

American Institute of Aeronautics and Astronautics

1

Revealing the ISO/IEC 9126-1 Clique Tree for COTS
Software Evaluation

A. Terry Morris*
NASA Langley Research Center, Hampton, Virginia 23681

Previous research has shown that acyclic dependency models, if they exist, can be
extracted from software quality standards and that these models can be used to assess
software safety and product quality. In the case of commercial off-the-shelf (COTS)
software, the extracted dependency model can be used in a probabilistic Bayesian network
context for COTS software evaluation. Furthermore, while experts typically employ
Bayesian networks to encode domain knowledge, secondary structures (clique trees) from
Bayesian network graphs can be used to determine the probabilistic distribution of any
software variable (attribute) using any clique that contains that variable. Secondary
structures, therefore, provide insight into the fundamental nature of graphical networks.
This paper will apply secondary structure calculations to reveal the clique tree of the acyclic
dependency model extracted from the ISO/IEC 9126-1 software quality standard.
Suggestions will be provided to describe how the clique tree may be exploited to aid efficient
transformation of an evaluation model.

Nomenclature
CBS = COTS-based systems
COTS = Commercial off-the-shelf
CPD = conditional probability distribution
DAG = directed acyclic graph
DOD = Department of Defense
G = a graph of topological dependence structure
I(.,.|.) = a conditional independence rule
ISO/IEC = International Organization of Standardization/International Electrotechnical Commission
JPD = joint probability distribution
()xp = the unconditional probability distribution
()xπ|xp = a conditional probability distribution

xπ = parents of node x
SEI = Software Engineering Institute
X, Y = sets of variables
x, y = instantiated variables

I. Introduction
ignificant increase in the use of commercial off-the-shelf (COTS) software by DoD and other government and
business organizations1 has led to greater demands being placed on computer-based systems. These demands

have basically directed more capability into the software for decision-making including the ability to operate with
minimal oversight. Given vendor volatility in the commercial marketplace as well as COTS software obsolescence
risks, COTS software products continue to evolve at an ever-increasing rate. This condition requires continual
monitoring and evaluation of COTS software products for organizations that seek to mitigate COTS software risks.
As the commercial market provides increased diversification of software products (each with uncertain pedigree),
there is a critical need for COTS software evaluation techniques to analyze and compare the fit or misfit between
competing offers, particularly as an organization chooses to evolve or replace software components. Most COTS

* Software Manager, Safety-Critical Avionics Systems, Mail Stop 130, AIAA Lifetime Associate Fellow.

S

American Institute of Aeronautics and Astronautics

2

software evaluation techniques are custom tailored to a client’s needs, and hence, are not effective as general
acceptance tools. The techniques that are general tend to suffer from three main problems. The first problem
involves the inability to accommodate COTS software trade-offs in the requirements acquisition process. Morris2
has proposed an attribute acceptance paradigm that can effectively bridge the gap between what a client desires and
what has been demonstrated via evidence for COTS software evaluations. The second problem involves establishing
a set of consistent definitions and qualitative structures for software attributes. Subsequently, there are issues of
how to incorporate these attributes to quantify evaluation metrics. Morris and Beling3 have recently developed a
process that extracts attribute dependency models from software quality standards for COTS software evaluation. In
their research, the definition and structure of software attributes and their relationships are extracted in the form of a
dependency model that can be quantified probabilistically using historical COTS software data in the context of
Bayesian causal networks. The third problem involves the inability to effectively evolve an evaluation model over
time. For the purpose of conciseness, restarting an evaluation from scratch is considered inefficient. Efficiency, in
this context, is the ability to change or modify only a subset of the original evaluation model while retaining the
integrity, coherency and consistency of the final solution. The research in this paper augments the previous research
and focuses on the investigation of efficient evolution or adaptation of an evaluation model. As in the previous
research, the proposed paradigm is intended to be used in a probabilistic Bayesian network context.

