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Popular Summary 

Faraday rotation is a change in the polarization vector of electromagnetic radiation that 
occurs as the waves propagate from the Earth surface through the ionosphere to a 
spaceborne sensor. This change can cause errors in monitoring parameters at the surface 
such as soil moisture and sea surface salinity and it is an important consideration for 
radiometers on future missions in space such as NASA's Aquarius mission and ESA's 
SMOS mission. Two prominent strategies for compensating for Faraday rotation are 
using a sum of the signal at two polarizations and using the correlation between the 
signals at the two polarizations. These strategies work for an idealized antenna. This 
paper evaluates the strategies in the context of realistic antennas such as will be built for 
the Aquarius radiometer. Realistic antennas will make small differences that need to be 
included in planning for retrieval algorithms in future missions. 
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Abstract 

The influence of the pattern of the receive antenna on Faraday rotation is examined in the 
context of passive remote sensing of soil moisture and ocean salinity at L-band. Faraday 
rotation is an important consideration for radiometers on future missions in space such as 
SMOS and Aquarius. Using the radiometer on Aquarius as an example, it is shown that 
while I = Tv + Th is independent of Faraday rotation to first order, it has rotation 
dependence when realistic antenna patterns are included in the analysis. Also, it is shown 
that using the 3rd Stokes parameter to measure the rotation angle can yield a result biased 
by as much as one degree by purely geometrical issues associated with the finite width of 
the main beam. 

I. Introduction 

Faraday rotation is a change in the polarization vector that occurs as electromagnetic 
waves propagate through the ionosphere. The magnitude of the change varies as 
l/(fiequency)* and is an important consideration for remote sensing at the low frequency 
end of the microwave spectrum. For example, at L-band (1.4 GHz) where remote 
sensing of soil moisture and sea surface salinity is performed, the rotation of the 
polarization vector can range from a few degrees to more than 15 degrees depending on 
viewing angle and the solar cycle (Le Vine and Abraham, 2002). The corresponding 
change in apparent brightness temperature can be several Kelvin and is an important 
issue for missions such as SMOS (Kerr et al, 2000,2001) and Aquarius (Le Vine et al, 
2006,2007) which will be launched soon to measure soil moisture and sea surface 
salinity at L-band. 

Unfortunately, current models for the ionosphere are often not sufficiently accurate to 
make corrections (Abraham and Le Vine, 2001). This is especially true in the case of sea 
surface salinity which requires high accuracy and measurements over the oceans (Le 
Vine et al, 2006; Lagerloef, Swift and Le Vine, 1995) where data on the ionosphere is 
sparse. 

Among the strategies adopted to compensate for Faraday rotation is use the first Stokes 
parameter, I = Tv + Th. In the ideal case when the antenna patterns for the two 
polarizations are identical and there is no cross-polarization coupling, I is independent of 



Faraday rotation. It is also independent of other rotations such as errors in the antenna 
polarization clocking angle. 

Another strategy is to measure the third Stokes parameter TU (see below Equation 5 for 
a definition). One can show that the ratio of TU to the second Stokes vector, Q = Tv - 
Th, is proportional to the tangent of twice the angle of Faraday rotation. This was 
recognized by S. Yueh who described how TU and Q could be used to measure the 
Faraday rotation (Yueh, 200 1). 

Both of these strategies work in the case of narrow beam antennas with no cross- 
polarization coupling. However, at L-band antennas in space tend to have large 
footprints (e.g. 100 km diameter for Aquarius) and small but not negligible cross- 
polarization coupling. The purpose of this paper is to examine the performance of these 
two approaches when used with antennas with realistic patterns. Of concern are the 
effect of cross-pol coupling, mismatch of the patterns for the two polarizations and the 
effect of changes in the orientation of the polarization vectors at the surface with respect 
to boresight over the footprint of the antenna beam. For example, cross-polarization 
coupling can introduce a dependence on Faraday rotation in the sum I = Tv + Th and also 
introduce a bias in the estimate of the angle of Faraday rotation obtained from Q and TU. 
In the sections to follow, expressions for I, Q and TU are derived for a general antenna 
and examined in special cases. Then, to get realistic estimates of the magnitude of the 
effects to be expected in the general case, the antennas for the Aquarius radiometer are 
used to generate numerical results. 

