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ABSTRACT
In support of both the Space Shuttle and International Space

Station programs, a set of generic multibody dynamics algo-
rithms integrated within the Trick simulation environment have
addressed the variety of on-orbit manipulator simulation re-
quirements for engineering analysis, procedures development
and crew familiarization/training at the NASA Johnson Space
Center (JSC). Enhancements to these dynamics algorithms are
now being driven by a new set of Constellation program require-
ments for flexible multibody spacecraft simulation. One partic-
ular issue that has been discussed within the NASA community
is the assumption of cantilever-type flexible body boundary con-
ditions. This assumption has been commonly utilized within ma-
nipulator multibody dynamics formulations as it simplifies the
computation of relative motion for articulated flexible topolo-
gies. Moreover, its use for modeling of space-based manipula-
tors such as the Shuttle Remote Manipulator System (SRMS) and
Space Station Remote Manipulator System (SSRMS) has been ex-
tensively validated against flight data. For more general flexible
spacecraft applications, however, the assumption of cantilever-
type boundary conditions may not be sufficient. This paper de-
scribes the boundary condition assumptions that were used in
the original formulation, demonstrates that this formulation can
be augmented to accommodate systems in which the assump-
tion of cantilever boundary conditions no longer applies, and
verifies the approach through comparison with an independent

∗Address all correspondence to this author.

model previously validated against experimental hardware test
data from a spacecraft flexible dynamics emulator.

NOMENCLATURE
Πn Strain energy of bodyn
q j The j th generalized DOF of the system
q̇ j First time derivative ofq j

Q j The j th generalized force
~v∗n Absolute velocity of point massdm inside bodyn
~a∗n Absolute acceleration ofdm inside bodyn
qn Flexible DOF of bodyn
q̇n First time derivative ofqn

q̈n Second time derivative ofqn

Mrr,n Rigid-rigid mass matrix of bodyn
Mre,n Rigid-elastic mass matrix of bodyn
Mer,n Elastic-rigid mass matrix of bodyn
Mee,n Elastic-elastic mass matrix of bodyn
Kee,n Elastic stiffness matrix of bodyn
Fnp Force and moment of bodyp acting on bodyn
Fns Force and moment of bodys acting on bodyn
rs Spatial vector from jointn to joint s
Er,n External rigid forces and moments acting on bodyn
Ee,n External elastic forces and moments acting on bodyn
Br,n Nonlinear rigid inertia force of bodyn
Be,n Nonlinear elastic inertia force of bodyn
Ss Mode shape and mode slope of joints due to bodyn flex
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Fn Force and moment from bodyp (previous body ton) acting
at jointn

Fs Force and moment from bodyn (previous body tos) acting
at joints

BACKGROUND
In support of both the Space Shuttle and International Space

Station programs, a set of generic multibody dynamics algo-
rithms integrated within the Trick simulation environment have
addressed the variety of on-orbit manipulator simulation require-
ments for engineering analysis, procedures development and
crew familiarization/training at the NASA Johnson Space Cen-
ter (JSC) [1, 2]. Enhancements to these dynamics algorithms
are now being driven by a new set of Constellation program
[3] requirements for flexible multibody spacecraft simulation.
One particular issue that has been discussed within the NASA
community is the assumption of “cantilever-type” flexible body
boundary conditions [4]. This assumption has been commonly
utilized within manipulator multibody dynamics formulations as
it simplifies the computation of relative motion for articulated
flexible topologies. Moreover, its use for modeling of space-
based manipulators such as the Shuttle Remote Manipulator Sys-
tem (SRMS) and Space Station Remote Manipulator System
(SSRMS) has been extensively validated against flight data. For
more general flexible spacecraft applications, however, it has
been pointed out that the assumption of cantilever-type bound-
ary conditions may not be sufficient [5].