The Software Engineering Institute (SEI) has reported that there is no one best evaluation technique for all
COTS software evaluations4. Within the evaluation timeline, software and system requirements tend to creep and
evolve. Every change to the requirements inevitably leads to a new software evaluation. Similarly, a change to an
organization’s computing architecture will also sometimes require a new software evaluation. The purpose of the
research in this paper is to investigate and exploit clique tree structures (revealed through graphical transformation
processes) that can provide efficient insight into how to evolve an evaluation model as a means of saving time and
rework.

Background information related to COTS software evaluations, the role of software standards, dependency
model extraction for software attributes and secondary (clique tree) structures are described in the next section.
Section III applies the clique tree transformation process to an international standard to reveal the resulting clique
tree. Section IV will investigate possible uses of the clique tree for efficient evolution of an evaluation model.

II. Background
The clique tree transformation process and the investigation into the efficient evolution of evaluation models (to

be described in the following sections) were developed within an overall methodology for COTS software scoring5.
Only the areas of primary interest to clique tree exploitation will be discussed. These areas include the state of
COTS software evaluations, the role of software standards, the software attribute dependency model extraction
process, and the insight gained from secondary clique structures.

A. COTS Software Evaluations
The demand and availability of COTS software products has increased drastically over the last ten years. These

products serve as either stand alone items or as components in larger COTS-based systems (CBS). In the COTS
software market, vendors control the product’s development and future evolution. Purchasers of COTS software
products often do not know the internals of the product because they are not given access to the source code6. In this
sense, COTS software is viewed as a black-box item. Over the past decade, there has been an expanding effort by
business and government to incorporate more pre-existing software into their systems. Some federal agencies have
even gone so far as to establish policy requiring software procurers to justify why they are not using COTS
products7,8. The rationale for utilizing COTS is primarily to lower development costs and time, to reduce
maintenance effort, and to take advantage of advancements in technology. This increased dependence on COTS
software has introduced substantial risks to software procurers, particularly those involved with safety or mission-
critical systems. The risks stem from the fact that source code is generally not available and there is no control over
the evolution of the product9. In 2001, it has been estimated that 99 percent of all executing computer instructions
come from COTS products10. Thus, COTS software use is driven by economic necessity. Despite this necessity, the
benefits, costs, and other risks of COTS software should be carefully weighed against other options.

For most types of mission-critical systems, the COTS acceptance process involves establishing systems and
software requirements, testing a pool of candidate software products and evaluating the candidates with respect to
the requirements. Evaluation results typically provide a ranking of the candidate products and some threshold that
identifies the degree to which the products satisfy the requirements. In the COTS software environment, vendors

American Institute of Aeronautics and Astronautics

3

Figure 1. ISO/IEC 9126-1 Software Quality Framework12.

choose different strategic directions for their existing products. This implies that users of COTS software products
must stay informed about changes to the product or at least mitigate the risks to the project if a vendor diminishes
product support. In a common scenario, vendors tend to upgrade existing products by supplying patches that may
fundamentally change the behavior of the product. For these reasons, users of COTS software products must
strategically choose to adopt an evolutionary or adaptive approach for product sustainability, particularly for projects
with considerably lengthy life cycles. This implies that software evaluations should occur at different stages of a
project life cycle in order to adjust to any number of changes.

The proliferation and volatility of COTS software products reduces software evaluation reliability substantially
since exhaustive and coverage testing cannot be performed due to lack of visibility of the source code. In this
scenario, evaluating techniques that quantify the degrees of acceptance of a product must be used based on data that
represents actual behavior of the product. These data can be garnered from software and qualification testing,
vendor design specifications, end user product testing, customer experiences with the product, among others.

There are two areas that hinder efficient adaptation of COTS software evaluation techniques. The first area
involves determining metrics, that is, the definition and treatment of software attributes that are consistent, general
and flexible for various software evaluations. A proposed solution for this area has been described by Morris and
Beling3. The second area involves identifying primary or secondary structures and revealing consistent properties to
employ when changes are introduced into an evaluation model. The research in this paper proposes an initial step
towards this area. Before revealing a possible solution, there must be an explanation describing the role that
software standards play in providing consistent terminology and attribute structural relationships for software
evaluations.