11. Antenna Temperature: General Case 

Consider a dual polarized antenna with its two polarization ports, v and h, arranged so 
that at boresight the directions correspond to the conventional definitions at the surface: 

v - - h x k  

where n is a vector normal to the surface and k is the direction of propagation from the 
surface toward the antenna. Let the antenna "voltage" pattern at each port be: 

where the gi are complex and the ~i are unit vectors defined by Ludwig (1 973) to indicate 
the directions of co-polarization and cross-polarization. Assume a local coordinate 
system at the antenna with unit vectors (x,y,z), and let the z-axis be along the boresight 
direction (pointing to the surface) and let the x-axis be aligned with the direction of 
vertical polarization, v, at the surface. Then, one has (Lugwig, 1973): 



E I  = [l  + cos2cp (cose - I)] x + (cos0 - 1) sincpcoscp y - sinecoscp z 
(3) 

EZ = ( C O S ~  - 1) sincpcoscp x + [l  + sin2cp (cose - I)] y - sinosincp z 

The antenna output, the antenna temperature TA, can be written in the form (Camps et al, 
2005): 

where TB is the "modified" Stokes vector, in units of brightness temperature, evaluated at 
the surface: 

where T3 = TU = 2 a Re<Eh*Ev> and T4 = TV = 2 a Im <Eh*Ev> and the coefficient 
of proportionality is a = h2/(qk) where q = d p / ~  is the intrinsic impedance of the 
medium, k is the Boltzlnann constant, and 0 indicates the expected value. 

In Equation 4, R is a "rotation" matrix: 

cos2cpc 2 sin cp, 0.5 siri2cpc 0 

2 sin cp, cos2cpc - 0.5 sin2cpc 0 
R =  

- sidcp, sin2cpc cos2cpc 0 

0 0 0 1 

and G in Equation 4 is an antenna pattern matrix: 



The matrix in Equation 7 above appears in scattering theory where the parameters gij are 
replaced by scattering coefficients and it is commonly called the "Stokes matrix" (e.g. 
Fung, 1994; Tsang, Kong and Shin, 1985). 

In Equation 6,  the angle cp, = cp + QF where QF is the Faraday rotation angle (Appendix 
By section A) and cp is a geometry dependent rotation. The later occurs because the 
polarization vectors defined on the surface (h and v in Equation 1) are only aligned with 
the polarization vectors of the antenna (Equations 3) at boresight. Along other rays from 
the antenna to the surface, the polarization vectors at the surface are rotated relative to 
vectors defined in Equation 3 (see Appendix B section B; also Dinnat and Le Vine, 
2007). Although not considered here, it is also possible to have a rotation about boresight 
of the antenna polarization vectors themselves relative to the desired orientation (e.g. a 
misalignment of the polarization vectors due to mechanical error). This would appear as 
a constant offset, yo, that would be included in 9,. 

111. Special Cases 

The matrix operations that result from substituting Equations 5-7 into the integrand of 
Equation 4 are straight forward but the expressions that result are rather long. The 
general expressions are given in Appendix A and they will be used for the numerical 
computations to be discussed below (Section IV). However, in order to gain insight, it is 
convenient to first look at special cases. In the discussion below, I = Tv + Th and Q = Tv 
- Th and T3 = 2 a Re<Eh*Ev>. Parameters without primes are measured at the surface. 
Parameters with primes (i.e. 1', Q' and T3 ) have the same definition but are measured at 
the sensor after propagation through the ionosphere and being weighted by the antenna 
pattern (Equation 7) but before integration. That is, they are the result of the matrix 
product G(R) R(a) TB(R) in Equation 4. 

A. Ideal Antenna Patterns 

The general expressions simplifl greatly if one assumes that the antenna patterns for the 
two polarizations are identical and that there is no cross-polarization coupling. In 
particular, assume ghh = gvv = G and ghv = gvh = 0. In this case, one obtains the 
conventional results and the first Stokes parameter, I' = Tv' + Thy, is independent of 
Faraday rotation. Combining the first two rows in the integrand in Equation 4, one 
obtains: 

where it has been assumed that T4 = 0 at the surface, but T3 # 0 and the primes on the 
quantities on the left are a reminder that the integration in Equation 4 has not been done. 



Notice, that in this case, I' is independent, not only of Faraday rotation, QF, but also of 
any geometrical effects, cp. As mentioned above, a non-zero value of cp can arise because 
the polarization vectors at the surface are not aligned with the polarization vectors 
defined at the antenna ports (Appendix B section B). In the ideal case, the first Stokes 
parameter has the added advantage of being independent of both, cp and QF. 