The purpose of this paper is to investigate the application
of the Trick-based multibody dynamics algorithms for a specific
case in which the assumption of cantilever boundary conditions
no longer applies. It is shown that the formulation can be re-
cast to accommodate more general boundary conditions without
significant modifications or reduction in efficiency. To verify
the approach, a case study is chosen that includes pinned end
mass boundary conditions. The reformulated multibody dynam-
ics model is then correlated against a transfer function model
which has been previously validated against experimental hard-
ware data obtained from a spacecraft flexible dynamics emulator.

MULTIBODY DYNAMICS FORMULATION
In [1], Modified Lagrange’s Equationswere developed to

support the simulation of space-based manipulators such as the
SRMS and SSRMS:

I ∂(~v∗n)T

q̇ j
~a∗ndm+

∂Πn

q j
= Q j (1)

Using Equation(1), it was shown that the EOMs in matrix
form for bodyn, a single body from within a tree topology, are

Figure 1. BODY N SCHEMATIC

Mrr,nAn +Mre,nq̈n = Fn−∑
s6=n

rsFs+Er,n +Br,n (2)

Mer,nAn +Mee,nq̈n +Kee,nqn =−∑
s6=n

ST
s Fs+Ee,n +Be,n (3)

Equations 2 and 3 represent the core body level elements
of the Trick-based multibody dynamics package, also known as
MBDYN.

Figure 1 depicts a schematic representation of bodyn. Here
the inboard frame is given asFrame nwhile the outboard frame
is shown asFrame s. Fn represents the agregate force and mo-
ment vector of the previous body acting on bodyn at Frame n;
likewiseFs is the force and moment vector of current body acting
on the next bodysatFrame s. Referring back to Equation 3, it is
important to notice that theST

n Fn term corresponding to the mode
shape and mode slope ofFrame nis not included. The absence
of this particular term results from the cantilever-type boundary
condition discussed in the previous section.

Extending these equations to the more general boundary
condition (i.e., eliminating the cantilever-type assumption) re-
sults in

Mrr,nA∗n +M∗
re,nq̈n = Fn−∑

s6=n

rsFs+Er,n +B∗r,n (4)
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M∗
er,nA∗n +M∗

ee,nq̈n +Kee,nqn =−∑
s6=n

Ss
∗TFs+Ee,n +B∗e,n (5)

where

M∗
er,n = Mer,n−Mrr,nSn (6)

M∗
ee,n = Mee,n−Mer,nSn−Sn

TMre,n +Sn
TMrr,nSn (7)

Ss
∗T = Ss

T −Sn
T rs (8)

It is important to note that the original form of the equations
remains intact, although the definition of matrix expressions has
now been ‘enhanced’ to eliminate the cantilever-type boundary
condition limitation.

CASE STUDY
In order to test the proposed approach for handling more

general boundary conditions, a satellite arm flexible dynamics
emulator was modeled in MBDYN. Whereas the space robotics
systems previously modeled using MBDYN are characterized by
stiff links and high ratio gearboxes at the articulations, this emu-
lator has a very flexible link driven by a brushless direct drive
motor and hence is a good test case for implementation of a
pinned boundary condition. In addition, the dynamics system
is simple enough to be modeled analytically. This section de-
scribes the emulator, its relevant dynamics characteristics, and
implementation of the model using MBDYN.

Experimental Hardware
As reported in [6], an experimental apparatus was designed

for the Communications Research Center in Ottawa, Ontario
Canada to serve as asatellite arm flexible dynamics emula-
tor. This research was performed in support of the joint United
States/Canada Mobile Satellite (MSAT) system program (as de-
picted in by the illustration in Figure 2). The emulator consisted
of a hinged-free flexible stainless steel beam with a direct-drive
DC torque motor at the hinged end and a tip mass and position
sensor at the free end. The beam was free to rotate while the
tip mass floated on an air bearing table made of granite. The tip

Figure 2. MSAT SATELLITE

Figure 3. FLEXIBLE BEAM APPARATUS

mass was connected to the flexible beam via a pin type bearing.
The output of the position sensor represented the transverse dis-
placement of the tip from a reference position in the middle of
the air bearing table. An additional sensor measuring the angular
rotation of the motor shaft was also incorporated for experimen-
tation. The apparatus is shown in Figure 3 while a schematic
diagram representing the system as seen from above is provided
in Figure 4.