B. The Role of Software Standards
Software standards provide a criterion or an acknowledged measure of comparison for quantitative or qualitative

value for software. They also reduce confusion in fields such as software technology. Theoretically, if the software
was developed according to a provable formal model, there is an objective structure by which to provide a criterion.
However, since formal methods (theorem proofs) are not likely to be applied to COTS software, it is generally
accepted that there is not an objective measure of truth. Software standards provide a means of establishing a
criterion. They are usually developed by consensus and then adopted by local, national and/or international bodies.
In essence, there are two general approaches used to ensure software quality. The first involves assuring the process
by which the software product is developed. The second involves evaluating the quality of the end product. The
research in this paper will be restricted to software standards that describe a set of quality characteristics of the end
product and can serve as a basis for quantitative evaluation. The most pronounced software quality standard used
for this purpose is ISO/IEC 9126 started in 1985 and published in 199111. The revision of this international
standard, ISO/IEC 9126-112, released in 2001 will serve as the primary standard used in this research. The ISO/IEC
9126-1 standard, serving as an example in this research, is by no means restrictive since other comparable standards
that contain quality attribute for quantitative evaluation can be used.

A software product quality standard, such as ISO/IEC 9126-1, can be viewed as a knowledge base of software
attributes, sub-attributes and their relationships developed by expert consensus. In the case of ISO/IEC 9126-1, at
least 75% of the national bodies that voted were required for approval of the standard. The experts in this standard
provided six quality characteristics (attributes) and guidelines for their use. Additionally, the standard supports
software product evaluation by providing a quality model framework that explains the relationships between
different approaches to quality (see Figure 1). Clear definitions of attributes and supporting sub-attributes are also

American Institute of Aeronautics and Astronautics

4

Figure 2. ISO/IEC 9126-1 External and Internal Quality Attributes12.

Figure 3. ISO/IEC 9126-1 Quality-In-Use Attributes12.

provided (see Figure 2). Information in the standard describes the causal relationships between the attributes and
sub-attributes. Quality-in-use attributes (attributes that represent the user’s view of quality when the software
product is used in a specific environment and a specified context of use) are also included (see Figure 3).

C. Dependency Model Extraction from Software Quality Standards
As stated earlier, general COTS software evaluation techniques suffer from the lack of use of standardized

software metrics, that is, the definition and treatment of software attributes that are consistent, general and flexible
for various forms of evaluation. Previous research by Morris and Beling3 has revealed a process that extracts
attribute dependency models from software quality standards for COTS software evaluation. A brief overview of
the attribute dependency model will be discussed here since the attribute acceptance paradigm has been designed
particularly for such descriptions of attribute relationships.

Dependency is a statement about a set of variables. Formally, a dependency model13 is a pair M = (U, I), where
U is a finite set of elements or variables, and I(.,.|.) is a rule that assigns truth values to a three place predicate whose
arguments are disjoint subsets of U. The interpretation of the conditional independence assertion I(X, Y | Z) is that
having observed Z, no additional information about X could be obtained by also observing Y. In a probabilistic
model, I(X, Y | Z) holds if and only if

() ()zxPyzxP |,| = whenever () 0| >yzP (1)

for every instantiation x, y and z of the sets of variables X, Y and Z.

A graphical representation of a dependency model M = (U, I) is a direct correspondence between the elements in
U and the set of nodes in a given graph, G, such that the topology of G reflects the independence assertions of I.
There are different kinds of graphical models. The most common are undirected graphs (Markov networks) and
directed graphs (Bayesian networks). Each one has its own merits and shortcomings, but neither of these two
representations has more expressive power than the other14. These graphical models are knowledge representation
tools used by an increasing number of scientists and researchers. The reason for the extended success of graphical
models is their capacity to represent complexity and to handle independence relationships, which has proved crucial
for the storage of information.

