Radiation-Hardened Electronics for the Space Environment

Dr. Andrew S. Keys
Michael D. Watson
Exploration Advanced Capabilities Office
NASA Marshall Space Flight Center

Government Microcircuit Applications and Critical Technology Conference (GOMACTech)
19-22 March 2007
RHESE Project Overview

RHESE Project Description:
- The Radiation Hardened Electronics for Space Environments (RHESE) project seeks to advance the current state-of-the-art in environmentally hardened electronic components for use in Exploration (Constellation, LPRP) and Science mission applications.
- RHESE investigates a full spectrum of approaches to harden space electronics against extreme radiation environments, including:
 - Assessment of new materials,
 - Modeling of the radiation environment and its effects,
 - Hardware self-reconfigurability techniques, and
 - Software design techniques that improve radiation tolerance.
- RHESE additionally investigates rad-hard methods and devices facilitating operation in low temperature environments (down to -180°C), including:
 - SiGe materials,
 - Reconfiguration to counter low-temperature effects, and
 - Design approaches to improve low temperature operation.
- Analog, digital and mixed-mode electronic systems all benefit from RHESE investments.

RHESE Project Tasks:
- (Managing NASA Center and Task Implementers)
 1.2.1.1 Self Reconfigurable Electronics for Extreme Environments
 JPL, US Navy SPAWAR, LaRC, Arizona State University
 1.2.1.2 Radiation Effects Predictive Modeling
 MSFC, Vanderbilt University
 1.2.1.3 Radiation Hardened Memory
 MSFC
 1.2.2.1 Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF)
 GSFC, AFRL, SNL, University of Idaho, MDA
 1.2.3 Radiation Hardened by Software
 ARC

(1.2.4) Radiation Hardened High Performance Processors (HPP)
GSFC, JPL, LaRC, MSFC

(1.2.5) Reconfigurable Computing
MSFC, LaRC

(1.3.2) Low Temperature Tolerant MEMS by Design
ARC

(1.3.1) Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments
LaRC, Georgia Institute of Technology, JPL, Auburn University, BAE Systems, Boeing, IBM, Lynquent Corporation, University of Arkansas, University of Maryland, University of Tennessee, Vanderbilt University
RHESE Work Breakdown Structure (WBS)

1.0 RHESE Mgmt Board (RMB) MSFC - Chair

1.1 RHESE Program Management

1.2 Radiation Hardened Electronics

1.2.1 Radiation Hardened Materials

1.2.1.1 Self-Reconfigurable Electronics for Extreme Env.

1.2.1.2 Model of Radiation Effects on Electronics

1.2.1.3 Radiation Hardened Memory

1.2.2 Radiation Hardened by Design

1.2.2.1 SEE-Immune Reconfigurable FPGA

1.2.3 Radiation Hardened by Software

1.2.4 High Performance Processors

1.2.5 Reconfigurable Computing

1.3 Low Temp Radiation Hardened Electronics

1.3.1 SiGe Integrated Electronics for Extreme Env.

1.3.2 Low Temperature Tolerant MEMS by Design
RHESE Project Content

Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments
- Georgia Institute of Technology, JPL, Auburn University, BAE Systems, Boeing, IBM, Lynquent Corporation, University of Arkansas, University of Maryland, University of Tennessee, Vanderbilt University

Self Reconfigurable Electronics for Extreme Environments
- JPL, US Navy SPAWAR, LaRC, Arizona State University

Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA)
- AFRL, SNL, University of Idaho, MDA

