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3 Introduction

High-power laser diode arrays (LDAs) are used for a variety of space-based remote
sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs
have been flown on NASA missions including MOLA, GLAS and MLA and have
continued to be viewed as an important part of the laser-based instrument component
suite [1] (Figure 1). There are currently no military or NASA-grade, -specified, or —
qualified LDAs available for “off-the-shelf” use by NASA programs. There has also
been no prior attempt to define a standard screening and qualification test flow for LDAs
for space applications.

Figure 1. An old SDL Laser Diode Array that hasn’t
In the past, at least one vendor been manufactured since around 1998. Courtesy of
collaborated with a military customer  GSFC Code 562
to supply parts for military hardware
however, this vendor has since left
the market. At least three vendors,
as of the date of this writing,
compete in the commercial market.
The optical functionality and
physical form-factor
(volume/weight/mounting
arrangement) of these commercial
parts has been found to satisfy the
needs of NASA designers. Initial Figure 2. Laser Diode Array. Courtesy of LaRC.
reliability studies have also produced
good results from an optical
performance and stability standpoint.
Usage experience has shown, however,
that the current designs being offered
may be susceptible to catastrophic
failures due to their physical
construction (packaging) combined
with the electro-optical operational
modes and the environmental factors
of space application. Packaging
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design combined with operational mode was at the root of the failures which have greatly
reduced the functionality of the GLAS instrument.

The continued need for LDAs for laser-based science instruments and past catastrophic
failures of this part type demand examination of LDAs in a manner which enables NASA
to select, buy, validate and apply them in a manner which poses as little risk to the
success of the mission as possible. To do this the following questions must be addressed:

a. Are there parts on the market that are form-, fit- and function-suitable for the
application need?

b. Are the parts which are deemed to be form-, fit- and function-suitable, rugged
enough to withstand the environmental conditions of space (temperature, ionizing
radiation, vibration, vacuum, etc.) and still operate within specification?

c. Will the parts be able to last, staying within specification, until the end of the
mission? Do we have a method for simulating long use life in a relatively short
period of time (accelerated life test) to verify this?

d. Does this part type have an “Achilles heel”? Does part have a particular
weakness that, if avoided in the application, will avoid premature failure?

e. Are manufacturing lots homogeneous? Is it correct to assume that all parts in the
lot behave like the qualification test samples? How about lot-to-lot homogeneity?
Will qualification testing be required on every lot?

f. What types of manufacturing defects, which lead to early- or mid-life failure, are
the most likely? Do we have test methods which can be used to remove weak
members from a production lot without draining too much useful life out of the
approved parts?

As a regular practice, NASA supports ongoing evaluation of device technologies such as

LDAs through several avenues of research. As a result, a number of experiments and
examinations have been performed in support of their selection and use on prior missions.
This type of research and use experience has established a baseline for performance and
for our understanding of the supply chain, component design and construction,
operational capability, ruggedness, reliability, primary failure modes and applicable test
methods. From this experience we are able to provide this guideline for use by projects
who must verify that the LDAs they are considering for use in flight hardware meet a
minimum standard of performance, stability, ruggedness and longevity, and so can be
expected to work successfully for the duration of the space mission.

Design of a qualification and screening flow will depend greatly on the mission
requirements, the part itself, and the acceptablerisks to the project. Cost factors such as
the number of parts purchased for destructive tests (destruct samples), fixturing and
automated test equipment programming (as applicable) will also greatly influence the test
plan. This guideline assumes that the LDAs being evaluated are homogeneous within the
purchased lot. That is, each part in the lot has been made with the same materials, on the
same manufacturing line, and within the same production period. If this is not the case, it
may be very difficult to construct a valid qualification program and the authors of this
document (or other qualified personnel), the reliability specialist and the project
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engineers will need to determine how to proceed. It is extremely important then that
single lot date code and traceability to common material lots and manufacturing run
dates is stated in the contract or purchase order to avoid a lack of intra-lot
homogeneity. This applies to rework as well (The SDL LDAs that failed on GLAS had
all been reworked to replace one or more bars either to overcome failures or to improve
performance.). LDAs at the time of this writing are commercial parts; therefore, there is
no guarantee of lot-to-lot homogeneity. Qualification and screening testing is
therefore required on every lot. Departures from the recommended tests herein may be
deemed necessary on a case-by-case basis and may be due to project risk, cost, schedule
or technology factors. It is recommended that users consult the authors or other qualified
personnel when re-designing screening and qualification tests for LDAs in order that the
effectiveness of those new tests can be maintained while the additional goals are
achieved.

4 LDA Technology

Semiconductor lasers diodes emit coherent light by stimulated emission generated inside
the cavity formed by the cleaved end facets of a slab of semiconductor. The cavity is
typically less than a millimeter in any dimension for single emitters. The diode is pumped
by current injection in the p-n junction through metallic contacts. Laser diodes emitting
in the range of 0.8 um to 1.06 um have a wide variety of applications including pumping
erbium-doped fiber amplifiers, dual-clad fiber lasers, and solid-state lasers used in
telecom, aerospace, military, and medical equipment. Direct applications include CD
players, laser printers and other consumer and industrial products.

Laser diode bars have many single emitters arranged side-by-side and spaced
approximately 0.5 mm apart, on a single slab of semiconductor material measuring
approximately 0.5 mm x 10 mm in size. The individual emitters are connected in parallel
which keeps the required voltage low at ~2V but increases the required current to ~50
A/bar to 100 A/bar. Stacking these laser diode bars 2 to 20+ slabs high yields high power
laser diode arrays (LDA’s) capable of emitting several hundreds of Watts. Electrically,
the bars are wired in series increasing the voltage by 2 V/bar while maintaining the total
current at ~50 A to 100 A. These arrays are one of the enabling technologies for efficient,
high power solid-state lasers.

Traditionally these arrays are operated in QCW (Quasi Continuous Wave) mode with
pulse widths of ~50 pus to 200 ps and repetition rates of ~10 Hz to 200 Hz. In QCW
mode, the wavelength and the output power of the laser reaches steady-state but the
temperature does not. The advantage is a substantially higher output power than in CW
mode, where the output power would be limited by the internal heating and the heat
sinking properties of the device. The disadvantage is a much higher thermally induced
mechanical stress caused by the constant heating and cooling cycle of the QCW
operational mode. "

The constituent parts and materials of a typical LDA are the diode die (laser bar) and the
packaging materials. The packaging design and materials enable the array of laser bars to
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stay together in a stack, to be energized electrically (with a relatively high drive current),
to pass the heat generated out of the unit to the mounting surface (thermal path, heat
sinking), to be sufficiently rugged against mechanical insults, to provide a standard
mounting interface (screws or clamps) and to be as small as possible.