Graphical models that represent directed dependencies are known as Bayesian networks and they result in a
powerful knowledge representation formalism based on probability theory. Bayesian networks are graphical models

American Institute of Aeronautics and Astronautics

5

where the nodes represent random variables, the arcs signify the existence of direct causal influences between the
variables, and the strengths of these influences are expressed by forward conditional probabilities13.

Formally, a Bayesian network is a pair, B = (G, P), defined by a set of variables X = (X1,…,Xn), where G is a
directed acyclic graph (DAG) defining a model M of conditional dependencies among the elements of X,

() ()()nP ππ |,...,| 1 n1 xpxp= (2)

 is a set of n conditional probability distributions (CPDs), one for each variable, and iπ is the set of parents of node
Xi in G. The set P encodes the conditional independence assumptions of G to induce a factorization of the joint
probability distribution (JPD) as

() ()∏
=

=
n

i
i

1

|πixpxp . (3)

When the random variables are discrete, the types of distribution applied to each variable will be multinomial,

thereby describing a multinomial Bayesian network. In multinomial Bayesian networks, all variables in X are
discrete, that is, each variable has a finite set of possible values. An advantage of Bayesian networks is its natural
perception of causal influences thus making it an unambiguous representation of dependency15. This is useful for
the COTS evaluation problem in that it allows for the explicit identification of influences between attributes of each
software product. Moreover, the Bayesian network’s requirement of strict positivity allows it to serve as an
inference instrument for logical and functional dependencies. Furthermore, its ability to quantify the influences with
local, conceptually meaningful parameters allows it to serve as a globally consistent knowledge base. In this way,
Bayesian networks are natural tools for dealing with uncertainty and complexity.

The dependency structure (G) of a Bayesian network is usually extracted from domain experts. The term
probability model refers to a complete specification of the JPD over a set of variables. Therefore, the terms
probability model and JPD are used interchangeably. The JPD contains structural as well as quantitative
information about the relationships among the variables. The term dependency model will be used to refer only to
the causal structure of the relationships among a set of variables.

As stated earlier, Morris and Beling3 have described a way to extract dependency models from software product
quality standards. Since the ISO/IEC 9126-1 standard can be viewed as a knowledge base of software attributes,
sub-attributes and their relationships developed by expert consensus, Morris and Beling3 devised an extraction
scheme to reveal the causal relationships using formal mathematically-equivalent representations. Applying their
extraction process, the authors revealed a qualitative representation of the attribute relationships within the ISO/IEC
9126-1 standard in the form of the following JPD,

() () () () () ()
() () () () ()
() () () () () ()
() () () ()
() () () () () ()
() () () () () ()
() () () ()SatisfpMU,R,F,|SafetypProdpEffp

pcpreplpcoexistpinstpadptppcrepl,coexist,adpt,inst,|Pp
mcptestpstabpchgpanalpmcstab,test,chg,anal,|Mp

ecpruptbpecru,tb,|Ep
ucpattrpE.Radpt,inst,chg,suit,|operplrnpundpattr,ucoper,und,lrn,|Up

rcprecpftpmatprcrec,ft,mat,|Rp
fcpsecpintrppaccpinst|suitpfcsec,acc,intrp,suit,FpJPD |=

 (4)

as well as an equivalent graphical representation of a DAG (see Figure 4). Explanations of the symbols for each
attribute label or node are found in the previous research3 and can be easily mapped from Figures 2 and 3. As a
general reference, F, R, U, E, M, and P represent Functionality, Reliability, Usability, Efficiency, Maintainability,
and Portability, respectively (see Figure 2). In like manner, Eff, Safety, Prod, and Satisf represent Effectiveness,
Safety, Productivity, and Satisfaction, respectively (see Figure 3). The remaining nodes in Figure 4 represent sub-
attributes associated with the attributes described.