Also, notice that when the third Stokes parameter at the surface, T3, is zero, then the 
ratio, T3 I Q' is proportional to the tangent of 2cpc: 

- 
cpc 

- 0.5 TK' ( T3 I Q') (9) 

Yueh (200 1) proposed the use of T3 and Q' in this manner to measure Faraday rotation. 
He discussed the impact on the retrieval when the third Stokes parameter at the surface, 
T3, is not zero. However, he did not consider the effects of the integration over the 
footprint (i.e. the integration in Equation 4 over solid angle, dQ, remains to be 
performed). For a very narrow antenna pattern, this is not an issue. However, for a broad 
antenna pattern such as is likely to be the case at L-band for antennas in space (Le Vine et 
al, 2006), the variation of geometry over the footprint must be taken into account. As 
will be shown in the examples later, a bias can arise due to non-zero cp when this 
integration is performed. 

B. Impact of Cross-Pol Coupling 

Let the antenna patterns be identical as in the case above, but in this case assume non- 
zero cross-polarization coupling. That is, assume ghh = gvv = G as before but instead of 
zero cross-pol coupling assume gh, = g,h = g. In this case, the terms in the integrand in' 
Equation 4 can be written in the form: 

In most cases g is small and g2 << G2. Assuming this to be the case and keeping only 
terms of first order in g, the results simplify to: 

Even neglecting T3 which is likely very small at L-band (Yueh, 2000), the first Stokes 
vector, 1', is now no longer independent of either Faraday rotation or of geometry effects, 



cp. Also, now it is coupled to the second Stokes vector, Q, and therefore is likely to be 
more dependent on local incidence angle, 8, than before. At modest incident angles and 
flat surfaces with no roughness, I = Tv + Th is almost constant, but Q = Tv - Th 
increases with incidence angle. In addition, even when T3 = 0, the third Stokes 
parameter at the sensor, T3 , now is biased relative to its value in the ideal case by the 
factor 2 Re(Gg*) I. This term is independent of 9,. Assuming g << G and cos(2cpC) = 1, 
one can apply Equation 9 to retrieve Faraday rotation, but now the result will be biased 
by a term which depends on the magnitude of (gI1GQ). 

C. Size of the Footprint 

The discussion above does not include the effects of the integration in Equation 4 over 
the antenna pattern. It does apply to an antenna with a narrow beam because in this case, 
to a first approximation, the integrand can be pulled out of the integral. However, with 
the relatively broad main beams likely at L-band (Dinnat and Le Vine, 2006) variations 
over the footprint must be taken into account. Even in the idealized case (Equations 8), I 
and Q obtained from the apparent antenna temperature, TA, on the left-hand side of 
Equation 4, can differ from their values at boresight because of variations of the local 
incidence angle over the footprint. The same is true in the situation described in 
Equations 1 1, although more complex because in addition to changes in I and Q with 
incidence angle, cp, can vary over the footprint. To get an idea of the magnitude of these 
effects, numerical examples are presented in the following section. 

IV. Examples 

In order to obtain a more complete picture of how important the size of antenna footprint 
and presence of cross-polarization coupling are in a realistic case, the integration in 
Equation 4 has been evaluated using the antenna patterns for the radiometer being 
developed for the Aquarius instrument (Le Vine et al, 2006,2007). Aquarius is an L- 
band microwave instrument being developed to map the salinity field at the surface of the 
ocean from space. It is part of the AquariusISAC-D mission, a partnership between the 
USA (NASA) and Argentina (CONAE) with launch scheduled in 2009 (Sen, et al, 2006). 
The Aquarius antenna is a 2.5-m offset parabolic reflector with three feed horns. The 
three beams are arranged to image in pushbroom fashion with the beams pointed across 
track, roughly 90 degrees with respect to the spacecraft heading, at look angles of 25.8, 
33.8 and 40.3 degrees with respect to the satellite nadir. The resolution of the three 
radiometer beams ranges from 76 x 94 km for the inner beam to 97 x 157 km for the 
outer beam and the antennas have a beam width (FWHM) of about 6.5 degrees. The 
antenna patterns (co-pol and cross-pol) for the horizontally polarized port of the outer 
beam are shown in Figure 1. The patterns for the other beams are similar (e.g. Dinnat 
and Le Vine, 2007, Fig 2). These are calculated antenna patterns developed with modern 
antenna modeling tools and provided by the Aquarius antenna engineering team and have 
recently been validated with measurements on a scale model (Joe Vecchione, 
unpublished communication). 



