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Abstract 
 

Ionizing radiation is a major health risk of long-term space travel, the biological 
consequences of which include genetic and oxidative damage. In this study, we propose an 
original mechanism by which high doses of ionizing radiation induce acute toxicity. We 
identified biological components that appear in the lymphatic vessels shortly after gamma 
irradiation. These radiation-induced toxins, which we have named specific radiation 
determinants (SRD), were generated in the irradiated tissues and then collected and circulated 
throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD 
elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were 
developed into a vaccine used to confer active immunity against acute radiation toxicity in 
immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to 
lethal doses of gamma radiation, as measured by increased survival times and survival rates. In 
comparison, untreated animals that were exposed to similar large doses of gamma radiation 
developed acute radiation sickness and died within days. This phenomenon was observed in a 
number of mammalian species. Initial analysis of the biochemical characteristics indicated that 
the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a 
mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further 
identify the SRD molecules and the biological mechanism by which the mediate the toxicity 
associated with acute radiation sickness. By doing so, we may develop an effective specific 
immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation. 
 
1. Introduction 

Ionizing radiation is recognized as a significant environmental hazard of space travel, 
posing a significant health risk to human crews (Cucinotta et al., 2001b). Radiation is known to 
increase the occurrence of cancer, cardiovascular disease, and cataracts (Preston et al., 2003, 
Ivanov et al., 2001, Otake et al., 1996, Cucinotta et al., 2001a). In addition to these degenerative 
consequences, high doses of radiation induce acute radiation sickness (ARS) and death via well-
defined pathologies (Prasad, 1995). However, the underlying cellular and molecular mechanisms 
that drive acute radiation-induced toxicity are not fully elucidated. 

Considerable effort has been devoted to elucidate the biological consequences of ionizing 
radiation. A major mechanism of effect is the ionizing damage directly inflicted on the cells’ 
DNA by radiation (Nelson, 2003, Ward, 1988). Unrepaired DNA damage is known to lead to 
genetic mutations, apoptosis, cellular senescence, carcinogenesis, and death (Wu et al., 1999, Oh 
et al., 2001, Rosen et al., 2000, Pietras et al., 1347, Gajdusek et al., 1996). The ionizing effects of 
radiation also generate oxidative reactions that cause physical changes in proteins, lipids, and 
carbohydrates, impairing their structure and/or function (Spitz et al., 2004, Lehnert and Iyer, 
2002). Similarly, the hydrolysis of water molecules introduces a secondary source of oxidative 
stress in the form of free radicals that also induce the biochemical alteration, degradation, or 
cross-linking of cellular macromolecules (Martinez et al., 1997, Prasad, 1995). Physical and 
functional damage to the plasma membranes and mitochondria has been reported in irradiated 
cells (Haimovitz-Friedman et al., 1994, Lucero et al., 2003, Leach et al., 2001, Costantini et al., 
1996). The radiation-induced expression of inflammatory cytokines suggests that inflammatory 
responses may contribute to cell death and acute radiation sickness toxicity (Mizutani et al., 
2002). However, the acute toxicity that is associated with ARS is not attributed to these 
biological mechanisms. 



Because acute radiation sickness occurs within a very short period of time, the 
opportunities to treat or mitigate the effects of high-dose irradiation are very limited. Instead, a 
prophylactic measure would be a more effective strategy to address this acute radiation-induced 
phenomenon. In addition, preventing the onset of ARS may also be beneficial in minimizing the 
other biological consequences of ionizing radiation. In this study, we describe a novel biological 
mechanism of acute radiation toxicity that originates in the lymphatic tissues. We also describe 
the development of an experimental anti-radiation vaccine against these novel radiotoxins that 
appear in the radiosensitive tissues after irradiation, this radiotoxins were called specific 
radiation determinants (SRD). Because it is directed at a biological mechanism other than DNA 
damage or oxidative stress, this immunologically based form of prophylaxis may be a powerful 
adjunct therapy that will enhance the efficacy of existing radiation countermeasures.  
 