The graphical and mathematical descriptions of the attribute dependency relationships are crucial for COTS
software evaluations. First, the attribute dependency model (mentioned above) describes how the software attributes
relate to one another with clear definitions in a concise manner, thereby providing consistency across diverse

American Institute of Aeronautics and Astronautics

6

Figure 4. ISO/IEC 9126-1 Dependency Model.

evaluations. Second, the dependency structure between the attribute and sub-attributes provides a coherent
aggregation scheme based on the international standard. Third, the incorporation of COTS historical data (similar to
data normally collected for evaluation) clustered to the various attributes and sub-attributes can provide a means of
producing a quantitative software evaluation based on probability theory. A methodology that uses this approach
has been developed by Morris5 and as such will not be discussed in this paper.

D. Secondary Structures

While experts typically employ Bayesian networks to encode domain knowledge, secondary structures from
Bayesian network graphs can be used to determine the probability distribution of any variable X using any cluster or
clique that contains X.

Definition:
Given a Bayesian network over a set of variables X = {x1 ,…, xn}, a secondary structure is defined graphically as

an undirected tree τ where each node in τ is a cluster (nonempty set) of variables. The clusters satisfy the join
tree property: given two clusters X and Y in τ , all clusters on the path between X and Y contain Y∩X . For each
variable X∈x , the family of X, { } XΠ∪X , where XΠ are the parents of node X, is included in at least one of the
clusters.

Secondary structures have been referred to in the literature as join trees, junction trees, cluster trees, and clique
trees. In this research, the term clique tree will be used to refer to the secondary graphical network.

Clique trees can be built from the DAG of a Bayesian network by applying a series of graphical transformations.
These transformations involve a number of intermediate structures. Each step of the clique tree transformation
process is briefly described in Figure 5. Steps 4 and 6 (of Figure 5) are nondeterministic; therefore, many different
clique trees can be built from the same DAG. Since the establishment of secondary structures is not new16,17, only a
brief explanation of the steps will be provided.

American Institute of Aeronautics and Astronautics

7

Figure 5. Clique Tree Transformation Process.

A multi-level representation is a process of organizing the nodes of a DAG in different levels or layers in such

a way that there is no link between nodes on the same level and that every node is connected to some other node in
the previous level. A moral graph is constructed from the DAG by first joining (adding a link between) every pair
of nodes with a common child in the DAG, and then dropping the directionality of the links. Next, an undirected
graph is said to be triangulated, or chordal, if every cycle of length four or more contains an edge that connects two
nonadjacent nodes in the cycle. Various procedures exist for triangulating an undirected graph16,18. An optimal
triangulation is one that minimizes the sum of the state space sizes of the cliques of the triangulated graph. Optimal
triangulation has been shown to be NP-complete19. A novel technique to obtain near optimal triangulation is by way
of perfect numbering. A given numbering of the nodes of a graph is called a perfect numbering if the subsets of
the nodes are complete. It has been shown that an undirected graph admits a perfect numbering, if and only if, it is
triangulated. The maximum cardinality search algorithm16 and its variant maximum cardinality search fill-in are
techniques used to create triangulated graphs with perfect numbering.

A clique in an undirected graph is a sub-graph that is complete (every pair of distinct nodes is connected by an
edge) and maximal (the clique is not contained in a larger, complete sub-graph). It has been shown that an
undirected graph has an associated chain of cliques if and only if it is triangulated16. Algorithms exist for
identifying cliques16,20. The present goal is to build an optimal clique tree by connecting the identified cliques. A
set of nodes of a graph is called a cluster. A cluster graph is called a clique graph if its clusters are the cliques of the
associated graph. Furthermore, a clique graph associated with an undirected graph is called a join graph if it
contains all the possible links joining two cliques with a common node. Hence, join graphs are unique and the set of
clusters with a common node forms a complete set. This property guarantees that clusters with common nodes are
always connected. Consequently, join graphs are highly connected. Finally, given a set of n cliques, clique trees
are formed by iteratively inserting edges between pairs of cliques until the cliques are connected by n-1 edges. It
has been shown that an undirected graph has a clique tree if and only if it is triangulated. The application of the
clique tree transformation process (to reveal these secondary structures) will be described in the next section.