Calculations have been made using the antenna patterns described above and the orbit 
geometry of the Aquarius sensor. Aquarius will be launched into a sun-synchronous orbit 
at an altitude of 657 km, an inclination of 98 degrees and equatorial crossing times of 6 
am (descending) and 6 pm (ascending). The orbit is a 7-day exact repeat orbit. Figure 2a 
shows the ground track for a representative orbit (bold solid line) and the intersection of 
the boresight ray with the surface for the three beams (dotted lines). The Aquarius 
antenna patterns are used for the elements of the matrix G in Equation 7 and the orbit 
geometry shown in Figure 2 is used to evaluate the elements of the matrix R in Equation 
6 and also to determine the brightness temperature vector at the surface, Tg. An example 
of the antenna temperature, Tv, obtained in this manner from Equation 4 is shown in 
Figure 2b. Values are shown for each of the three beams during one orbit. The 
horizontal axis (abscissa) is labeled in sample points around the orbit. The calculations 
are done once each 6 seconds and the results are numbered (1-980) and plotted 
sequentially as the spacecraft orbits. The large changes in antenna temperature occur at 
waterlland boundaries and are due to large difference in emissivity of land compared to 
water. The jumps are slightly displaced relative to each other because the beam centers 
are not co-aligned (see the dotted lines in Figure 2a). 

In order to keep the focus on the issue of Faraday rotation, a number of simplifications 
have been made in the calculations. First of all, it will be assumed that extraterrestrial 
contributions such as the sun and cosmic background are zero, in which case only the 
integration over the over the visible disk is relevant. (See Dinnat and Le Vine, 2007 for a 
discussion of the effect of the integration over the off-earth background.) Second, it is 
assumed that the surface consists of only water and at a constant temperature (25 C) and a 
constant salinity (35 psu). This eliminates the jumps and small variations seen in Figure 
2a due to land/water crossings and naturally occurring changes in water parameters which 
otherwise would distract from the issues at hand. Finally, all factors, other than Faraday 
rotation which normally contribute to the observed antenna temperature (e.g. atmospheric 
emission and attenuation, reflected radiation from the sun and cosmic background) have 
been set to zero. With these assumptions, the only contribution other than radiation from 
the surface is due to Faraday rotation. Faraday rotation is computed using the IN-2000 
to model the ionosphere (Bilitza, 2001) and the International Geomagnetic Reference 
Field (IGRF) for the Earth magnetic field (Barton, 1997). Details are given in Appendix 
B. 

A. Ideal Case 

In the ideal case, the antenna patterns at each polarization are identical and there is no 
cross-polarization coupling. The integrand in this case is given in Equations 8 and the 
integration in Equation 4 will be done numerically using the pattern for the H- 
polarization channel of Aquarius radiometer shown in Figure 1. The co-polarized pattern 
is used for both the H- and V-polarized channels and the cross-polarization coupling 
terms (gvh and ghv in Equation 2) are set to zero. The pattern was re-normalized to 
account for the fact that the integration is only over the visible disk (Le Vine and Dinnat, 
2007). 



A. 1 First Stokes Parameter 

As expected fiornEquation 8a, the first Stokes parameter, I = Tv + Th, is essentially 
constant around the orbit and independent of Faraday rotation. However, the value 
obtained after integration is not exactly the same as the value at boresight. This is shown 
in Table I which gives the values obtained for the three beams at boresight and after 
integration. The integrated value differs from its value at boresight the local incidence 
angle ranges from 0 to about 65 degrees over the visible disk and there is enough energy 
in the sidelobes of the antenna at the large incidence angles to make a small difference. 

Table I 
First Stokes Parameter 

A.2 Retrieved Rotation Angle 

Figure 3-4 show the angle retrieved using the ratio of the second and third Stokes 
parameters. In this case the integration in Equation 4 is done as above and the rotation 
angle is obtained from: 

where the subscript "A" is a reminder that these are the values after integration from the 
apparent temperature vector, TA. Figure 3 shows the retrieved angle in the case of no 
Faraday rotation to illustrate the impact of purely geometrical factors. The vertical axis is 
the retrieved angle and the horizontal axis is labeled in sample points along the orbit: 
The spacecraft starts on the equator (index "1") and 6 seconds later a second calculation 
is made (index "2 ), continuing in 6 second steps until the spacecraft rotates one orbit 
(index "980 ). The three curves show the retrieved angle for the three Aquarius beams. 
Since the Faraday rotation is zero, the retrieved angle is due entirely variations of the 
polarization vectors at the surface over the FOV of the antenna relative to their values at 
boresight. The angle is constant because the geometry changes very little as the 
spacecraft orbits (there is a small change in altitude). The retrieved angle is different for 
the three beams because the antenna patterns and boresight direction are different. 

