 

5 5 

O 
- 40 -20 R 

~ ~ ~ x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ * ~ ~  

- 

- - 

- 
" 

- - 
4 : 

- @y , - 
.I 

n - , t . . , . I , . & ' t  . , , ,  I . . , ,  j 8 . f , r , . , ,  

X \ k ~ j  Tune 19 02 54 393 - 19 02.56 393 



Scptenbcr 21, 1998 (Day 264) 
Q=9.3 17, Q'=-3.337 

0 t l  
Time: 20:40 :30.398 - 20:40:32.398 

Fig. 13. An IC flash located slightly west of the KSC-ER network. See caption of Figure 10 for a 
description of the plot symbols. 



Scptclrlbcr 21, 1998 (Day  264) 
Q=2.462, Q'=-2.412 

Fig. 14. A small discharge over the KSC-ER network that the LIS instrument detected, but that 
the LIS data processing algorithm removed. It precedes the CG shown in Figure 15 by less than 
0.9 s, and is also within about 10 km of the CG (see main text for more comments). The CGLSS 
and NLDN ground strike locations shown are associated with the CG that follows, but appear in 
this plot due to sensor timing errors. See caption of Figure 10 for a description of the plot 
symbols. 



Fig. 15. The CG that quickly follows, and is likely correlated with, the small discharge shown in 
Figure 14. The CGLSS and NLDN ground strike locations for this CG appear in Figure 14 due to 
sensor timing errors. See caption of Figure 10 for a description of the plot symbols. 