III. Application: Revealing the Clique Tree of the ISO/IEC 9126-1 Quality Standard
The purpose of this section is to compute the clique tree of the dependency model extracted from the ISO/IEC

9126-1 software product quality standard (see dependency model in Figure 4). Clique tree computations are
performed via secondary structures, a transformation process described in Figure 5. This six step process starts with
a directed acyclic graph as input and eventually outputs a clique tree associated with the DAG. As described in the
previous section, clique trees are computed by obtaining a multi-level representation of the DAG, constructing a
moral graph, triangulating the graph, obtaining a perfect numbering of the nodes, generating a chain of cliques, and
then revealing the clique tree associated with the original DAG. This six-step process is as follows:

INPUT: The ISO/IEC 9126-1 dependency model (or DAG) depicted in Figure 4.

STEP 1: Given a DAG, obtain a multi-level representation.
The multi-level representation of the ISO/IEC 9126-1 dependency model (in Figure 4) checks the DAG to ensure

that there are no cycles in the graph, that is, each node must be connected only to nodes above or below it (the

American Institute of Aeronautics and Astronautics

8

Figure 6. Multi-level Representation of the ISO/IEC 9126-1 Dependency Model.

arrows must face the same direction). Figure 6 reveals the directed multi-level representation of the ISO/IEC 9126-1
dependency model in Figure 4. Since it is possible to depict this representation, the dependency model contains no
cycles and is considered a DAG.

STEP 2: Construct an undirected graph, called a moral graph.
The moral graph was constructed by joining every pair of nodes in the DAG with a common child and then

dropping the directionality of the links. The moral graph of the ISO/IEC 9126-1 DAG is shown in Figure 7.

STEP 3: Selectively add chords to the moral graph to form a triangulated graph.
The undirected moral graph (see Figure 7) was triangulated by ensuring that every cycle of length four or more

contained an edge that connected two adjacent nodes in the cycle. The maximum cardinality search fill-in
algorithm16 was used to triangulate the moral graph. The maximum cardinality search fill-in algorithm is shown in
Figure 8. Coincidentally, the moral graph was found to be triangulated, thus Figure 7 also serves as the triangulated
graph.

Figure 7. Moral and Triangulated Graph of the ISO/IEC 9126-1 DAG.

American Institute of Aeronautics and Astronautics

9

Figure 8. Maximum Cardinality Search Fill-in Algorithm16.

STEP 4: Obtain a perfect numbering of the nodes.
A by-product of the maximum cardinality search fill-in algorithm is a perfect numbering of the nodes. The

perfect numbering for the nodes in the ISO/IEC 9126-1 DAG is shown in Table 1.

Table 1. A Perfect Numbering of the Nodes in the ISO/IEC 9126-1 DAG.

No. Node No. Node No. Node No. Node

1 R 11 Op 21 Safe 31 Att

2 Ft 12 Co 22 U 32 Tb

3 Mat 13 Pc 23 F 33 Ru

4 Rec 14 Re 24 Acc 34 Ec

5 Rc 15 P 25 Int 35 Eff

6 Ch 16 M 26 Sec 36 Pro

7 E 17 An 27 Fc 37 Sat

8 Ad 18 St 28 Un

9 In 19 Te 29 Ln

10 Su 20 Mc 30 Uc

STEP 5: Generate a chain of cliques from the triangulated graph.
The cliques of the triangulated graph are shown in Table 2. Using the perfect numbering of the nodes, the chain

of cliques was generated by assigning to each clique the largest perfect number of its nodes and then, by arranging
the cliques in ascending order (where ties were broken arbitrarily). The algorithm used to generate the chain of
cliques is shown in Figure 9.

American Institute of Aeronautics and Astronautics

10

Figure 9. Chain of Cliques Algorithm16.

Table 2. Chain of Cliques for the ISO/IEC 9126-1 DAG.

STEP 6/OUTPUT: Obtain the clique tree associated with the DAG.
A clique tree was obtained by applying the Generate a Join Tree algorithm16. This algorithm (see Figure 10)

basically lists the cliques in descending order. For each clique, a clique is chosen from the remaining cliques. This
chosen clique must have a maximum number of nodes in common with the current clique. The current clique is then
linked to the chosen clique. A clique tree results by connecting the cliques with the identified links established
according to this process. The clique tree for the ISO/IEC 9126-1 DAG is shown in Figure 11.