2. Materials and Methods 
2.1 Animal subjects 
 These studies incorporated the use of statistically significant numbers of a variety of 
mammals (Table 1). The animals that were used were typically young adults of average weight 
for their species.  
 
2.2 Irradiation protocols 
 The animals were exposed to high doses of gamma radiation to induce acute radiation 
sickness and death within 7 days. Whole body equivalent doses were typically between 6-10 Gy, 
and delivered at an energy of 0.66 MeV and a dose rate of 3.7-3.8 cGy/min. 
 
2.3 Isolation and biochemical characterization of SRDs 
 Lethal doses of gamma radiation were administered parenterally to bovine species and 
their lymphatic fluid was collected several hours later. Within hours, lymphatic fluid was 
collected from the animals’ ductus thoracicus and the SRDs were separated by size exclusion 
chromatography (Maliev et al., 1990). The SRDs were subjected to chromatographic separation 
to determine their biochemical composition and molecular weight (le Maire et al., 1987). 
 
2.4 Radiomimetic and radioprotective properties of SRDs. 

The levels of SRDs were quantitated with an SRD ELISA (Popov et al., 1989). 
Previously untreated animals were treated with SRDs by subcutaneous or intramuscular 
injection. After a minimum incubation time of 21 days, the animals were subjected to lethal 
doses of gamma irradiation (Popov et al., 1990). The post-irradiation survival times of control 
and immunized animals were recorded.  
 
3. Results 
3.1 Radiation-induced formation of SRDs. 
 Application of lethal doses of gamma radiation induced the appearance of SRDs in 
animals’ lymphatic fluid within hours (Table 2). SRDs were also detected in the animals’ blood 
shortly after their initial appearance in the lymphatic fluid. This suggests that the SRDs originate 
in the lymphatic tissues, circulate into the bloodstream, and then traverse the body via the 
circulatory system. This phenomenon was observed in rabbits, dogs, and cattle; however, the 
precise timeline of SRD appearance varied in each species. 
 



3.2 Biochemical analysis of SRDs 
 Initial chromatographic analysis of two of the radiation toxins induced by acute doses of 
lethal gamma radiation revealed complex biochemical compositions (Table 3). Approximately 
half of the SRDs were comprised of protein, with lipids comprising an abundant fraction of the 
molecule. Carbohydrates comprised approximately 10% of the SRD molecules and trace 
amounts of minerals were also detected. The biochemical composition of SRD 3 and SRD 4/4 
were similar, but distinct differences were noted. The molecular weights of the SRDs are 
approximately 200-250 kDa (not shown). Chromatographic analysis of the remaining SRDs 
remains to be completed. 
 Seven distinct variants of SRDs have been identified to date (Table 4). Multiple variants 
of SRDs were induced simultaneously, but in all cases, a single SRD comprised the majority of 
SRD generated with trace amounts of other SRDs detected. The primary variant detected was 
associated with the type or severity of ARS induced, rather than total radiation dose or animal 
species. For example, SRD 1 was the most abundant SRD observed in animals that developed 
the cerebral syndrome of ARS, while SRD 3 was the most abundant SRD observed in animals 
that developed the gastrointestinal syndrome of ARS, regardless of species (Table 4). 
 
3.3 Radiomimetic and radioprotective properties of SRDs 
 There was a dose-dependent response to the SRDs when they were injected into 
previously untreated animals. In high doses, the SRDs induced the symptoms of the ARS with 
which it was associated, including death, in unirradiated animals. In smaller doses, the 
development of specific active immunity against the toxic effects of lethal doses of gamma 
irradiation was observed (Table 5). Untreated control animals that were exposed to lethal doses 
of irradiation died of ARS within 30 days. Animals that were pretreated with SRDs experienced 
significantly increased survival rates and survival times. This phenomenon was observed in all 
mammals tested (Table 5). 
 