Radiation Hardened High Performance Processors (HPP)
- GSFC, JPL, LaRC, MSFC

Radiation Hardened Memory
- MSFC

Radiation Hardened by Software
- ARC

Radiation Effects Predictive Modeling
- MSFC, Vanderbilt University

Reconfigurable Computing
- MSFC, LaRC

Low Temperature Tolerant MEMS by Design
- ARC
SiGe Integrated Electronics

- **OBJECTIVES:** Develop and Demonstrate Extreme Environment Electronic Components Required for Distributed Architecture Lunar / Martian Robotic / Vehicular Systems Using SiGe HBT BiCMOS Technology
- **Extreme Environment Requirements:**
 - +120C (day) to -180C (night) + cycling (main focus)
 - radiation (TiD + SEU tolerant)
- **Major Project Goals / Approach:**
 - prove SiGe BiCMOS technology for +120C to -180C applications
 - develop mixed-signal electronics with proven extreme T + rad capability
 - develop best-practice extreme T range circuit design approaches
 - deliver compact modeling tools for circuit design (design suite)
 - deliver requisite mixed-signal circuit components (component library)
 - deliver robust packaging for these circuits (integrated multi-chip module)
 - demonstrate device + circuit + package reliability per NASA specs
 - develop a robust maturation path for NASA mission insertion (TRL-6)
- **Goal:** Be Ready for NASA Insertion in 2009
SiGe Integrated Electronics

The X-33 Remote Health Unit (circa 1998)

- 5” wide by 3” high by 6.75” long = 101 in^3
- 11 kg
- 17.2 Watts dissipated
- -55°C to +125°C

SiGe Application GOALS:
- 1.5” high by 1.5” wide by 0.5” long = 1.1 in^3
- < 1 kg
- < 2-3 Watts dissipated
- -180°C to +125°C, radiation tolerant

Remote Electronics Unit (circa 2009)

- Analog front end die
- Digital control die
- Conceptual integrated REU system-on-chip SiGe BiCMOS die
- REU connector housing

ETDP Technology Development
PROBLEM STATEMENT:

- Centralized architectures require all electronics inside a Warm Electronic Box (WEB)
 - WEB maintains an Earth-like environment (-40 °C to +40 °C) inside
 - Cables required form a jungle of wiring harness
 - Complicated ATLO (Assembly, Test, and Launch Operations)
- No electronics at extremities (e.g. motors, arms, etc)
SRE-EE Proposed Solution

Centralized Architecture

<table>
<thead>
<tr>
<th></th>
<th>Centralized Architecture (MER)</th>
<th>Distributed Architecture</th>
<th>Estimated Benefits of Distributed Architecture (EE Electronics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire length</td>
<td>~2,500 m</td>
<td>~200 m</td>
<td>~90% reduction</td>
</tr>
<tr>
<td>Number of wires</td>
<td>~1600</td>
<td>~350</td>
<td>~65% reduction</td>
</tr>
<tr>
<td>Modularity</td>
<td>No</td>
<td>Yes</td>
<td>Easier redesign, fab, test, and assembly</td>
</tr>
</tbody>
</table>

- Make electronics self-reconfigurable, adaptive to extreme environments.
- **SRE-EE designs and algorithms will**
 - detect degradation in circuit performance due to faults or partial drifts caused by temperature and radiation
 - **compensate for these faults and drifts** by changing to another configuration (either pre-determined or computed in-situ) more appropriate for the operating conditions.
Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF)

- **Target Device:** 5th generation Virtex™ device
 - 65 nm process
 - 11 metal layers
 - Up to 8M gates

- **Columnar Architecture** enables resource “dial-in” of
 - Logic
 - Block RAM
 - I/O
 - DSP Slices
 - PowerPC Cores

- FPGA design techniques developed that produce radiation-tolerant technologies capable of exhibiting
 - radiation-tolerant reconfigurable interfaces
 - digital interconnects.

Fabrication process and device architecture yield a high speed, flexible component
High Performance Processing

- **State of Practice** - BAE RAD750 is the "state of the art" radiation-tolerant spaceflight processor
 - Exhibits \(~100\ \text{MIPS}\) sustained throughput (compare to \(>6000\ \text{MIPS}\) for Intel Centrino (or recently announced research-grade teraflop, 80-core processor))
 - Radiation tolerant COTS-based boards offer increased performance (\(~1000\ \text{MIPS}\) at expense of reduced power efficiency

- **Assessment** - Processing capability and power efficiency directly affects spaceflight systems performance and implementation options
 - Autonomous rovers, Entry, Descent and Landing systems, autonomous systems

