Outline

- Heritage & History
- Level 1 Requirements
- Top Level Overview of the Observatory
- Development Challenges
- Highlight Photos
The Great Observatories

- Mt Wilson
- Palomar
- Keck
Hubble Discoveries
HISTORY OF SOFIA

1965-1985

- **1965-1969** First use of NASA aircraft for infrared (IR) astronomy (CV-990 & Lear Jet)
- **1969** Planning started for installation of 36-inch telescope in a CV-990
- **1969** First astronomy community interest in a Boeing 747
- **1971** National Academy of Sciences (NAS) Decade Survey (Greenstein) Report recommended study of Large Airborne Telescope (LAT)
- **1974** First research flight of Kuiper Airborne Observatory; Initial studies on larger system
- **1977** Boeing delivered a study for a LAT in a Boeing 747SP
- **1983-1984** Success of Infrared Astronomy Satellite (IRAS) shows need for follow-up/exploitation
- **1984** "Stratospheric Observatory For Infrared Astronomy (SOFIA) Preliminary feasibility Study" report issued (10th KAO Anniversary)
- **1985** SOFIA study funding provided – partnership with Germany started
HISTORY OF SOFIA

1986

• JANUARY Ames Research Center (ARC) establishes SOFIA Study Office
• JANUARY Challenger accident
• MAY SOFIA technology workshop at Ames;
• MAY-NOVEMBER Boeing-Military Aircraft Company Phase I Study; Confirms feasibility of installing a 2.5 meter telescope in a 747SP
• JULY Draft of the Memorandum of Understanding (MOU) for Telescope System study established with Germany
• OCTOBER Ames in-house Conceptual System study begins
• NOVEMBER Collaborative agreement made with DFVLR (Deutsche Forschungsanstalt für Luft und Raumfahrt)
• NOVEMBER German Phase A Telescope System studies kickoff

1987

• FEBRUARY Telescope System Phase A Study midterm review at ARC
• FEBRUARY-SEPTEMBER Boeing-MAC Phase II Study
• MAY German Phase A studies completed
• JULY SOFIA concept review held at ARC
• SEPTEMBER Ames Conceptual System study finished; SOFIA "Phase A System Concept Description" (The Red Book) published
1988

- **JUNE** Space and Earth Sciences Advisory Committee (SESAC) recommends that SOFIA proceed into definition phase
- **JUNE** – Began planning for wind tunnel tests
- **OCTOBER** Phase B (Definition Study) kickoff for Aircraft System at Ames
- **OCTOBER** Phase B (Definition Study) kickoff for Telescope Assembly at Zeiss

1989

- **JANUARY** Telescope fixed at 2.5 meters by NASA HQ/DFVLR agreement
- **FEBRUARY** Wind tunnel model design complete and fabrication begins
- **MAY** Project Definition Review completed at ARC; Found SOFIA well planned and defined and approved the project to proceed into the development phase contingent on a successful completion of wind tunnel test
- **JUNE** Draft MOU for development & operations phases reviewed by Ames & DLR
- **JULY** Non-Advocate Cost Review successfully completed, Affirmation of project readiness for 1991 start; FRG listed as responsible for telescope assembly
- **JULY** Definition studies completed by NASA
- **SEPTEMBER** Telescope and Aircraft System Phase B final reviews are completed and reports published
- **OCTOBER** Boeing re-organizes; No longer interested in "one-off" mods like SOFIA
- **NOVEMBER** Berlin wall falls; Reunification of East and West Germany considered
HISTORY OF SOFIA

1990

- **MARCH** SOFIA I wind tunnel model tests start
- **MAY** DARA budget cuts begin
- **JUNE** Non-Advocate Review is held for SOFIA in accordance with the agency's new start-gate policy; SOFIA deemed ready to proceed to development again and recommended for 1992 start
- **JUNE** Preliminary engineering study of SOFIA Ground Support Facility
- **JUNE** Aircraft System modification procurement activities underway, Source Evaluation Board (S.E.B.) established
- **JULY** Wind tunnel tests successfully completed; A low drag passive shear layer control device derived that exceeds performance expectations
- **OCTOBER** Reunification of Germany, requires reduction of German government agencies' budgets

