Painting analysis of chromosome aberrations induced by energetic heavy ions in human cells

Honglu Wu, Megumi Hada and Francis Cucinotta
NASA Johnson Space Center
The Space Radiation Environment

Representation of the major sources of ionizing radiation of importance to manned missions in low-Earth orbit. Note the spatial distribution of the trapped radiation belts.

- **SOLAR PARTICLE EVENT** (Protons to Iron Nuclei)
- **GALACTIC COSMIC RADIATION (GCR)** (Protons to Iron Nuclei)
- **INNER RADIATION BELT** (Protons)
- **OUTER RADIATION BELT** (Electrons)
- **SOUTH ATLANTIC ANOMALY** (Protons)
Galactic cosmic radiation

Figure D.1. Abundances (a) and Energy Spectra (b) of GCR

- Relative Abundance vs. Atomic Number (Z)
- Differential Flux vs. Kinetic Energy (MeV/Nucleon)
DSB induction

High-LET

Low-LET
Complex aberrations
Radiation-induced chromosome aberrations in lymphocytes in vitro

Analysis of truly incomplete exchanges using telomere probes
Telomere Analysis

Human lymphocytes exposed to 2 Gy gamma rays. Chromosomes #2 and #4 were painted.

False incomplete exchange
Most of the incomplete exchanges analyzed with FISH are actually complete.

Wu, George and Yang, IJRB (1998, 1999)
• The fraction of unrejoined chromosome breaks are higher for high LET

• Unrejoined breaks and incomplete chromosomal exchanges are possible biosignatures of high-LET radiation

High-LET radiation induces more unrejoined DNA double strand breaks

Desai, Davis, O’Neill, Durante, Cucinotta and Wu, Rad. Res. 2005
Complex aberrations -- mFISH analysis

BIOSIGNATURE OF HIGH-LET RADIATION

Complex type aberrations

mFISH showed a higher fraction of complex and incomplete exchanges for high-LET.
Interphase vs. metaphase: Issues of biosignature

Centromere probes were used.

<table>
<thead>
<tr>
<th>Radiation</th>
<th>Dose (Gy)</th>
<th>Harvest method</th>
<th>F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ ray</td>
<td>2</td>
<td>PCC</td>
<td>15.3 ± 6.3</td>
</tr>
<tr>
<td>γ ray</td>
<td>2</td>
<td>Meta</td>
<td>12.5 ± 5.9</td>
</tr>
<tr>
<td>γ ray</td>
<td>5</td>
<td>PCC</td>
<td>8.2 ± 2.0</td>
</tr>
<tr>
<td>γ ray</td>
<td>5</td>
<td>Meta</td>
<td>9.1 ± 2.5</td>
</tr>
<tr>
<td>1 GeV/u Fe</td>
<td>3</td>
<td>PCC</td>
<td>5.2 ± 0.9</td>
</tr>
<tr>
<td>1 GeV/u Fe</td>
<td>3</td>
<td>Meta</td>
<td>9.1 ± 2.2</td>
</tr>
</tbody>
</table>

Wu, George, Kawata, Willingham and Cucinotta, Rad. Res. 2001
mBAND analysis

<table>
<thead>
<tr>
<th>FITC</th>
<th>SpO</th>
<th>Texas Red</th>
<th>Cy5</th>
<th>DEAC</th>
<th>DAPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inter- vs. intra chromosome exchanges (mBAND)

![Graph showing aberrations in chromosome 3/cell vs. dose (Gy) for inter- and intra-exchange under different radiation sources: 137Cs γ-ray and Fe (600 MeV/n).]
Most inversions were involved with other inter- and/or intra-chromosome rearrangements.

mBAND analysis
Summary

• FISH, mFISH, mBAND, telomere and centromere probes have been used to study chromosome aberrations induced in human cells exposed to low- and high-LET radiation in vitro

• High-LET induced damages are mostly a single track effect

• Unrejoined chromosome breaks (incomplete exchanges) and complex type aberrations were higher for high-LET

• Biosignatures may depend on the method the samples are collected

• Recent mBAND analysis has revealed more information about the nature of intra-chromosome exchanges