Figure 3 shows he typical materials and general construction of the most common high
power LDAs. The active region of the LDA, where heat is generated, is only about 1
micron wide, located about 3 microns from the P side of the bar. The bars are about 0.1
mm wide and typically spaced about 0.5 mm from each other. Waste energy in the form
of heat must be conductively transferred into the solder material and from there into the
heat sink material (typically BeO or CuW) as rapidly as possible. The solder material of
choice is a soft Indium alloy for its ductile property allowing the bar and the heat sink to
expand or contract at different rate with temperature.

BAEfS 1 Groves ™ ©Ratk & stack” - Stacked Sibadsenies”

Figure 3. Different types of conductively cooled LDA packages; from F. Amzajerdian [13]

The LDA manufacturers try to use materials which possess higher thermal conductivity
and a relatively comparable coefficient of thermal expansion (CTE) in order to minimize
the thermal resistance of the device and the induced mechanical stresses. Table 1 shows
the salient properties of the materials commonly used in LDA packages. Additionally
important to reducing mechanical stress is consideration of the use of soft solders which
are highly pliable with a relatively low melting point (~ 160°C). Post life test analysis
indicates that solder deformation caused solder roll-over, in turn creating voids, which
increase thermal resistance. When coupled with built-in stress due to fabrication, such
roll over, in time often obstructs emitters, leading to increased heating, or extends across
the bar from anode to cathode causing bar shorts which eventually result in
contaminations to the emitter face and localized hot spots, further degrading
performance.

Table 1. THERMAL PROPERTIES OF THE MATERIALS COMMONLY USED IN LDAs [14].

. Coefficient of
Thermal Thermal
Material , . Conductivity
Expansion | Wim-K)
(m/m°C) (
= GaAs (wafer ]
E ~ [material) 6.8x 10 46-55
n Indium Solder 29x10° 86

NASA Goddard Space Flight Center Page 9 of 44 NEPP 2006




BeO 8x10° 260
Copper/CuW 6-8x10° 200-250 .

Excessive heating and thermal cycling of the LDA active regions plays a key role in
limiting the reliability and lifetime of LDAs operated in the QCW mode, particularly
where pulse widths are long. To improve the assembly’s heat extraction performance,
advanced materials are being considered for packaging LDAs, which have high thermal
conductivity and a CTE (Coefficient of Thermal Expansion) that matches that of the laser
bars. Prior packaging designs used by NASA have used more well-known materials and
configurations to achieve these goals (Figure 2). These include:
a. gold wire bonds
b. varieties of eutectic solders within a single unit (to enable sequential
construction steps without reflowing prior solder bonds or joints)
c. high thermal conductivity materials used for substrates and end clamps such
as ceramic (Alumina, BeO), copper-tungsten (CuW) and copper.
d. thick film gold patterning
e. gold plating over electrodeless nickel plating
f. threaded mounting holes
Future materials may include CVD diamond, matrix metal composites, and carbon-
carbon composite graphite foam [14].

LDAs are typically a component within a laser subsystem. It is not encapsulated but
rather protected at the box level with the other laser components. The laser system box is
normally hermetically sealed and evacuated, or the box can be backfilled with nitrogen or
some other inert gas. A thermoelectric cooler (TEC) may or may not be required
depending on the thermal design of the LDA and the box. The choice of LDA may drive
the use of a TEC, which in turn reduced the overall reliability of the laser system by
introducing additional components.

S Physics of LDA Failure Modes and LDA
Reliability

Experiments, qualification testing and usage of LDAs to date by NASA have revealed
some strengths and weaknesses for space flight applications. Failure and aging modes
and mechanisms associated with LDA(s are both related to their constituent parts and
materials and how the finished item is applied. Some of these behaviors and defects are
generic to microcircuit, transistor-and diode parts and some are more unique to LDAs
because of the specific way LDAs are assembled and operated. Inadvertent overstress is
not normally considered in an analysis of time-to-failure, though it is important to note
that a reliability analysis may result in redefining safe operating conditions to ensure the
desired lifetime of the part.
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The primary Catastrophic Optical Damage (COD) is certainly the most obvious (or
observable) failure mechanism of high power laser diodes to the semiconductor facet, but
not the primary cause. A thermal runaway caused by absorption of laser light at the laser
facet, and subsequent heating of the facet, causes COD. Temperature rises of several
hundred degrees can occur, which causes the facet to melt and a cessation of operation.
This and other degradation mechanisms affect both the output power and the emission
spectra of the device. Stress induced by the mounting process and the increased thermal
impedance can cause a significant change in the center wavelength and a broadening of
the spectral width, both on the order of Inm. In addition, the shape of the emission
spectrum changes significantly. The following are additional failure mechanisms that
have been discovered with use of this type of device:

¢ Bond wire failure
Solder creep/migration
Solder de-bonding
Laser bar material defects
Cracking of semiconductor from wedge bonds
Gradual aging manifested by decreasing light output and increased current
to maintain operation at a specified output Operation at excessive
temperature
o Electrical overstress due to an ESD event
e Transient current pulses during operation.
¢ Thermal induced (overheating)

5.1 Failures of the past

Prior to 2004 the LDAs obtained for the CALIPSO mission (part number SDL-32-00881
made by Spectra Devices Laboratory) were failing due to broken internal connections and
shorts (the LDAs were made by the same vendor who had supplied LDAs for MOLA,
GLAS and MLA). During failure analysis the parts were found to have several critical
defects with root causes in the packaging material selection and construction methods
combined with the thermal cycling behavior the LDAs create internally when they are
used in the QCW mode. See Code 562 failure analysis report Q30275EV, the Laser
Reliability Website: http://nepp.nasa.gov/index_nasa.cfm/1133/, and the Wirebond
website: http://nepp.nasa.gov/wirebond/laser diode arrays.htm for explanations and
background for this failure [5]. In-flight failure of the GLAS instrument is strongly
believed to be rooted in the failure of the LDAs due to the mechanisms discovered in the

CALIPSO parts.

Specifically the failures were both caused by extensive flow and creep of indium solder.
In one area it was due to insufficient heat sinking and in the other due to mechanical
stress due to over-torqued mounting hardware. In the first case the indium came in
direct and extensive contact with the gold wire bonds leading to a severe degradation of
those wire bonds due to intermetallic formation between the indium and gold consuming
the majority of the wire bond, increasing the current density in the connection and
reducing the wire bond’s strength. The brittle intermetallics eventually fractured due to
fatigue after a number of thermal excursions. After fracture of a given wire, the
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remaining wires conducted more current, thereby accelerating the thermal excursions.
When enough wires fractured, the remaining ones melted; the last ones vaporized.
During gold wire vaporization, a multi-amp current resulted which caused the diode bar
to fail. Since the laser diode bars in the array are connected in series, the destruction of
one laser diode bar resulted in an inoperable LDA. In the second case the indium solder
was extruded out of place and into a mounting hole causing an electrical short when the
mounting screw was over-torqued.