![Performance and Power Efficiency of Current and Targeted Processor Technologies](image)

National Aeronautics and Space Administration
High Performance Processing Assessments

- Performance of existing spaceflight-capable processors directly affects Exploration systems capabilities
 - Imposes significant constraints on spacecraft autonomous operations, rover traverses, EDL performance
 - Processor power inefficiency further constrains implementation options and systems feasibility
- RHESE is addressing this challenge by collaborating with DoD to leverage relevant processor development programs
 - Technologies under consideration address processor performance and power efficiency metrics
 - Signal processing at greater than 10 GIPS with less than 2 W power dissipation
 - Metrics of candidate technologies meet or exceed performance requirements for Exploration systems
 - Power efficiency of candidate technologies facilitates systems implementation in severely power-constrained environments
- Specific products for this task:
- High Performance Processor technologies targeting system-level FY12 delivery
Radiation Hardened by Software (RHS)

- Product will be such an SEE mitigation toolkit, primarily targeting COTS Xilinx FPGAs (e.g. Virtex II or II Pro).
- Two approaches:
 - Approach 1: Optimizing Standard Techniques
 - Approach 2: Evolutionary Sub-Circuit Design
- Several product components:
 - Radiation-optimized digital sub-circuit library
 - Evolutionary design toolbox that hardens a class of circuits with the ability to recover from a single fault, and
 - Evolutionary design toolbox that hardens a class of circuits with the ability to recover from multiple faults.
Radiation Hardened Memory

- **Product Description: Ferroelectric Based Memory (FeRAM)**
 - Uses ferroelectric material to store charge by moving a positively charged atom within the crystal lattice.

- **Product Description: Chalcogenide Based Memory (C-RAM)**
 - Chalcogenide materials store data by having two stable configurations that have different resistance.

- **Product Description: Carbon Nanotube Based Memory (NRAM)**
 - Carbon Nanotubes are suspended above an anode to which they can be connected with an electrical pulse.

- **Product Description: Magnetoresistive Random Access Memory (MRAM)**
 - MRAM uses magnetic polarization to change the resistance of a memory cell to store data.

National Aeronautics and Space Administration
Radiation Modeling

- The Single Event Effect (SEE) prediction models currently in use were developed ~10 years ago.
 - They were written when feature sizes were >1 μm
 - Devices did not contain heavy metals
 - Microcircuits were not complex 3-D structures
 - These models are not reliable for modern devices

- Current radiation model available:
 https://creme96.nrl.navy.mil/
Radiation Modeling Objectives

• Provide accurate evaluations radiation effects in space
 – By understanding how specific device technologies respond to ionizing radiation,
 – By providing the ability for designers to accurately predict a mean-time-between-failure for components and sub-systems, and
 – By providing a computational tool to estimate mission-specific total dose and SEE rates.

• Improve External Radiation Environment Descriptions
 – Galactic cosmic rays
 – Solar energetic particles
 – Anomalous cosmic rays

• Improve Radiation Transport though Spacecraft
 – Full Monte Carlo radiation transport

• Provide a Physics-Based Simulation Tool of Single-Event Effects
 – Correctly treat hole-electron plasma creation
 – Charge collection
 – Circuit response

• Make the computational tool available to designers through the internet.
Reconfigurable Computing

- Flight-Qualified, Multi-String Redundant Hardware is Expensive
 - Development, Integration, IV&V, and Flight Qualification
 - Space and Weight
 - Power Consumption
 - Dissimilar Spares
- “From Scratch” Design of Computing Resources for Every New Flight System is Unnecessary and Wasteful
- Requirements for Flexibility are Increasing and Smart
 - Reconfigurable and Modular Capabilities
 - Capacity to use one system to back up any number of others
 - General Reusability
- Current Options for Harsh/Flight Environment Systems are Limited
 - Custom Hardware, Firmware, and Software
 - Dedicated and Inflexible
 - Often Proprietary
Specific products and applications of this task will include:

- Reconfigurable processors supporting multiple architectures to enable single spares to fulfill multiple electronic functions.
- Reconfigurable processors supporting avionics redundancy by providing adaptable spares.
- Reconfigurable processors supporting recovery from component damage by radiation strikes and other events.
- Reconfigurable processors supporting multiple interfacing and interconnection options.
Technical Justification for Low Temp MEMS

- **Low Temperature Design Challenges**
 - behavior of materials at extreme low temperatures not completely understood
 - brittleness and fatigue
 - intensified effect of vibration and shock
 - thermal contraction
 - delamination concerns
 - parametric characteristics altered
 - e.g. charge buildup increases pull-in voltages at low temperature in MEMS switches
 - e.g. resonator, gyroscope drive and sense frequencies sensitive to temperature

- **'Low Temperature By Design' Benefits**
 - increased accuracy and reliability
 - design specifically for performance at low temperatures
 - potentially exploit temperature environment as part of the design
 - direct exposure to environment (e.g. sensors)
 - reduce size, weight, and complexity of protective & environmental packaging
 - also 'temperature harden' existing designs

- **Most COTS MEMS designs were not developed to operate in extreme temperature environments**
MEMS Technical Approach: Description

- **Optimization using Evolutionary Programming...**
 - Based after neo-Darwinian model (breeding + selection)
 - 'program instructions' for constructing design, not just parameter optimization
 - Allows for multi-objective searches and non-symmetrical, non-intuitive designs
 - Is parallelized and designed to run over an expandable network, and can easily leverage third-party domain-specific simulators
 - Can compensate for variation in simulated vs. actual performance by incorporating 'noise' and empirical correlations into the evaluation process
 - Is a 'proven' design approach, utilized for the ST5 antenna
Low-Temperature MEMS Products

• Specific products provided by this task include:
 – Design rules and algorithms for computer-assisted design of low-temperature MEMS design.
 – A tool for designing multiple classes of temperature-hardened MEMS devices
 – Computer cluster modeling software for MEMS design and simulation.
 – System for automatically evaluating instances of a class of MEMS designs
 – Retooled MEMS design software to include low-temperature capabilities
RHESE Summary

- RHESE covers a broad range of technology areas and products.
 - Radiation Hardened Electronics
 - High Performance Processing
 - Reconfigurable Computing
 - Radiation Environmental Effects Modeling
 - Low Temperature Radiation Hardened Electronics
- RHESE has aligned with currently defined customer needs.
- RHESE is leveraging/advancing SOA space electronics, not duplicating.
 - Awareness of radiation-related activities throughout government and industry allow advancement rather than duplication of capabilities.

Current Leveraging Efforts
- NASA Electronics Parts Program (NEPP)
 - SiGe Integrated Electronics
 - Radiation Effects Predictive Modeling
- Defense Threat Reduction Agency (DTRA)
 - High Performance Processing
 - Radiation Environment Effects Modeling
 - SiGe Integrated Electronics
- Defense Advanced Research Programs Agency (DARPA)
 - High Performance Processors
 - Mixed Signal Analog Devices
- Department of Energy
 - High Performance Processing
 - Radiation Hardened FPGA
- Air Force Research Laboratory (AFRL)
 - Reconfigurable Computing
 - Radiation Hardened FPGA
- Naval Research Laboratory (NRL)
 - High Performance Processing
- IBM
 - Low Temperature Electronics
- BAE Systems
 - Low Temperature Electronics
- Honeywell
 - Radiation Hardened Electronics
- Vanderbilt University
 - Radiation Environment Effects Modeling
- Brigham Young University
 - FPGA Design Software
- Arizona State University
 - Power Efficient FPGA Design
- University of Idaho
 - High Performance Processing
Contact Information

For additional information on the Radiation-Hardened Electronics for Space Environments (RHESE) project, please contact:

Dr. Andrew S. Keys
Phone: 256-544-8038
andrew.s.keys@nasa.gov

Dr. Michael D. Watson
Phone: 256-544-3186
michael.d.watson@nasa.gov

Dr. Donald O. Frazier
Phone: 256-544-7825
donald.o.frazier@nasa.gov