Figure 4 shows the angles retrieved using Equation 13 but with Faraday rotation 
included. In this case, the dominant contribution to qC is no longer geometry but Faraday 
rotation in the ionosphere. The shape of the curve reflects changes in the electron density 



and magnetic field along the orbit. The ionosphere is the IRI-2000 model for November 
14,2004, a period of low solar activity. Notice the sign change that occurs when the 
spacecraft crosses the equator (near index 450). This is due to the change in the "dip" 
angle of the magnetic field relative to the boresight vector (e.g. Le Vine and Abraham, 
2000). The dashed line gives the Faraday rotation at boresight as a reference and the 
solid line is the angle retrieved from Equation 13. The slight difference is primarily due 
to the geometry effects shown in Figure 3 which are zero at boresight. Faraday rotation 
depends on the total electron content along the line of sight and the orientation of the line 
of sight with respect to the local magnetic field. In the case of the three Aquarius beams, 
the middle beam points slightly aft of across-track and the inner and outer beam point 
slightly forward. This difference in azimuth accounts for the offset of the middle beam 
relative to the outer two which is evident, for example, at the beginning of the record. 

B. Effect of Cross-Polarization Coupling 

Figures 5-7 illustrated the impact of cross-polarization coupling (Equations 1 1). The 
calculations are done as above using the pattern for the H-polarized channel of the outer 
beam used for both polarizations, but in this case with the cross-polarization coupling 
term included (Figure 1 b) . 

Figure 5-6 show the angle retrieved using Equation 13. Figure 5 shows the case with no 
Faraday rotation to illustrate the influence of geometric effects on the retrieved angle. 
Comparing with Figure 3 indicates that the bias is larger in magnitude for the inner and 
outer beams and somewhat smaller for the middle beam when cross-polarization is 
included. Figure 6 shows the case with Faraday rotation. Faraday rotation again 
dominates the retrieved angle, and as before the retrieved value is biased relative to the 
value at boresight. The behavior is similar to that shown in Figure 4 but with different 
bias. 

Table I1 shows a comparison of the bias in the cases with cross-polarization coupling 
(CP) and without cross-polarization coupling (NCP). In the columns labeled, "No 
Faraday Rotation", theses are the values from Figures 3 and 5. The entries in the 
columns labeled, "Faraday Rotation", are the mean difference between the retrieved 
angle and the angle at boresight (difference between the dashed and solid curves in 
Figures 4 and 6). In the case of the inner and outer beams, the magnitude of geometry- 
induced bias has increased when cross-polarization coupling is included. But it is slightly 
smaller for the middle beam. Apparently, this is an indication of the dependence of the 
bias on the antenna pattern and orientation. Comparing the two columns under "No 
Faraday Rotation" with their counterparts under "Faraday Rotation", it is clear that the 
bias relative to the value at boresight is very close to the geometry-induced bias in both 
cases with and without cross-polarization coupling. The numbers shown in the table are 
averages over the orbit, but there was very little variation and the RMS value was about 
the same as the mean value. 



Table I1 
Bias with Cross-Pol Coupling Included 

*Mean difference between value at boresight and retrieved value 

Beam 

Inner 
Middle 
Outer 

Figure 7 illustrates the impact of cross-polarization coupling on the first Stokes 
parameter, I = Tv + Th. It is clear from Equation 1 l a  that when cross-polarization 
coupling is included, the first Stokes parameter is no longer independent of Faraday 
rotation. This is illustrated in Figure 7 which shows I for the outer beam obtained by 
doing the integration in Equation 4 and then adding Tv and Th. The integration is done 
as above with cross-polarization coupling is included but using the same pattern for both 
the h-pol and v-pol ports. The dependence on Faraday rotation is clearly evident. Notice 
the similarity of the shape of the curve with those in Figures 4 and 6 which show the 
retrieved Faraday rotation angle. The dependence is rather small, with a peak-peak 
change of about 0.1 K. However, if the goal is to measure sea surface salinity with an 
accuracy of 0.2 psu, which is the goal of the Aquarius mission (Le Vine et al, 2006), this 
is a significant variation since the sensitivity at L-band is about 0.5K per psu. 