1991

- **NAS Decade Survey (Bahcall) Report** recommends SOFIA as the top priority moderate new missions for NASA
- **MAY** With the realization of DARA budget cuts, SOFIA plans FY92 to prepare for an all U.S. program with optional help from DARA in FY94
- **MAY** Aircraft Modification Contractors road trip to find companies w/interest/capability to perform the SOFIA aircraft modification
- **JULY - SEPT** In-house descope studies, to reduce total cost; 5 cases considered, one considers an aft cavity location to reduce aircraft modification costs
- **OCTOBER** Aft cavity location adopted as new baseline for the Aircraft System
HISTORY OF SOFIA

1992

• JANUARY IR measurements made of the Shuttle Carrier Aircraft (SCA) engine plumes using IR cameras mounted in Lear jet
• DECEMBER Final reports of Aircraft Systems NRA concur with Ames in-house study regarding feasibility and cost savings for the aft cavity configuration

1993

• JUNE ARC Code R agrees to de-mothball 14 ft wind tunnel for SOFIA test; Test entry planned for 1994
• AUGUST Headquarters OSS proposes SOFIA as an FY95 new start to Administration/Comptroller

1994-1995

• SOFIA New Start approved
• Headquarters mandates Privatization concept:
 – “Government owned, contractor operated”
 – “Better-Faster-Cheaper”
• Procurement proceeds for development & operations phase
 – Science organization prime - Government work packages

1996

• December - SEB process complete - NASA contract awarded to USRA-UAL-Chrysler Tech Team
• December - DLR awards contract to team of MAN-G, MAN-T, & KT

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
The Org structure for majority of the development phase
Major Components of SOFIA

Observatory

Science Instruments

Science and Mission Operations Center
HISTORY OF SOFIA

Milestones

• 1997
 – System requirement reviews completed (2)
 – Baseline Flight test completed
 – SOFIA V Wind Tunnel test completed

• 1998
 – TA PDR completed
 – AS PDR completed

• 1999
 – Schedule slips
 – 3% S&C wind tunnel tests completed

• 2000
 – TA CDR completed
 – AS CDR completed
 – Schedule continues to slip

• 2001
 – TA ground I&T begins
 – September 11 attack - impacts US airlines
HISTORY OF SOFIA

Contract Milestones

- **2002**
 - TA ground testing & Project Final Review completed
 - TA shipped to Waco September 2002

- **2003**
 - TA integration into aircraft begins
 - Columbia accident
 - UAL departs SOFIA program under bankruptcy protection (9/11)

- **2004**
 - TA functional, SI mounted, First Light August 2004
 - Aircraft Proof pressure test completed
 - DSI selected in Germany to support SOFIA Ops

- **2005**
 - Push for flight leads to multiple mishaps then work stoppage
 - Mod audit conducted
 - Per ICSMR recommedations Re-baseline & new approach begins
HISTORY OF SOFIA

Contract Milestones

• 2006
 – SOFIA Budget zeroed for FY07 budget
 – SORT commissioned to consider options for future
 – GVT conducted on aircraft in June per IMS established 8/2005
 – HQ dropped requirement for FAA certification (Public Use)
 – Budget rebaselined & program office transferred to Dryden
 – Flight Readiness Review started in Oct

• 2007
 – Airworthiness Flight Safety Review Board on 15 Mar 07
 – First Flight on 25 Apr 07?
 – Ferry Flight of SOFIA to Dryden end of May
 – Begin Phase 1 flights (door closed envelope expansion)
Heritage