4. Discussion 
 In this study, we describe a novel mechanism of radiation-induced toxicity. Our 
experiments show that high doses of gamma radiation elicited the production of toxic 
compounds in the irradiated tissues, called SRDs. These SRDs arose in tissues of origin, 
accumulated in lymphatic vessels, and then entered the blood circulatory system via the thoracic 
duct. The SRDs then circulated throughout the body and ultimately induced different forms of 
acute radiation disease and death. In the studies presented here, the SRDs were detected in the 
lymphatic fluid shortly after irradiation, and then in the blood shortly thereafter. In a previous 
study, the removal of lymphatic fluid immediately after irradiation extended the animals survival 
time from a predicted seven days to sixty days (Popov et al., 1990), which supports the 
hypothesis that the SRDs collected in the irradiated lymph tissues and traversed the body through 
the general circulatory system. 

The SRDs exhibited radiomimetic properties. When introduced into immunologically and 
radiation-exposure naïve animals, concentrated doses of SRDs stimulated a recapitulation of 
acute radiation sickness, including death. The SRD compounds alone induced the acute toxicity 
associated with high doses of irradiation, although other known physiological effects of high-
dose radiation probably contributed to overall mortality. We propose that the generation of the 
SRDs is a contributory cause of radiation toxicity in a biological mechanism that is independent 
of the direct molecular damage, oxidative stress, inflammation, or mutagenesis mechanisms to 



which most other radiobiological effects are attributed. Most of this work has been performed in 
rodents, but these immunological properties of the SRDs were also observed in larger mammals 
more closely related to humans. This suggests a universal mammalian response in acute radiation 
toxicity, and generates hope that SRDs can be effectively applied to humans to protect against 
ARS. 
 Interestingly, when administered in optimal doses to previously untreated animals, the 
SRDs conferred active immunity against the acute toxic effects of subsequent gamma irradiation. 
Optimal doses were determined individually, and depend on species, weight, and gender (Popov 
et al., 1990). Much work must be done to determine if this approach could be safely and 
effectively employed in humans. Furthermore, this immunity was highly specific; that is, each 
SRD protected against a single specific ARS syndrome, and the immunity conferred lasted no 
more than 2-3 years (not shown). Although it was not the primary focus of these experiments, no 
overt autoimmune reactions were observed in the experimental animals (not shown). Our studies 
focused on the use of the SRDs as a countermeasure against acute effects of irradiation. Because 
our studies suggest that the SRDs provided protection against early radiation events, they may 
also provide protection against the pathogenesis of long-term, degenerative effects of ionizing 
radiation, such as carcinogenesis, cataractogenesis, or atherogenesis. Clearly, further analyses of 
the long-term radioprotective effects of the SRDs are warranted. 
 The precise biochemical structure of the SRDs was only partially elucidated. The SRDs 
appeared to be a group of complex molecules generated in irradiated radiosensitive tissues. The 
large molecular weight of the molecules (200-250 kDa) suggests that they may be a complex of 
several smaller molecules. The similar composition of SRD3 and SRD 4/4 suggest that the 
molecules, while biochemically distinct in composition, may be related molecules. The large 
percentage of lipids detected in the molecules suggests that the molecule was associated with cell 
membranes (Dowhan, 1997). The presence of carbohydrates, which typically adorn cellular 
components found on the cell surface or in the extracellular matrix, particularly suggest that the 
plasma membrane is the origin of at least part of these molecules. We propose that the ionizing 
properties of gamma radiation induce physical disruption of the plasma membranes of the cells 
that populate or line the lymphatic tissues or other highly radiosensitive cells, possibly via lipid 
peroxidation (Prasad, 1995), and that the SRDs form from the degradation products or cross-
linking reactions induced by ionizing radiation. Further studies are required to definitively 
identify the biochemical composition of the SRDs and their biological mechanism(s) of action. 

In this study, we propose an original paradigm of contributory acute toxic effects of lethal 
doses of irradiation which is mediated through the immune system, together with the 
traditionally accepted cellular mechanisms of DNA damage or oxidative stress. We analyzed the 
biochemical properties of the SRD molecules and proposed a potentially practical application of 
their radioprotective properties. The SRDs may provide a powerful adjunct to other prophylactic 
countermeasures aimed at reducing the biological risks of ionizing radiation. 
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6. Tables 
 
Table 1. Animals used in irradiation studies. 