Because of the high flexibility of the beam, the absence of
a gearbox, and the analytically simple dynamics of the system,
the emulator provides an excellent test case for MBDYN model
implementation of a pinned boundary condition.

Unfortunately, as university lab space is frequently in short
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Figure 4. FLEXIBLE BEAM SCHEMATIC

supply, this apparatus has not existed for many years. An analytic
model, however, was derived in [6] and was validated against
the hardware test data, some of which still exists in the form
of Matlab files. The analytic model, which is described below,
makes no use of the cantilever-type assumption that restricted the
MBDYN formulation and hence forms a suitable basis for testing
the proposed MBDYN modeling approach.

Analytic Emulator Model
This section describes the analytic model that was developed

in [6] and validated against the response of the emulator appara-
tus. As shown below the model makes no cantilever assumption.

Consider the classical Bernoulli-Euler beam equation [7]

EI
d4yp (x, t)

dx4 +ρ
d2yp (x, t)

dt2
= 0 (9)

Using separation of variables, Equation (9) can be broken
into two ordinary differential equations:

EI
ρX (x)

d4X (x)
dx4 −σX (x) = 0 (10)

and

d2Φ(t)
dt2

+σΦ(t) = 0 (11)

where σ is a constant. The homogeneous solution for
Equation(9) is given as

X (x)=C1sinh
(µ

l
x
)

+C2cosh
(µ

l
x
)

+C3sin
(µ

l
x
)

+C4cos
(µ

l
x
)

.

(12)
The four boundary conditions for the pinned end mass beam

corresponding to the satellite arm emulator are

X (0) = 0 (13)

d2X (0)
dx2 = 0 (14)

d2X (l)
dx2 = 0 (15)

l3 d3X (l)
dx3 +Ξµ4X (l) = 0 (16)

whereµ4 = ρσl4

EI andΞ represents the ratio between the tip
mass and beam mass. For a stable solution we reject the case
whereσ < 0 and we considerσ = 0 andσ > 0.

For the first case ofσ = 0,

Xo (x) = A0x (17)

and

Φo (t) = B0t +C0 (18)

whereA0 is an arbitrary constant andB0, C0 are determined
from the initial conditions.

For the second case ofσ > 0, it can be shown that there are
an infinite number of solutionsσi , i = 1,2,3...∞ such that

σi =
EIµi

4

ρl4 (19)
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and

cotµi = cothµi +2Ξµi (20)

The solutions to Equations (10) and (11) are given as

Xi (x) = Ai

[
sinh

(µi
l x
)

sinhµi
+

sin
(µi

l x
)

sinµi

]
(21)

and

Φi (t) = Bisin(ωit +Ci) (22)

where

ωi =
µi

2

l2

√
EI
ρ

(23)

Again, Ai are arbitrary constants andBi ,Ci depend on the
initial conditions. The valuesωi represent the system modal fre-
quencies while the functionsXi (x), or ‘shape’ functions, are the
system mode shapes.

It can be shown that these mode shapes,Xi (x), are orthogo-
nal with respect to the scalar product

(Xi (x) |Xj (x)) =
Z l

0
r (x)Xi (x)Xj (x)dx (24)

where

Z l

0
r (x) = [1+Ξlδ(x− l)] (25)

andδ() is the Dirac delta function.
It is convenient to choseAi to normalize Xi (x) (i.e.,

(Xi (x) |Xj (x)) = 1). This results in the following values

A0 =

√
3

l3 (1+3Ξ)
(26)

and

Ai =
1√

l (1+Ξ+2Ξµi (Ξµi +cothµi))
(27)

Using virtual work techniques outlined in [6], the continuous
time transfer functions from motor torque to tip position is given
by