(The Goddard Materials Branch has demonstrated that gold-indium intermetallic
formation occurs significantly at both room temperature and in elevated temperatures.
The volume of the gold-indium intermetallic section has been observed to occupy
approximately four times the original volume of the consumed gold. Figure 4)

Neither of these failure modes is rooted in die-level defects which are often the focus of
mean-time-to-failure calculations of part reliability. The intermetallic formation-related
failure was not revealed during extended bench measurements and can be difficult to
stimulate on a convenient time scale during qualification testing. The over-torquing issue
is related to handling and is typically identified during an evaluation period where
construction is examined and use limitations are identified (see Section 3 above, item d.
in list of questions to be address during flight part selection and qualification).

Figure 4. Gold-Indium intermetallic
compound on gold bond wire.

5.2 Damage rates

Table 2 from [12] lists the QCW pulse parameters for 4 space flight projects, with the
corresponding stress and damage rates. The mission determines the pulse parameters. The
‘stress level is defined as the square of the peak current multiplied by the pulse width. The
damage per pulse is calculated as the stress to the power of 8 and finally the damage rate
as the damage per pulse multiplied by the pulse repetition rate.

Table 2. pulse parameters and damage rates for different lasers; from M. ott [12].
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Project | Pulse | Rep. Peak Stress | Damage/Pulse | Damage
Width | Rate | Current | (=I**PW) | (D/P=Stress®) | Rate (=D/P
(PW) | (RR) €]
[us] | [Hz] [A]
MOLA | - 150 10 60 5.4*%10° 7.23*%10%
GLAS 200 40 100 2.0*10° 2.56*%10°°
CALIPSO | 150 20 60 5.4*10° 7.23%10% 1.45*%10
MLA 160 8 100 1.6%10° 430*10% 3.44*10”°

5.3 Failure modes

Though there are many failure mechanisms due to the semiconductor die and/or the
packaging, the performance parameter that indicates degradation or failure (failure mode)
is closely linked to whether the problem involves a single emitter, a whole bar or the
entire array. For example, if the electrical connections fail open, then the entire
circuit/pump functionality is lost whereas if the connections fail by shorting only a single
bar is lost limiting the impact to reduced power output.

5.4 Recommended Derating

Decreasing temperature and electrical stresses during operation, or derating the part,
significantly reduces aging effects in the semiconductor. Derating can be defined as a
method of stress reduction by reducing applied voltages, currents, operating frequency,
and power to increase the longevity of the part. General LDA derating requirements are
listed in Table 3.

Table 3. Derating guidelines

Stress parameter | Unit QCW Comment
Current A 75%

Temperature C -10

Power ‘ W 75%

Duty Cycle % TBD

In addition to derating, redundancy is encouraged where mass, volume, power and cost
* budgets allow. The use of redundant units on GLAS enabled the project to recover from
the failure of the primary units.

6 Background of Standard Screening and
Qualification Methods

The traditional assumption about electronic part life time is that it can be generalized by a
_ “bathtub” curve (Figure 5) where random manufacturing defects lead to small numbers of
failures very early in the life of a part, no failures occur during a long middle operational
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life period, and then all the parts begin to fail within a relatively short amount of time at
the end of life due to wear-out. Derating, where aging is slowed by reducing voltage,
current or thermal stress, is used to extend the length of the useful life portion of the
curve. For parts that behave in this way, non-destructive tests, which do not significantly
age the part, have been used to eliminate the Infant Mortalities (early life failures) from
the lot and stabilize parameters prior to installation. These tests are called screening tests.
Individual screening tests such as burn-in, visual examination, and surge testing, have
been developed over the years and applied to particular part types to address physical
defects unique to a part type or manufacturing method that will cause infant mortality. A
combination of several screening tests in a particular order, selected and applied for a
particular part type, is called a screening flow. Generic screening flows defined by part
type and mission risk level are provided in EEE-INST-002, Instructions for EEE Part
Selection, Screening, Qualification and Derating. Some screening failures are acceptable
and in some cases expected (though we don’t usually see them because the vendor has
delivered pre-screened parts); however, too many screening failures may indicate that the
lot has a production-run related problem. Limits are normally set in advance regarding
rejecting lots with large numbers of screening failures.

Figure 5. Lifespan and Product Assurance System, from A.
Teverovsky

At)

0 b ] time:

Characterization and evaluation testing establishes the following:

e The part functions as needed over a sufficiently wide temperature range,

e The die is suitably radiation tolerant (or hardened as needed),

e The packaging is rugged in thermal cycling, vibration, shock and constant
acceleration conditions,

e The construction and materials are known and do not present known reliability
concerns such as outgassing of volatile materials in a vacuum, and materials or
interfaces with known slow-growing defects that can’t be screened, built-in stress
centers, etc.

The evaluation portion discovers the failure modes and points in time that define the
infant mortal portion and wear-out portion of the bathtub curve (Figure 4). The vendor’s
manufacturing quality control and corporate stability should also be considered before
including the part into the design. Electrical and optical specifications (min’s, max’s,
nominals, deltas) will be defined during characterization/evaluation especially if they
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differ from the manufacturer’s datasheet—-GEVS-STD-7000, General Environmental
Verification Standard for GSFC Flight Programs and Projects describes environmental

conditions to consider when running evaluation tests (also see: “Environmental Conditions for
Space Hardware: A Survey” at http://nepp.nasa.gov/index nasa.cfin/486/C5E0869C-0469-4D11-

9FAAB012C8F52351/ for an overview). If the project cannot afford the time and cost of
extensive characterization and evaluation testing, it might decide to accept the risk of
flight lot failure by waiting to do some of these examinations during qualification testing.
This is regrettably the norm at the time of this writing, because all of the currently
available products are considered commercial grade and lack lot-to-lot homogeneity.

Qualification testing accomplishes both a validation of the ruggedness testing done
during characterization/evaluation and validates that the life expectancy is sufficient.
Accept/reject criteria are defined using the electrical and optical specifications
established during characterization. The ruggedness portion will include exposure to
extreme temperatures, humidity, thermal cycling and/or thermal shock, vibration and
other mechanical, thermal or electrical stresses, establishing that the part lot in hand can
persevere in the application. The mission requirements, expected handling and other pre-
launch conditions define the limits of the stresses. Reliability testing uses a set of
conditions intended to simulate aging as the part would in the application (including how
it would age for the electrical or optical mode in which it is used). Stress conditions are
heightened in an effort to accelerate the aging process, thereby reducing test time. This is
called life testing. For mature, well understood part types, such as bipolar and CMOS
semiconductor devices, film resistors, ceramic and tantalum capacitors, the Arrhenius
equation can be used to calculate the test time combined with temperature and voltage or
current needed to simulate long test times. For parts which do not have a reliability
model based on the Arrhenius equation, we tend to use this same approach until a non-
correlating behavior has been established which leads to a different model.