C. General Case 

Examples are shown for the general case in Figures 8-9. In this case the calculations are 
done using Equations A4 with the actual antenna patterns for each polarization and each 
beam. Cross-polarization coupling is included and the patterns are not identical for each 
polarization port of the same beam as they were in all the cases above. 

No Faraday Rotation 

C. 1. First Stokes Parameter 

Faraday Rotation* 
NCP 

-0.346 
0.436 

-0.161 

An example of the first Stokes parameter, I = Tv + Th, in the general case is shown in 
Figure 8. Examples are shown for the outer beam in the case of low solar activity (LSA) 
and high solar activity (HSA). The case for low solar activity is the same ionosphere as 
used in the examples above November 14,2004), and in this case the dependence on 
Faraday rotation is about the same as in the special case discussed above in Section B. 
There is a slight difference in amplitude between the LSA case in Figure 8 and Figure 7 
but this is probably a coincidence of thespatterns used and the slight mismatch between 

NCP 

-0.358 
0.423 

-0.188 

CP 

-0.903 
0.340 

-0.399 

CP 

-0.910 
0.332 

-0.426 



the patterns at the two polarization ports which occurs in the general case. In the case of 
high solar activity the dependence on Faraday rotation is more pronounced. The peak- 
peak change around the orbit is about 0.1K in the case of LSA and about 0.2 K in the 
HSA case. This is still a small percentage change. The example suggests that the first 
Stokes parameter may be a good choice even when slight mismatches in the antenna 
pattern at each polarization are present. However, as noted above, if accuracy better than 
0.1K is required, then using first Stokes parameter to avoid Faraday rotation may not be 
sufficient. Figure 8 suggests that, in this case, an additional correction for the rotation 
angle may be needed. 

C.2. Retrieved Rotation Angle 

Figure 9 shows the angle retrieved using Equation 13 for each beam together with the 
Faraday rotation at boresight (dashed line). Figure 9a presents the results in the case of 
low solar activity using the same ionosphere as in the previous examples. Figure 9b is 
the same calculation but with an ionosphere corresponding to high solar activity. The 
general features are the same in the two cases, but the scale in Figure 9b is different and 
corresponds to a much larger Faraday rotation. 

Although the biases between the angle at boresight and the retrieved angle are different in 
the general case compared to either of the special cases above, they are still relatively 
constant over the orbit. Also, they are about the same in Figures 9a and 9b (high and low 
solar activity). This is illustrated in Table I11 which shows the mean value of the 
difference between the retrieved angle and the value at the beam boresight in the case of 
high solar activity (HSA) and low solar activity (LSA). The column titled "Mean Bias" 
is the average value of the difference between the solid and dashed curves in Figure 9 and 
the column labeled "RMS Bias" is the RMS value of this difference. The "RMS Bias" is 

Table I11 
Bias in the General Case 

* Mean difference between dashed and solid curve in Figure 8 

also equivalent to the difference between the dashed curves Figure 9 and the solid line 
shifted by the mean value of the bias. This is an indication of how well one could correct 



for the bias if one had a reference point some where along the orbit to measure the offset. 
For example, if the satellite passed over a sounder where an accurate, independent 
calculation of Faraday rotation could be made and used to remove the bias. For example, 
assuming such a procedure was used to correct the middle beam, Table I11 suggests and 
that error over the orbit would be on the order of 0.14 degrees in the case of high solar 
activity. 

V. Discussion 

In the analysis presented above it was shown that when antenna pattern characteristics 
such as cross-polarization coupling are included, the first Stokes parameter, I = Tv + Th, 
is no longer completely independent of Faraday rotation and also that angle obtained 
from the second and third Stokes parameters, using Equation 13, is biased relative to the 
Faraday rotation at boresight. 

Assuming a well designed antenna with small cross-polarization coupling, the 
dependence of I on Faraday rotation is of second order (less than 0.1 % in Figure 7). 
However, even at this level (0.12 K pk-pk) it can be important for the measurement of sea 
surface salinity where the sensitivity to changes in salinity is on the order of 0.5Kfpsu. 
An uncertainty of O.1K is roughly 0.2 psu which is the measurement goal of the Aquarius 
mission (Le Vine, et al, 2006; Sen et al, 2006). 