Ptip (s) = ∑
dXi(0)

dx

ρ
Xi (l)

s2 +2ζiωis+ωi
2 (28)

and the transfer function from motor torque to hub position
is given by

Phub(s) = ∑
d2Xi(0)

dx2

ρ(s2 +2ζiωis+ωi
2)

(29)

The contribution of the direct-drive torque motor with am-
plifier gainKa, torque constantKt , winding resistanceRand back
EMF constantKb is given by

P(s) =
KaKtKsPtip (s)

R+KtKbsPhub(s)
. (30)

Physical parameters of the system were determined by ex-
perimentation. They are listed in Table 1. Recall thatΞ repre-
sents the ratio of the tip mass to mass of the flexible beam.

To validate the analytic model implementation, a sweep of
sinusoidal forcing functions were applied to the system to iden-
tify the modal frequencies and these frequencies were compared
to those derived theoretically from the model. This comparison,
shown in Table 2, demonstrated a match of within 3.4%.

The model was further verified by measuring the gain and
the phase delay from input voltage to sensed tip position at a
range of frequencies. The results shown in Figures 5 and 6 for
frequencies from 0.1 Hz to 4 Hz demonstrate good agreement
between analytic and hardware responses.

One can conclude, therefore, that the analytic emulator
model, in the form of continuous time transfer functions, has
been shown to be a good representation of the physical hard-
ware. Based on the success of this comparison to hardware data,
the parameters of the analytic model are used in the following
section to derive input data for the more generalized MBDYN
formulation which is then compared to the response of the ana-
lytic model.
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Table 1. BEAM CHARACTERISTICS

Parameter Description Value (SI units)

E Modulus of elasticity N/A

I Area moment of inertia N/A

ρ Linear density 4.09×10−4 lb-sec2/in2

(2.82 kg/m)√
EI
ρ Combined beam properties 9.3×103 in2/sec

(5.974 m2/s)

l Length 132.75 in

(3.372 m)

Ξ Mass Ratio 5.18

Table 2. MEASURED VS. CALCULATED MODAL FREQUENCIES

i ωi(measured) µi (Ξ = 5.18) ωi (calculated)

1 5.25 rad/s 3.171011466 5.28 rad/s

2 21.3 rad/s 6.298221427 20.9 rad/s

3 48.3 rad/s 9.434866134 46.7 rad/s

4 86.1 rad/s 15.71404495 83.4 rad/s

MBDYN Model
To simulate the flexible spacecraft emulator dynamics in

MBDYN, the matrix quantitiesMrr,n,Mre,n,Mee,n,Kee,n, andST
s

must be derived from the system properties for input to the body
level equations of motion.

The beam rigid mass properties, in terms of theMrr,1 matrix
is

Mrr,1 =
[

m1 [1] −m1c̃1

m1c̃1 J1

]
(31)

The rigid elastic coupling matrix is given as

Mre,n =

[ R l
0 Xi (x)dmR l

0~r×Xi (x)dm

]
(32)

Figure 5. COMPARISON OF MAGNITUDE

Figure 6. COMPARISON OF PHASE

Evaluating the terms ofMre,n for the problem at hand results
in

Z l

0
Xi (x)dm=

mAi

µi

(
coshµi −1

sinhµi
− cosµi −1

sinµi

)
(33)

and

Z l

0
~r×Xi (x)dm=

Ai

sinhµi

(
l2

µi
coshµi −

l2

µ2
i

sinhµi

)
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+
Ai

sinµi

(
− l2

µi
cosµi +

l2

µ2
i

sinµi

)
(34)

The elastic mass matrix can be represented by

Mee,n =
Z l

0
Xi (x)Xj (x)dx (35)

SubstitutingXi from Equation ( 21) results in

Mee,n =−
(m

l

)
4ΞlAiA j (36)

for i 6= j and

Mee,n =
(m

l

) 1−3Ξ+2Ξµi (Ξµi +cothµi)
1+Ξ+2Ξµi (Ξµi +cothµi)