Qualification testing is normally performed on screened units so as not to bias the
statistics of the results with failures that would have normally been removed from the lot
prior to part installation. Sample sizes used for the reliability testing are traditionally
defined by MIL-STD-690, Failure Rate Sampling Plans and Procedures, and are based on
confidence level. For part types that can be very expensive at the piece part level, such as
LDAs, statistical analysis resulting in a projected failure rate (or mean time to failure)
may not be feasible. For these part types, life test sample sizes are determined in
accordance with the needs and limitations of the project. Samples are allocated among
the one or multiple branches of the overall test flow. The arrangement of the tests in the
test flow branches are designed to both maximize the reuse of the samples and to
simulate the sequence of stresses that the part will actually experience, without creating
an unrealistic overly stressful scenario.

DPA is used during lot acceptance/approval to verify that the part is constructed as
expected and does not have defects that can be assumed to affect the remainder of the lot.
The sample size is typically one or two pieces. Wire bond pull is often done as part of
DPA to check that the bond strength meets minimum standards and that the all the bonds
are “in family” indicating a consistent bonding process. Excessive amounts of
intermetallic material around the bond on the bond pad (coming from underneath the
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bond) can indicate that contamination was not removed prior to bonding or that
contamination has diffused into the bond. Contamination in wire bonds can lead to bond
lifts (cracks extending across the entire bond joint) with time and temperature. Standard
Internal Visual test methods are used to identify non-compliant physical attributes such as
cracked die, loose particles, chemical stains, excessive die attach material, damaged
spacing of electrical conductors, etc. prior to delivery of the units. DPA is done after the
units have been purchased. Projects may choose to use DPA to analyze samples used in
qualification testing in addition to the DPA performed on a screened unit.

7 Availability of Standard Space-Grade Laser
Diode Arrays

The Parts, Packaging and Assemblies Technology Branch (Code 562) describes standard screening
and qualification test flows for electrical, electronic and photonic parts in the document EEE-INST-
002 in a format which connects project reliability target level to the quality/reliability level of the
part selected, and the screening and qualification testing that must be applied. Level 1 part selection
and test requirements are the most comprehensive, Level 2’s are less rigorous and Level 3’s are least
rigorous (Table 4). - ‘

The standard test flows and the test methods used to form the flows, described for space
parts in EEE-INST-002, are modeled after those which have been used by the high
reliability electronics community for decades and which are ubiquitous in the military
specification system. Parts regularly produced and tested using these flows, whether by
virtue of their being military specification parts or via a vendor’s standard practice, are
considered standard and “off-the-shelf” space-grade parts and do not receive additional
testing by NASA prior to installation. Parts that are not processed and tested in
accordance with EEE-INST-002, for the project reliability level required, prior to
delivery to NASA, must pass those additional tests before they are admitted to flight
inventories. It is preferred to require that the vendor demonstrate passing data for all of
the testing prior to delivery rather than having the testing done on purchased parts by the
user. In this way NASA avoids buying failed lots and has the option to seek another
vendor rather than continue the purchase via a lot rebuild.

Table 4. Piece-part Test Flow Differences for Different Project Reliability Levels

Project Reliability Risk Examples of Test Flow Features
requirement | level level
1 High/proven | Low Extended hours of burn-in, lowest life

test failure rates, internal element
control, DPA, X-Ray

2 Medium Low-moderate | Shorter burn-in, higher number of life

test failures allowed, no serialization

of samples, less mechanical testing

3 Low/unknown | High/unknown | Less screening and no qualification
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The lack of long-term use, in relatively high volumes, of LDA’s by the military and
NASA has retarded the emergence of military and NASA specifications. At this time
there do not exist any standard space-grade LDA’s. Further, there has not been an
opportunity to develop a three-tiered screening and qualification plan that aligns with the
three project reliability levels described in EEE-INST-002. This document describes
tests that can be used to develop a flow that can be used for all three reliability levels, 1
through 3.

8 Survey of Test Method Usage by Industry and
GSFC for Assessing LDAs

The tests and standard test methods shown in Table 5 have been applied in the past in the
commercial sector and by NASA experimenters. This survey showed that there is a
baseline of practice in the industry for performing screening, qualification and DPA tests
on LDAs and that there can be some expectation that prior data may be available for
review or that a vendor has a process for performing these tests on parts prior to shipping
(and thus designing parts which will pass the tests). Note: MIL-STD-883 is military
standard that contains standard test methods as well as test flows traditionally used for
packaged monolithic microcircuit parts. Claims by vendors that their parts are tested to
“883” or other references to MIL-STD-883 indicate that a test methods detailed in MIL-
STD-883 have been used to verify part performance and/or that the test flow in the “5000
section” of MIL-STD-883 was used. This flow may or may not be comprehensive for a
given LDA or application of an LDA.

Table 5 elaborates on some of the test methods listed in Table 6 and indicates data that
might be available from prior testing by the vendor. Insights about how to make some of
the measurements are further detailed in the numbered paragraphs in section 9 below.
This type of data can be obtained by the user or may be included in the vendor’s
datasheet. It is always advantageous to buy parts which have been screened and
qualified by the manufacturer. Though this makes the parts more costly (to cover both
testing and device fall-out) and drives up lead times, the procurement quantity will not
unexpectedly be reduced when parts fail screening or the whole lot fails qualification
after it has been paid for. Also, vendors who perform space-flow screening and
qualification testing tend to use designs and production practices that result in
higher yields in general (less parts scrapped) and have a more detailed
understanding of the impact of design and manufacturing processes on their part’s
reliability. They are also more invested in resolving failures.
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9 Performance characterization

9.1 Measurement set-up

Figure 6 shows a typical multipurpose LDA performance characterization set up. In
order to enable temperature controlled measurements the LDA is mounted on a heat-sink
on top of a peltier TEC (Thermo Electric Cooler) or a fixture using water cooling (not
shown on figure). The cooler capacity must be capable of stabilizing the LDA by
remioving the heat dissipated even at the lowest operating temperature of the test.

The LDA is driven by a laser diode pulse generator. Typical output ratings for this
component are: up to 100V, 150A, pulse duration of 0.05 ms to 5 ms, and repetition rate
ranging from 25 Hz to 300 Hz? Usually the actual drive voltage and current are verified
with an external multimeter and the pulse shape, duration and repetition rate are verified
on an external oscilloscope.

Because of the wide emission area an integrating sphere measurement is used allowing
all the light emitted to be collected and distributed to several optical power and spectral
measurement instruments enabling the bulk of the characterization measurements to be
performed without changing or re-configuring the set-up. The imaging type
measurements are performed to enable examination of the individual emitters of the

array.

Figure 6. Schematic of the performance characterization set up, from A. Visiliyev [3]

This section describes the various measurements that should be performed using a
standardized characterization setup. Unless otherwise noted, the measured parameters
should be compared with the corresponding parameters provided by the LDA vendor in
the specification or data sheet. '

Except otherwise noted, all the parameters are to be measured at 3 temperatures: room
~25°C, minimum operating temperature typically -0°C to 20°C and maximum operating
temperature typically 35°C to 50°C. Project requirements may dictate alternate
temperature ranges; however, care should be taken when exceeding datasheet
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specifications and limits to avoid part overstress. Long-term performance of parts
outside of their specification limits should be demonstrated during an evaluation
experiment to reduce the risk of failing qualification.