- Kuiper Airborne Observatory is the direct Predecessor to SOFIA
 - Modified C-141 with 36” Diameter Telescope
 - Flew w/open port cavity 1974-1995
 - Cavity in forward fuselage
 - Porous fence was primary Shear Layer Control device
 - Aft Ramp augmentation based on SOFIA development wind tunnel test results was implemented in 1993
 - Flow attachment significantly improved
 - Internal Cabin noise significantly reduced for Open cavity flight
 - Cavity Environment significantly improved
 - Allowed fence position to be lowered from 30° to 10°
 - Reduced drag - improved flight performance
Kuiper Airborne Observatory (KAO)

1974-1995
Lockheed C-300
(Modified C-141)
36” Telescope
KAO Aft Ramp - Passive Flow Fairing

- Installed in 1993
- Developed from wind tunnel test data and research performed during initial development of the SOFIA Shear Layer Control System
- KAO design represents a compromise due to existing OML & cavity door constraint
KAO Aft Ramp - Passive Flow Fairing

- Designed to stabilize the shear layer re-attachment downstream of the open cavity.
- Enabled KAO to fly with the cavity fence at 10° instead of 30°
- Reduced Shear layer thickness
- Significant improvements in “Seeing”
- Reduced cavity aero-acoustics
- Reduced structural fatigue in and around cavity
- Pilot noticed improvements in open door flight
SOFIA - Airborne Astronomy Size Comparison

SOFIA - OPERATIONAL 2001
AIRCRAFT - BOEING 747SP
MAXIMUM GROSS WEIGHT - 703,000 lb
TELESCOPE APERTURE - 98 in. diam (2.5 m)

KAO - OPERATIONAL 1975
AIRCRAFT - LOCKHEED C-141A
MAXIMUM GROSS WEIGHT - 320,000 lb
TELESCOPE APERTURE - 36 in. diam (0.91 m)

LEARJET OBSERVATORY - OPERATIONAL 1965
AIRCRAFT - LEARJET, MODEL 24
MAXIMUM GROSS WEIGHT - 15,000 lb
TELESCOPE APERTURE - 11.8 in. diam (0.3 m)
SOFIA - Requirements/Specifications

- Wavelength Range 0.3 - 1600 microns
- Unvignetted elevation range 20° to 60° above the horizon
- Configuration: Instrument Access in Cabin
- Telescope effective Aperture Diameter 2.5 meters
- Time at ≥ 41,000 feet ≥ 6 hours
- Observing hours per year ≥ 960
- Lifetime ≥ 20 years
- PI Teams per year capability ≥ 40
- Education Goals: NASA OSS Guidelines
- Airworthiness: FAR FAA Certification
- IR functional capabilities: chopping, nodding, & scanning
- Image quality 80% encircled energy within 1.5 arcsec at visible wavelength
- Image stability at focal plane 0.2 arcsec rms

Combined to 80% encircled energy within 5.3 arcsec diameter image size at First Science Flight improving to 1.6 arcsec within 3 years.
Location of future cavity opening
Pressurized Cabin - containing mission equipment, the science instrument, the flight crew, the observatory crew, and the scientists.

Open Port cavity - containing telescope.
Airborne Observatory Layout

Mission Control & Science Operation Section

Education & Public Outreach Section

Pressure Bulkhead

Open Port Telescope Cavity

Science Instrument

Telescope 2.7m

Cavity Door System

Cavity Environmental Control System
2.5 Meter effective aperture

- Aircraft Size
- Large 2.7 Meter Primary Mirror
- “Fast” Mirror to fit within aircraft
 - Drives alignment/stiffness requirements

Telescope Size is Maximum that can fit Available Volume

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Telescope Optical Layout

Focal Plane

Primary Mirror M1

M3-1

M3-2

M2

Focal Plane Imager
2.5 Meter effective aperture
Major Telescope Components

- Counter Weight
- Forward Bulkhead
- Hydraulic System
- Motors
- Brakes
- Bearing Sphere
- Focal Plane Imager
- Vibration Isolation
- Cameras
- Primary Mirror M1
- M2
- M3-1
- M3-2

Science Instrument
Telescope pre-ship integration
Configuration: Instrument Access in Cabin