(37)

for i = j
The stiffness matrix can be found from

Kee,n = EI
Z l

0

d2Xi

dx2

d2Xj

dx2 dx (38)

resulting in

Kee,n = EI
(µi

l

)4
(39)

The lateral displacement as a function of distance along the
beam,x is given as

y(x, t) = X (x)φ(t) (40)

The mode slopes can then be calculated as

αi =
dXi

dx
= Ai

µi

l

(
cosh

(µi
l x
)

sinhµi
+

cos
(µi

l x
)

sinµi

)
(41)

Figure 7. INPUT TORQUE

The resulting mode shape and slope matrix is therefore

Ss(x) =
[

X (x)
α(x)

]
(42)

The boundary condition atx = 0 corresponds to a nonzero
Sn while the boundary condition at the tip corresponds toSs. To
implement the model in MBDYN, Equations (6), (7) and (8) are
then used to calculate the required inputs.

MODEL COMPARISON
The next step of the process was to correlate the MB-

DYN implementation of the system model discussed previously
against the original analytic dynamics model validated against
the experimental hardware. To perform this model validation, a
forcing function (see Figure 7) designed to excite the first two
frequencies was employed and the resulting states for the hub
and tip position were compared. Comparison plots are provided
in Figures 8 and 10, while the difference plots are given in Fig-
ures 9 and 11. Note that an excellent comparison is achieved.

CONCLUDING REMARKS
To summarize, although originally formulated with the as-

sumption of cantilever-type modes, it has been demonstrated
through transformation of body level inputs that MBDYN is ca-
pable of handling more general boundary conditions using its ex-
isting mathematical formulation and implementation. Moreover,
this capability has been verified through a case study by com-
paring to an analytical model (validated against test hardware)
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Figure 8. HUB POSITION COMPARISON

Figure 9. HUB POSITION DIFFERENCE

where the cantilever assumption no longer applies. Finally, it
is anticipated that the approach described here within this paper
can be extended to other scenarios involving flexible multibody
spacecraft simulation with other types of boundary conditions.
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Figure 10. TIP POSITION COMPARISON

Figure 11. TIP POSITION DIFFERENCE

REFERENCES
[1] Quiocho, L.J., Huynh, A., Crues, E.Z, 2005, “Application

of Multibody Dynamics to On-Orbit Manipulator Simula-
tions”,ASME 2005 International Design Engineering Tech-
nical Conferences & Computers and Information in Engi-
neering Conference, DETC2005-85545, Long Beach, CA.

[2] Paddock, E.J., Lin, A., Vetter, K., and Crues, E.Z., 2003,
“Trick: A Simulation Development Toolkit”,AIAA Model-
ing and Simulation Technologies Conference and Exhibit,
AIAA 2003-5809, Austin, TX.

[3] NASA, 2005, NASA’s Exploration Systems Architecture
Study: Final Report, NASA-TM-2005-214062, Washing-
ton DC.

[4] Sincarsin, G.B., and Hughes, P.C., 1990, “Dynamics of

8 Copyright c© 2007 by ASME



Elastic Multibody Chains: Parts A - Body Motion Equa-
tions”, Dynamics and Stability of Systems, Vol. 4., Nos. 3
& 4, pp. 209-226.

[5] Tadikonda, S.S., Mordfin, T.G., and Hu, T.G., 1995, “As-
sumed Modes Method and Articulated Flexible Multibody
Dynamics”,Journal of Guidance, Control, and Dynamics,
Vol. 18, No. 3, pp. 404-410.

[6] MacLean, J.R., 1990,Modeling and Control of a Flexi-
ble Beam, Master of Applied Science Thesis, Department
of Electrical Engineering, University of Toronto, Toronto,
Canada.

[7] Craig, R.R., 1981,Structural Dynamics: An Introduction
to Computer Methods, John Wiley & Sons, New York, NY.

9 Copyright c© 2007 by ASME