9.2 Optical spectrum

The aggregated optical spectrum for the whole array is measured using an OSA (Optical
Spectrum Analyzer) with a resolution bandwidth of 0.1 nm or less and covering the
wavelength of 808nm +/-4nm. This wavelength range covers the typical peak
wavelength used for pumping Nd:YAG (Neodymium Yttrium Aluminum Garnet) based
SSLs (Solid State Lasers). The complete trace of power vs. wavelength should be saved
(downloaded or saved as a picture) for reference or further data processing. Figure 7
shows the optical spectra for an LDA for 3 different drive currents.

The following measurements constitute a characterization of the output optical spectrum:

center peak wavelength and power, spectral width (FWHM), center wavelength and peak
power of secondary modes, mode spacing and power difference between the strongest
side mode and the central mode (side mode suppression ratio or SMSR).

Figure 7. Optical spectra at different currents for LDA, from M. Stephen [2]

9.2.1 Peak wavelength (GR468-5.1 and FOTP-127)

Being a superposition of the output of numerous emitters, the optical spectrum is usually
a smooth curve with a well-defined maximum that can be easily measured using the peak
search function of the OSA. As stated above the typical value for devices used to pump
Nd:YAG lasers is 808 nm.

9.2.2 Spectral width (GR468-5.1 and FOTP-127)
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The FWHM value can be obtained for the smooth spectrum curve with a well-defined
-maximum either using markers or a built-in spectral width function. Typically a value of
2-4 nm is observed. When secondary peaks are observed a more thorough data analysis

is required to establish a reliable value for the spectral width.

9.2.3 Secondary modes

When secondary peaks are observed the image should be recorded. The center
wavelength of the side modes, the power at the side-mode peak, and the mode-spacing
(spectral separation of the side-mode peak from the center peak) should be recorded. The
SMSR (Side Mode Suppression Ratio) is calculated in dB and is the delta of the power of
the center peak and the strongest side-mode peak.

9.3 Time resolved optical spectrum

A time resolved measurement of the spectrum is obtained by, using the OSA as a narrow
optical BP (Band Pass) filter, scanning the OSA filter pass band across the wavelength
range covered by the LDA optical spectrum (spectral slicer). The filtered signal is input
into a high speed photodiode which is monitored by an oscilloscope that is being
triggered by the LDA drive pulses. For each wavelength, the intensity vs. time is
recorded for at Jeast , as shown in Figure 8 (top left graph) [2]. By joining
all these data sets of intensity vs. time, a plot of peak wavelength vs. time can be
generated as shown in Figure 8 (bottom right graph). It should be noted that this is not
the only way to do this test.

Figure 8. Calculated thermal rise Temporally resolved optical spectra for LDA, from M. Stephen [2]
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The peak wavelength change (in the positive direction) with time is directly related to the
heating generated by the drive current pulse from which the thermal stress can be
assessed. Using the peak wavelength shift recorded in section 9.3, calculate the thermal
rise of the LDA using the typical wavelength shift value of ~0.27nm/°C [3]. However it
has been found that this value is not constant, and varies between different diode
manufacturers (probably foundries).

9.4 Light output vs. injection current curve

Using the output optical power and drive current measurement capabilities of the set-up,
obtain the Light output vs. Injection current (L-I) curve, as illustrated in Figure 9 (blue).
Also shown in the figure is the conversion or slope-efficiency, The laser diode’s
efficiency is defined as the ratio of the optical outputs to the electrical input.

Figure 9. Typical L-I curve for LDA, from M. Stephen [2]
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The L-I curve has two important features: I, (threshold current), the minimum drive
current for the laser to fully switch on per GR468-5.3 and FOTP-128, and the slope
efficiency which gives the efficiency (W/A) at the linear part of the L-I curve which is
-~ within the normal operating conditions but well above Ii,.

9.4.1 Threshold current (GR468-5.3 and FOTP-128)

LDA threshold current is typically in the range of 10-20A. The number of bars affects the
voltage, not the threshold current. The threshold point is one of the most important laser
parameters. An increased threshold point is usually indicative of increased electrical
losses, leakage or aging and is hence used as an indicator of possible device damage
during qualification testing. The acceptable testing delta limit is usually +10%.
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9.4.2 Slope efficiency

A typical number for slope efficiency is ~1W/A or slightly higher. For high power arrays,
its closer to 7. The problem with this type of measurement is that a multi-array unit will
have the higher slope efficiency, since the current input is the same. It’s the voltage that
increases. This is also one of the most fundamental laser parameters. It indicates how
many Watts of optical power you will get per Ampere injected into the laser in its hnear
regime, before it starts to roll-over at high currents.

9.4.3 L-l curve saturation, maximum power out (GR468-5.5)

At high currents the L-I curve can start to “roll-over” or flatten demonstrating the
maximum output power. The slope efﬁciency will begin to decrease at this point.
Typically the maximum output power is specified as power/bar and is on the order of 5 O—
100W/bar.

9.4.4 Wall-plug efficiency

The wall plug efficiency directly tells how much of the electrical power dissipated by the
LDA is emitted as light. Since light emission only really starts above the threshold, the
wall-plug efficiency stays at zero below the threshold and then sharply rises to its final,
settled value which is typically ~50%, when the light output is at its maximum. Figure 9
illustrates a typical wall-plug efficiency curve shown by the pink triangle markers.

9.5 V-l curve (GR468-5.6)

Using the LDA voltage and drive current measurement capabilities, the V-I curve is
obtained. Usually only the positive V-I values are measured, but extended measurements
into the negative range can give important information about leakage currents in the
semiconductor.

9.5.1 Forward voltage at threshold (GR468-5.6)

The forward voltage at threshold is measured according to GR468-5.6 and typically
measures less than 2V/bar.

9.6 Far field (GR468-5.2)

The far field measurements are used to characterize divergence angles of the aggregate
beam parallel and perpendicular to the LDA bars. This is done by scanning a power
detector across the far field in the two directions and finding the FWHM values. Typical
values are ~10° and ~40° for the two directions. These are often referred to as the beam
divergence angles for " and L-axis.

9.7 Near field images ~ emitter power

Near field images of the entire array are obtained using a CCD camera with a ND filter
These measurements show spatially resolved individual emitter light intensity, which can
pinpoint troubled emitters at an early stage.

9.8 Near field images - polarization
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Near field images of the entire array obtained with a CCD camera with a polarization
analyzer, enable measurement of the polarization state of the individual emitters. This
measurement can reveal differences in stress levels among the emitters and can be used to
identify potential mechanical or thermal problems. Figure 10 from M. Stephen [2] shows
the optical intensity measured in two polarization axes with the IR intensity measurement
superimposed over them. A strong correlation is shown between a local hot spot and the
intensity of the 90 degree polarization state of the output at that spot.
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Figure 10. Thermal Impedance (GR468-5.17)

Overlay of polarization and IR measurements; from M. Stephen [2]

Thermal impedance is an important figure of merit for the packaging of the LDA,
defining how efficient the heat spreading and heat sinking of the LDA assembly is. It
can be measured in several different ways as described in GR-468. The large amounts of
power dissipated (~50W) in the LDAs require a thermal impedance value on the order of
~2°C/W to keep the LDA active area temperature at a safe level. Peak waste heat is on
the order of 100 W/bar. Thermal impedances are in the range of 3 to 4.