Another approach to managing the effect of Faraday rotation is to try to measure the 
rotation angle. This can be done by measuring the 3rd Stokes parameter and using 
Equation 13 to retrieve the rotation angle. Two complicating factors are the presence of 
correlated fields at the surface (Yueh, 20001) add departures of the antenna pattern from 
ideal. It was shown above that when taking into account realistic antenna patterns, a bias 
in the retrieved angle occurs. This is due in part to changes in geometry over the 
footprint of the main beam of the antenna (e.g. Figure 3). Cross-polarization coupling 
also contributes a bias (e.g. Figure 5). The biases depend on the antenna and its 
orientation but the examples in Figure 8 indicate that the biases are relatively stable over 
an orbit. Because of this, it may be possible to correct for the bias by comparing with an 
independent measurement of Faraday rotation. For example, if the sensor passes over a 
reference site (e.g. site of an ionospheric sounder) where the true Faraday rotation is 
known, it might be possible to use this value to correct for the bias. The column labeled 
RMS Bias in Table I11 is an indication of how well this might work. It suggests that 
correction to better than 0.17 degrees might be possible. 

Measuring the angle of Faraday rotation is equivalent to measuring the electron content 
of the ionosphere. For example, see Equation B3 in Appendix B. This could be of 
particular value over the ocean where soundings to monitor the ionosphere are widely 
separated. Using the values in Table I11 as a measure of accuracy and the dynamic range 
in Figures 9 as an indication of the magnitude of the change, suggests that VTEC could 
be measured with an accuracy of about 2-3%. For a satellite in low earth orbit and high 
solar activity this is on the order of 1 TECU (Fig 1 in Le Vine and Abraham, 2002). 
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Appendix A 

General Case 

The objective of this appendix is to provide explicit expressions for the integrand in 
Equation 4 of the text: 

where TB is the brightness temperature at the surface expressed in form of the modified 
Stokes vector: 

where T3 - 2 a Re<Eh*Ev> and T4 - 2 a Im <Eh*Ev> and the coefficient of 
proportionality is a = lI(qkI3) is defined in the text. 

The matrix multiplications are done here in two steps. The first step is to evaluate the 
matrix product, T1 = R(Q) TB(R). The 4 rows of Tl are: 

Tvl = cos2cpc Tv + sin2cpc Th + 0.5 sin2cpc T3 

Thl = cos2cpc Tv + sin2cpc Th - 0.5 simpc T3 

The second step is to evaluate the matrix product, T2 = G(R) Tl(i-2) = G(R) [ R(Q) 
TB(R) 1. The 4 rows of T2 are the elements of the integrand in Equation A4 above. One 
obtains: 



In computing the general cases illustrated in Figures 8-9, the expressions given in 
Equations A4a-d were used in the special T3 = T4 = 0. That is, it is assumed that the 3rd 
and 4th Stokes parameters at the surface are zero. 



Appendix B 

Rotation Angles 

I. Faraday Rotation 

The rotation of the polarization vector of a linearly polarized plane wave propagating 
along the path S from [O,L] is (Le Vine and Abraham, 2002; Thompson, Moran, 
Swenson, 1986): 

L 

where v is frequency, v, and v~ are the plasma and gyro frequencies, respectively, and eB 
is the angle between the propagation vector and magnetic field: 

In the expression above, ((3,~) are the polar coordinates of the line of sight from the 
spacecraft to the observation point on the surface, and (1,D) are the local magnetic "dip" 
angle and declination, respectively. 

At L-band (1.4 GHz) Equation B 1 can be simplified and, to a reasonable approximation, 
one obtains (Le Vine and Abraham, 2002): 

- 
QF - 6950 B400 Cos(eB) sec (OF) VTEC (B3) 

where OF is the angle between the propagation vector and nadir, B4O0 the value of the 
magnetic field at 400 km and VTEC is the vertical total electron content. 

In the calculations presented in this manuscript, the Faraday rotation angle, QF, has been 
obtained by applying Equation B3 using parameters above the midpoint of the 
propagation path between the surface and the spacecraft. B4O0 and eB are evaluated using 
the magnetic field at 400 km above this point and VTEC is the electron content in the 
vertical column above this point up to the altitude of the spacecraft. The TEC is 
computed using the IN-2000 to model the ionosphere (Bilitza, 200 1) and the magnetic 
field is obtained from the International Geomagnetic Reference Field (IGRF; Barton, 
1997). In the examples presented here the ionosphere for November 14,2004 was used 
for low solar activity and November 14,2001 was used for high solar activity. 