Number used in
Species Age Weight vaccine studies
Black motley cattle 2.5-3.0 years 300-350 kg 134
Ukrainian pigs 6-12 months 35-90 kg 142
Prekos sheep 3-12 months 18-23 kg 156
Mixed breed dogs 2-4 years 6.0-6.5 kg 162
Chinchilla rabbits 11-12 months 3.5-3.7 kg 180
Latvian draft horses 3-8 years 350-550 kg 32
Balp mice 2-3 months 20-22 g 2,636
Wistar rats 3-4 months 180-220 g 4,002  
This table lists the number of experimental animals used, including control animals. 
 
Table 2. Gamma radiation induces the appearance of SRDs in the circulatory system.  

Peak SRD appearance time (hours after irradiation)

SRD type ARS severity lymph blood lymph blood lymph blood
SRD 4/1 mild 3-8 6-10 5-8 20-40 3-12 6-15
SRD 4/2 moderate 3-10 6-10 3-10 15-50 3-14 8-15
SRD 4/3 severe 3-24 6-24 1-72 8-72 3-24 6-72
SRD 4/4 extremely severe 1-24 6-28 1-72 4-40 2-28 3-80

Rabbits Dogs Cattle

 
Rabbits, dogs, and cattle were exposed to lethal doses of gamma radiation and the SRDs were 
measured in lymph fluid and blood. Peak amounts of SRDs were detected first in lymph fluid 
within hours of irradiation and then in blood hours or days later. 
 
Table 3. Biochemical composition of SRDs. 
Component (%) SRD 3 SRD 4/4
  Protein 50.1 ± 0.1 56.2 ± 0.1
  Lipid 38.2 ± 0.0 30.1 ± 0.1
  Carbohydrate 10.2 ± 0.0 10.1 ± 0.1
  Mineral residue   1.3 ± 0.0   3.4 ± 0.2  
SRDs were isolated from γ-irradiated cattle and subjected to chromatographic analysis. The 
SRDs are complex molecules comprised of protein, lipid, carbohydrate, and mineral residue. 
 
 



Table 4. SRD variants are associated with specific syndromes of acute radiation sickness. 
Specific Radiation
Determinant ARS syndrome
SRD 1 cerebral ARS
SRD 2 toxic ARS
SRD 3 gastrointestinal ARS
SRD 4/1 mild typical ARS
SRD 4/2 moderate typical ARS
SRD 4/3 severely typical ARS
SRD 4/4 extremely severe typical ARS  
ARS syndromes generated mixed populations in irradiated animals. In each case, the most 
abundant SRD in each population was determined by the type of ARS syndrome the animal 
developed, regardless of species. 
 
Table 5. SRD vaccine extends survival times in irradiated animals. 

Radiation SDR vaccine Number Survival rate (%)
Species (Gy) (mg/kg) of animals 30 days 60 days 180 days 360 days
Dogs 6.5 0 17 0 0 0 0

15 93 88 79 65 65
Pigs 7.5 0 30 0 0 0 0

15 68 65 61 54 54
Sheep 6.5 0 23 0 0 0 0

20 112 90 84 78 78
Horses 6.5 0 5 0 0 0 0

20 19 14 13 13 13
Cattle 9.2 0 10 0 0 0 0

20 60 59 57 54 51
Rats 8.5 0 250 0 0 0 0

10 3696 3326 3142 --- ---
Mice 7.0 0 300 0 0 0 0

10 2170 1628 1628 --- ---  
SRD 3 was isolated from γ-irradiated cattle and then administered to immunologically naïve 
animals. Both untreated and immunized animals were irradiated, and their survival times were 
recorded. The survival rates of mice and rats were not determined after 60 days because of their 
shorter life expectancies compared to other species. 
 