9.9 Thermal images

Thermal images obtained using a 3-5pum wavelength range infrared camera provides
spatially resolved temperature readings from the individual emitters with a resolution in
the mK range. Since the temperature changes during and after the pulses, the infrared
camera needs to be synchronized with the LDA drive pulses. These thermal images
provide important information about hot-spots indicating problem areas in the LDA.
Figure 11 shows the thermal image from an SDL G-16 LDA indicating the relative
temperature distribution across the entire array.
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Figure 11. Thermal image showing individual emitters relative temperature; from [4]

10 Screening

As discussed above, screening test flows are imposed on the entire device population
before any other measurements or qualification tests with the intent of stabilizing material
properties, detect defective lots, remove infant mortality failures from the lot and to
baseline the electro-optical parameters. Often a few special, destructive tests are lumped
into the screening flow (and performed on a one or two piece sample) because they can
quickly provide critical data which indicates the usefulness of continuing the screening
and qualification test program for the lot in hand. These include material analyses and
DPA.

10.1 Materials analysis

Years of engineering of electronic and optical assemblies by NASA and industry have led
to a heightened understanding of packaging materials and construction methods that will
enable long-term reliable operation. As there are no approved, standard LDAs for use in
space hardware, each effort to procure this part type for a flight project must include an
examination of the construction and materials used to build the part (materials interfaces,
built-in stresses, sources of contamination, opportunities for electrical shorts, etc.) to
ensure that the construction process has not built in failure-causing defects either
inadvertently or by design. Occasionally users can influence changes to the construction
or materials however it is important to remember that these sorts of changes are likely to
null the re-use of some qualification data that may have already been accumulated.
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The intent of Materials Analysis is to make sure that each material used does not cause
contamination to the surrounding hardware in a thermal-vacuum environment, that it is
otherwise not disallowed for safety and/or health concerns, that it is not known to react
with other nearby materials either within the component itself or within the larger system,
and that the dimensions and arrangement of the materials does not lead to short-term
fatigue, stress or other type of performance failure. If detailed materials and construction
information cannot be obtained from vendor, a DPA can be performed in which all
materials and dimensions can be identified as well as their location within the package.
Several industry and NASA standards are applicable for discovering suspect materials
and configurations during a DPA including EIA-469 and MIL-STD-580. Materials
analysis should be the first step performed when checking for potential problems with
flying commercial components.

10.2 Vacuum outgassing (ASTM 595E)

In all cases, where the materials are identified by the vendor or if identified by another
method, the non-metallic materials should always be characterized for their outgassing
properties in a vacuum environment. Even if hardware and surfaces in the immediate
vicinity of the LDA would not be affected by outgassed materials, other systems beyond
the immediate vicinity may be affected by the contamination. The information about
which systems are susceptible to contamination by outgassed materials is supplied by the
lead contamination expert on the project. Laser systems are generally more susceptible
than other subsystems.

The ASTM-ES595 procedure is considered the NASA standard and provides several data
including total mass loss (TML), collected volatile condensable material (CVCM), and
water vapor regained (WVR). The test is conducted using pre-bake conditions which are
meaningful either for the material (for curmg for example) or for the project and then
with a 24 hour soak at 125°C at less than 10 Torr. Standard acceptance criteria used
NASA-wide are: TML less than 1.0% and CVCM less than 0.1%. This materials test
does not provide definitive information about the composition of the deposited material if
an item composed of multiple materials is tested, but as an initial screen it can provide
the contamination engineer enough information to assess whether or not to prohibit
certain materials, require preprocessing of the materials, or to require additional measures
to guard against the potential threat of contamination. Knowing that contamination is
such a large failure mode of high power laser systems, this issue is extremely important
to space flight laser development engineers.

Material outgassing testing is not always performed on go/no go basis. High TML and
low CVCM results may be managed using preconditioning (following a re-test to show
that the preconditioning treatment is effective). Using preconditioning bakes either prior
to LDA installation or afterwards can be logistically difficult because a relatively large
chamber may be required and then will need to be decontaminated following the
procedure.
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10.3 External Visual inspection (MIL883-2009)

External visual inspection is used to verify that all devices are free of defects or damage
that can be observed visually with 1.5X to 10X magnification. The test is performed per
MIL883-2009.9. Asthe LDA consists of repeating identical units it is recommendable to
establish a nomenclature for addressing the individual units, individual emitters,
individual bond wires etc. An overview picture of the complete assembly at low
magnification is also recommended for all devices tested. Figure 12 shows an example
of an overview picture of SDL G-16 which was being subjected to DPA.[4]

Figure 12. Example of overview picture for external visual inspection; G-16 SDL LDA from [4]

e sy o

10.4 Burn-in (MIL883-1015.9)

As mentioned above the purpose of burn-in is to eliminate devices from the lot that
would otherwise fail due to infant mortality. This is usually done by increasing operating
temperature, current and/or power of the devices enough to accelerate the initial usage
exposure and detect devices with abnormal changes in threshold current or other
characteristics during the burn-in. 96 hours at 70°C or the specified highest safe operating
temperature at fixed maximum output power has been used in the past based on
. The pass/fail criterion is based on threshold current or drive current; less than
5% increase is the goal. Burn-in is usually done by the LDA vendor and can be a step-
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wise procedure starting with burn-in of the individual bars and then final burn-in of the
complete LDA assembly before delivery.

10.5 Temperature cycling (GR468-5.20 and MIL883-1010.8)

As thermal cycling is an important stress test of the overall mechanical stability of the
LDA, a limited number of thermal cycles can also be used as a screening test. The
devices are un-powered and the only monitor during the test is the temperature sensor on
the device to ensure the correct profile with ramp rates of minimum 10°C/minute and
dwell times of 10 minutes minimum with the number of cycles between 5 and 10 times.

11 Qualification Testing

A qualification investigation is conducted to both verify that the part will withstand the
space flight environment and to assess long-term reliability by speeding up potential
degradation mechanisms that could cause wear-out failures of the devices. Qualification
testing is destructive so careful planning of sample allocation is important to manage
cost.

11.1 Constant acceleration (MIL883-2001.2)

The purpose of this test is to reveal mechanical and structural weaknesses which may
lead to failure during launch. Testing is performed on a spin table or similar equipment
capable of the specified test acceleration. With the device properly mounted and any
leads or cables appropriately secured a constant acceleration of 30,000g (condition E in
MIL883-2001.2) is applied for 1 minute along each of the three major axes in both
directions (sequence: X;,X2,Y1,Y2, Z; and Z5). A failure is constituted by any change or
movement of any parts or if any basic parameters are changed.