11. Geometrical Rotation 

The angle cp, = cp + QF needed in the rotation matrix (Equation 6) consists of the Faraday 
rotation, QF, described above and an angle, cp, due to the fact that the polarization vectors 
(h,v) at an arbitrary point on the surface are not aligned with the definitions at the 
antenna. 



For the antenna, the "Ludwig-3 definition (Equation 3) is used to define polarization 
(Ludwig, 1973). It is assumed that at the antenna boresight the "vertical" polarization 
port of the antenna is aligned with the conventional radiometric definition of vertical 
polarization at the surface. In the local antenna coordinate system (x,y,z), this direction is 
assigned to the x-axis and the z-axis is along boresight. With this definition, vertical 
polarization at boresight is aligned with as defined in Equation 3. Unfortunately, the 
Ludwig-3 definition uses the "radar" definition of polarization (i.e. looking away from 
the antenna) and in radiometry it is conventional to define v and h as if propagating away 
from the surface toward the antenna. The result is that at boresight the direction of 
horizontal polarization in the antenna reference frame, EZ, is now opposite to the direction 
of h at the surface (h ~2 = -1 at boresight). This sign difference becomes an 
annoyance that must be keep in mind when dealing with antenna patterns which are 
usually delivered in conventional coordinates! 

At points other than boresight, the antenna polarization is given by 81 and ~2 as defined 
in Equation 3. These vectors are orthogonal, and orthogonal to the line-of-sight between 
the antenna and surface, but they are rotated with respect to the corresponding values at 
the surface: 

In Equation B4 cp is the angle by the same name in Equation 3 and is the "azimuth" in a 
conventional spherical coordinate system centered on the local antenna coordinates 
(x,y,z). It is measured fiom the x-axis and is positive in the direction toward the positive 
y-axis in the antenna coordinate system. 



Figure 1. Example antenna patterns. Shown are (a) the co-polarized pattern and 
(b) the cross-polarized pattern for the horizontally polarized channel of the outer- 
most beam in the Aquarius radiometer. The peak level on the left (a) is about 25 
db less than on the right (b). 
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Figure 2. Top: Ground track (bold) and beam boresight for each of the three 
Aquarius radiometer beams during one orbit. Bottom: The brightness 
temperature at vertical polarization for the three beams during this orbit. The 
large jumps in level occur at the transitions from land to water. The different 
values over water reflect the different incidence angles of the three beams. 
The index on horizontal axis in the figure at the bottom indicates sample 
points in the calculations (one calculation every 6 seconds). 



Figure 3 : Retrieved angle in the ideal case (identical patterns with no cross- 
polarization) and no Faraday rotation. The angle is due to changes in geometry 
over the antenna footprint. 



0 100 200 300 400 500 600 700 800 900 1000 
Points Along Orbit (6 second steps) 

Figure 4. The retrieved angle during one orbit in the ideal case with Faraday 
rotation included. The dominant contribution is due to Faraday rotation. The 
dashed line is the value at boresight. The sign changes occurs at equatorial 
crossings (0 and 450) due to the change in the sign of the magnetic field "dip" 
angle. 



Figure 5. The effect of cross-polarization coupling on the retrieved angle. 
This is for the same case as in Figure 3, idealized pattern and no Faraday 
rotation, but with cross-polarization coupling included. 
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Figure 6. The effect of cross-polarization coupling on the retrieved Faraday 
rotation angle. The antenna patterns are the same as in the ideal case but with 
cross-polarization included. The dotted curve is the value retrieved at antenna 
boresight. 
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Figure 7. The effect of cross-polarization coupling on the first Stokes 
parameter, I = Tv + Th, in the special case defined by Equations 1 1. The 
example shown is for the outer beam. 
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Figure 8. The effect of Faraday rotation on the first Stokes parameter, I = 
Tv + Th, in the general case using the complete Aquarius antenna patterns. 
The top panel is for high solar activity (HSA) and the lower panel for an 
ionosphere representative of low solar activity (LSA). 
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Figure 9a. The retrieved angle in the general case using the actual Aquarius 
antenna patterns. The dotted line is the value at the antenna boresight where there 
is no geometrical bias. This example is for a case of low solar activity. 
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Figure 9b. The retrieved angle in the general case using the actual Aquarius 
antenna patterns. The dotted line is the value at the antenna boresight where there 
is no geometrical bias. This example is for a case of high solar activity. The 
results are similar to those shown in Figure 9a (low solar activity) but the dynamic 
range is about 2.5 times larger. 