Cabin Side
- Shirt Sleeve Environment

Cavity Side
- Open to Atmosphere
 (0.18 atm - -40°C)

Pressure Bulkhead
- Thermal & Pressure Boundary

Forward

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Bulkhead - Flight Hardware

New Pressure Bulkhead
Bulkhead Simulator for TA Integration
Large Structural Opening

- Unvignetted Elevation Range (20° - 60°)
Cavity Door System

- Upper Rigid Door Drive
- Upper Rigid Door (URD)
- Lower Flexible Door Door (LFD)
- Aperture
- Inflatable Seal
- Door Snubbers
- Seal Inflation System
- Aircraft Forward Direction
Technical Challenges

- Open Port cavity
 - Final Verification pending completion of Flight Tests
 - Influence on aircraft Stability & Control
- Acoustic Issues
 - Resonance
 - Structural Fatigue
 - Environment for Telescope Performance
- Drag (aircraft performance)

Structural Modification
- Strength
- Stiffness
- Transition to unmodified areas
Technical Challenges

- Thermal Environment
 - Systems exposure
 - Science performance

- Cavity Door
 - Accommodate fuselage deformation
 - Track Telescope motion
 - Drive system safety

- Lightweight Primary Mirror
- Rotational Isolation System
 - KAO used air bearing but this technology does not scale well…
SOFIA Wind Tunnel Testing Overview

7% Scale Tests

• SOFIA I - March 1990 to July 1990 - Forward Cavity configuration
• SOFIA II - June 1994 to August 1994 - Aft Cavity configuration
• SOFIA III - February 1995 -SP only -Aperture Geometry -TA loads
• SOFIA IV - Sept 1995 to Dec 1995 Door design space evaluation
• SOFIA V - November 1997
 – Adjustment of Boundary Layer profile to match Baseline Flight tests
 – Verification of Final Partial External Door (PED) Design
 – Measurement of loads on Final Telescope design (pointing performance)
 – Measurement of loads for use in PED design

3% Scale Tests

Stability & Control - measure aero-coefficients between baseline 747-SP and SOFIA and provide substantiation for reduced flight test program

• Low Speed Tests - University of Washington Kirsten Wind Tunnel
• High Speed Tests - Boeing Transonic Wind Tunnel
 – November 1998
SOFIA 7% model in Ames 14ft Transonic Wind Tunnel

Primarily used to develop shear layer control design technology and to determine cavity acoustic environment and resultant loads on Telescope.
SOFIA CFD Predictions

- Example of CFD flow over the mod
• Stab & Control
• Negligible change in drag and pitching moment
• No other F&Ms affected
Objectives

→ Per all Test and Analyses completed, data indicates Objectives will be met

\- Minimal impact on Stability & Control of Aircraft
\- Robust - Non resonating cavity (structural/safety)
\- “Quiet” cavity for optimum TA pointing performance
\- Minimize drag to maintain Aircraft performance
\- Optimize Aero-Optic performance “seeing” for short wave length image quality performance

→ Flight Testing is remaining step to Verify
Summary

- SOFIA SLC development began with KAO heritage
- Open port cavity/SLC issues identified early (1980’s) as risk areas
 - Risk reduction activities were planned & completed accordingly
- Eight Separate Wind Tunnel Test Series Completed
 - Results Indicate:
 - Shear layer control implementation will provide quiet well behaved cavity acoustic environment
 - Stability & Control of aircraft will be essentially unaffected
- Multiple CFD and other analyses completed
 - Results concur with wind tunnel tests and provide additional data
- Multiple Independent Reviews Concur with approach
 - Latest NESC review extensively examined test and analysis data and planned program approach and recommend proceeding to flight test
- **All data indicates that SOFIA will fly like an unmodified 747-SP**
Telescope arrival in Waco - Sept 2002
Unloading Telescope Pieces
Inside aircraft just before SUA installation

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Lowering SUA into cavity 2/2003
SOFIA Stratospheric Observatory for Infrared Astronomy

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Roll out from paint hangar September 2006
Questions?