11.2 Accelerated aging (GR468-5.18, FOTP-130 and MIL883-
1005.8)

Accelerated aging or life testing is intended to demonstrate a sufficient life expectancy
for the device. For CW or directly modulated laser diodes, lifetime is measured in the
number of operational hours accumulated. For the high power LDAs running in a QCW
mode lifetime is expressed in the number of heating and cooling cycles experienced by
the device due to the drive pulses, also called “shots”. The target is typically in the
billions. Figure 13 from [7] shows an advanced life-test station with room for 12 devices
and computer controlled and switched instrumentation enabling time-multiplexed
measurements of electrical and optical properties for all 12 devices.
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- Figure 13. LDA life-test station for 12 devices, from B, Meadows [7].

11.3 Temperature cycling (GR468-5.20 and MIL883-1010.8)

Temperature extremes experienced by flight hardware are a combination of the mission
profile, the spacecraft thermal management system design and the device’s position
within the spacecraft. Environmental thermal cycling exacerbates the stresses the part is
already experiencing due to the self-heating and cooling associated with the quasi CW
operational mode. Thermal cycling, with low numbers of cycles, is used as a screening
test to remove low quality parts from the lot. Thermal cycling as a qualification test, with
a high number of cycles, is used to demonstrate the stability of internal defects and
dissimilar material interfaces with long term thermo-mechanical stress. Thermal cycling
is conducted with the devices un-powered and the only monitor is the temperature sensor
on the device to ensure the correct profile with ramp rates of minimum 10°C/minute and
dwell times of 10 minutes minimum. Basic characterization is done before and after the
test and the pass criteria is that no changes have occurred. The procedure allows for use
of two different temperature chambers maintaining each of the extremes, and then
moving the devices between the two chambers to perform the cycling, however
temperature transition time must be carefully controlled so as to avoid a thermal shock
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condition. More commonly a single chamber is used with the desired temperature vs.
time profile applied to the controller. The temperature extremes used in the test can either
be determined as the operational extremes for the complete system or as the default the
GR468 values of —40C to +85C. It is important to understand that this slow but extended
range cycling is very much different from the fast and narrow range cycling resulting
from the normal QCW operation of the LDA and hence might bring out different failure
modes which are packaging related rather than rooted in the semiconductor die.

11.4 Thermal vacuum

Thermal vacuum testing is performed at the instrument and at the spacecraft level.
Thermal vacuum testing at the component level is done to reduce cost and schedule
impacts associated with component failures late in the mission lifecycle. The profiles
shown in the GEVS document can be used as baseline for designing a thermal vacuum
test.

11.5 Thermal shock (MIL883-1011)

Thermal shock testing is a very rigorous test and should only be used when prior
evaluations have shown it to be effective for discovering lots with failure modes that
could occur during the mission. Where this correlation has not been done the test may be
overly extreme and result in irresolvable failures. It requires the device to be submerged
in a cold liquid bath (0°C +2°C /-10°C) and then quickly be moved to a hot liquid bath
(100°C +10°C /-2°C).

11.6 Radiation (MIL883-1019)

All types of spacecraft will be exposed to ionizing particle radiation consisting of sub-
atomic particles such as protons, heavy ions, alpha particles and electrons. Radiation
testing attempts to simulate the effect these different particles, and their different energy
levels, have on the device as well as the combined effect caused by all of these particles
as energy is continuously deposited into the device over the duration of the mission (total
ionizing dose). Qualification tests and application precautions should be based on the
specific mission requirements including the thermal environment, the dose rate and the
total projected dose.

These mission requirements are generated based on the type of orbit, the mission
schedule with respect to the solar seasons, spacecraft shielding and mission duration.
Focusing on earth orbiting spacecraft, the LEO (Lower Earth Orbit) missions can see
background radiation between 5 to 10 Krads accumulating most of that dose during
passes through the SAA (South Atlantic Anomaly). The MEO (Middle Earth Orbit) path
passes through the Van Allen Belts resulting in total dose accumulation between 10 to
100 Krads. The GEO orbit (Geosynchronous Earth Orbit) environment is dominated by
dose from cosmic rays to a level of around 50 Krads due to a travel path above the Van
Allen Belts. These radiation total dose amounts are based on typical spacecraft shielding
and a 7 year mission duration. In cases where the hardware is not shielded by the
spacecraft the dose levels can be several orders of magnitude higher, in the Mrads. Table
7. Summary of Missions and Dose Rates summarizes the total dose, mission duration and
calculated average dose rate for three recent GSFC missions: GLAS (Geoscience Laser
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Altimeter System) [8] [9], MLA (Mercury Laser Altimeter) [10] and EO-1 (Earth Orbiter
1).

Figure 14. . Earth Orbiting Satellite Definitions from http://www.inetdaemon.com

Table 7. Summary of Missions and Dose Rates

Program Total Dose Mission Length Dose Rate
[Krads] [Years] [rads/min]
GLAS 100 5 0.040
MLA 30 8 0.011
EO-1 15 10 0.040

The type of testing performed to assure long-term performance in the expected
environment also depends on the type of part. Test variables can include the energy of
the particles in the beam, dose rate, total deposited dose (Total Ionizing Dose), the
temperature during exposure, operation-based annealing, and post exposure annealing
time. The device’s susceptibility to temporary or permanent failure depends on the
physical design and manufacture of the device and how it is intended to perform.
Memories are tested for bit integrity, optical fiber is monitored to track peak wavelength
dispersion or shifting and power analog components are monitored for gate rupture, for
example. Laser diodes are most susceptible to crystal lattice-level displacement damage,
which is best stimulated by exposure to protons. Laser diodes must also be verified to
work after accumulating a level of total dose defined by the project requirements and by
the project radiation effects specialist. The project radiation specialist should be
consulted when planning and carrying out radiation testing or when reviewing outside
data to be sure all project requirements are being satisfied and that the test results can be

correctly interpreted.

11.7 Mechanical shock (MIL883-2002)

‘The purpose of this test is to prove that the device is capable of withstanding the stresses
associated with pre-launch and launch-related mechanical shock events. LDAs are large
enough to be susceptible to damage from these shocks. Testing is performed in
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accordance with MIL883-2002, Condition B: 5 times/axis and direction; sequence: Xi,
X2, Y1, Y2, Z1 and Zy; 1,500g, 0.5ms pulse. After the testing, a visual examination is
performed with magnification between 10X and 20X to look for resulting damage.

11.8 Random vibration (MIL883-2007)

The random vibration test is also performed to show ruggedness in the launch
environment. The qualification level should be traceable to the program requirements
which are traceable to the launch vehicle. As is the case with all piece-part level testing,
the test condition should be more stressful than is used for the instrument or spacecraft
qualification. This provides performance margin. The spectral frequency range for space
flight is usually between 20 and 2000 Hz. The random vibration test is typically
conducted for 3 minutes for each axis of orientation.

The profile shown in Table 8 is published in the General Environmental Verification
Specification for STS and ELV Payloads, Subsystems and Components for payloads of
50 pounds or less [11]. This is what would be expected at the box or instrument level for
protoflight. The term “protoflight” here indicates that qualification of a large amount of
test objects to produce real statistical analysis is not possible. The rule of thumb in cases
where the “qualification” is on very few samples or engineering models, is to use Profile
1 of Table 8 with the acceleration spectral density levels doubled at the ends of the range.
Profile 2 shows the profile that would be used for “protoflight” qualification of a small
commercial part or component.

Table 8. GEVS Protoflight Generalized Vibration Levels for Random Vibration Testing.'

Frequency Acceleration Spectral Acceleration Spectral
[Hz] Density Levels: Density Levels:
Profile 1 Profile 2
20 .026 g°/Hz 052 g*/Hz
20-50 +6 dB/octave +6 dB/octave
50-800 .16 g*/Hz 32 g*/Hz
800-2000 -6 dB/octave -6 dB/octave
2000 026 g°/Hz 052 g*/Hz
Overall 14.1 grms 20.0 grms

Functional performance testing to ensure the part still meets the specification given the
margin values assigned should be performed after the testing is completed. When
possible, in-situ testing is used to detect intermittent electrical connections however
sampling rate must be at least twice the vibration frequency. This would be required if
the system is expected to be operational during launch or re-entry, such as a system on
the shuttle used for health monitoring.

11.9 ESD threshold (GR468-5.22 and FOTP-129)

The purpose of this test is to establish the short and long term susceptibility of the LDA
to ESD damage using the standard FOTP-129. This method only covers the HBM
(Human Body Model) testing approach. Testing is performed from 100V or lowest
known good voltage, up to 15kV. The pulse waveform should have a 10-90% rise time of
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5-15 ns and a decay time of 130-170 ns. Testing is done in all combinations between any
two terminals and with the remaining terminals left unconnected. Before testing the basic
DC-characteristics in the form of L-I and V-I curves are measured as a baseline. Pass
criterions are typically defined by less than 50% increase in threshold current and less
than 100% increase in reverse bias leakage current. Also a significant change in the
optical spectrum may constitute a failure.

12 DPA (Destructive Physical Analysis)

An important tool for assessing the readiness of an LDA for space use is the DPA
(Destructive Physical Analysis) where a small population of devices is taken apart to
evaluate the materials and construction and assess potential failure mechanisms arising
from incompatible materials, design issues and quality of workmanship. Comparing
different DPA specimens also enables an assessment of the homogeneity of the lot and
enables the user to identify product changes from prior. builds. Even slight changes in
physical/material design can null the usefulness of prior qualification data. Ideally DPA
should be done as part of the initial screening to provide an untouched baseline before
any other measurements or qualification tests, but typically it is done in parallel or
following qualification testing to reduce the cost of the destruct sample lot. DPA
methods are also used during failure analysis as an important part of determining the root
cause. Failure analysis is enabled by the availability of DPA and external visual
inspection data and photographs of “good” parts from the qualification process.

12.1 C-SAM (MIL883-2030)

C-SAM (C-mode Scanning Acoustic Microscopy) is a type of ultrasonic measurement
where echoes from a specified depth are displayed. The transducer is moved spatially and
the reflected signal is displayed as an image of the plane at the focus depth inside an
assembly. This test is used to examine the assembly for voids between the die and the
heat sink, which can increase assembly thermal impedance and lead to failures. C-SAM
requires the parts to be immersed in clean de-ionized water during the test hence a bake-
out following the test is required before further testing can be done. CSAM testing and
data assessment is highly operator dependant. Test conditions such as the soak time prior
to measurements can greatly affect the results, if any of the materials in the design allow
the water to diffuse into and fill up the voids making them transparent to the test signal.

12.2 Internal visual inspeétion (MIL883-2017)

Internal visual inspection within the context of DPA uses the inspection criteria in the test
standard but is done during deconstruction of the part rather than prior to lidding and
delivery. Internal visual inspection is done at both low magnification (30X-60X) and
high magnification (75X-150X) per MIL883-2017. For the microcircuit die, MIL883-
2013 is referenced within MIL883-2017. The high magnification portion must include
bright field illumination (normal to the viewed surface) in order to discern the types of
defects described in the test method. During the low power portion of the inspection,
attention is paid to substrate and mounting plate alignment, cracks and damage; die
mounting, die location, and die orientation; plating materials; excessive amounts of
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material or contamination with foreign materials or particles. At high magnification
(75X-150X) attention is to be paid to die cracks and scribe defects; wire bond integrity
and quality.

12.3 Bond strength pull test (MIL883-2011)

The purpose of bond pull testing is to verify sufficient bond strength and to find the
occurrences of under-bonded wires, cracked wires, cracked bond pads and contaminated
bonds. The test standard defines the accept/reject criteria based on the wire gauge and
bond length.

12.4 Die shear (MIL883-2019)

The purpose of this test is to determine the force required to separate the die from the
submount/heat sink to assess the quality of the materials and procedures used for
attaching the die to the submount. A force is applied evenly along one of the short sides
of the die (~1-2mm side) while monitoring it visually at a minimum of 10X
magnification. The test standard describes the method for determining a force
requirement for the die based on the square area of the attach surface in mm?. Failure
depends not only on the value of the shear point but also on the location of the separated
material (substrate-to-die attach or die attach-to-die.) Die shear can be performed after
the emitter subassemblies are removed from the device base plate. The sample size
requirement corresponds to the number of die sheared, not the number of full devices
tested.

12.5 SEM (MIL883-2018)

SEM (Scanning Electron Images) mages are created by scanning a focused electron beam
across the surface of the device. The low energy secondary electrons emitted are detected
and used to modulate the brightness of a synchronously scanned CRT revealing the
surface topography and enabling critical dimension measurements. High energy
backscattered electrons can also be separated and used for image formation. Since the
backscattering efficiency is a function of atomic weight, this image reveals compositional
variations due to average atomic number.

NASA Goddard Space Flight Center Page 41 of 44 NEPP 2006




Figure 15. SEM picture showing broken gold bonding wire partially consumed by gold-indium
intermetallic compound [4]

12.6 X-ray (MIL883-2012)

X-ray or radiography examination is conducted to find and view internal assembly
defects and to determine die and wire placement to aid in part disassembly. The
following defects may be encountered:

o Foreign objects and voids in the assembly materials

e Voids in solder die attach material

e Poor wire bond geometry (wires that deviate from a straight line, swept or broken

wires, or insufficient arc).
¢ . Improper die or substrate placement.

Radiographs shall be taken of each device in two views, 90 degrees apart (top and side
views). MIL-STD-883E, Method 2012, “Radiography” is applicable. Ifreal-time
radiography is used for screening, the dose rate that the equipment emits should be
estimated and reviewed with the project radiation specialist to avoid damaging or aging
the parts.
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