Figure 10. Generate a Join Tree Algorithm16.

American Institute of Aeronautics and Astronautics

11

Figure 11. Clique Tree for the ISO/IEC 9126-1 DAG.

IV. The Current and Future Investigation of Clique Fungibility
It is the goal of this research to find ways of exploiting this secondary clique tree structure to reveal an efficient

means of modifying an evaluation model due to changes to the requirements (as manifested by changes to required
attributes or sub-attributes). Computation of the clique tree can be viewed as a way to prepare the evaluation for
future evolution by identifying the underlying structural relationships between the cliques of the dependency model.
This section will discuss initial conclusions gained via the investigation of secondary structures. Future work will
also be described.

Different or modified software attributes are generally caused by changes to the requirements. When a client
changes the software requirements to modify the number of attributes or sub-attributes, the client is redesigning the
attribute dependency model. Depending on the degree of changes required, the redesign process could range from
deleting a single attribute or sub-attribute to modifying and exchanging complete attribute sets. The redesign
process for attribute modification is generally called clique fungibility. Clique fungibility is the process by which a
client can add, delete, or exchange attributes (organized in the form of cliques) of a previous evaluation model to
obtain a modified evaluation model. In this research, the term ‘evaluation model’ is equivalent to a Bayesian
network attribute dependency model.

The condition that authorizes clique fungibility is the use of acyclic, conditionally independent attributes and
sub-attributes that span the space of decision variables. The variables form the underlying dependency structure of
the evaluation model. Clique fungibility is performed by way of clique trees. As discussed earlier, clique trees are
obtained using the algorithm shown in Figure 5 and are revealed using the process of secondary structures. Clique
trees via secondary structures are highly dependent on the dependency model extracted from the software product
quality standard. Redesign via cliques is advantageous in that it requires minimal redesign effort and is
computationally efficient for simple to moderate clique exchanges.

In general, there are two types of cliques in clique trees, specific cliques associated with particular attribute
clusters and cliques held in common (caused by the clustering of influences between attributes). Clique fungibility
involves modifying only specific cliques associated with attributes not common cliques. For instance, the clique
tree extracted from the ISO/IEC 9126-1 dependency model (Figure 4) is shown in Figure 11 and annotated in Figure
12. In Figure 11, each clique is identified with a major attribute within the clique. All cliques in Figure 11 have a
major attribute identified except for C2, which is the common clique. In Figure 12, clique C1 is associated with the
attribute Reliability and all of its sub-attributes (see Figures 2 and 4). Clique C2 is the only common clique in the
tree. Attribute clusters are cliques that contain the attribute and all of its associated sub-attributes and nothing more.
Although the attribute “R” is found in three distinct cliques (C1, C2, and C5) in Figure 11, only clique C1 is an
attribute cluster. The mapping of dependency model attributes and sub-attributes to cliques is provided in Table 2.

American Institute of Aeronautics and Astronautics

12

Figure 12. Annotated ISO/IEC 9126-1 Clique Tree.

The following discussion will describe the current investigation on how to discard and add sub-attributes within

a clique and how to discard and add cliques associated with attribute clusters.

Discarding sub-attributes within a specific clique associated with an attribute
Discarding a sub-attribute can be performed in one of two ways. First, if the sub-attribute is confined to only

one clique, then it can be marginalized from the JPD of the dependency model (see equation 4). The client could
restart the evaluation and then determine the new dependency model. The moral and triangulated graphs of the JPD
would change slightly, but the same clique tree would result. Using secondary structures reveals that sub-attributes
that are confined to only one clique have very limited effect on the remaining cliques and therefore, can be discarded
(or marginalized from the dependency model) without significant affect to the evaluation model. For instance, the
sub-attribute “fc” or “functional compliance” within clique C6 (sees Figure 11) can be easily discarded since it only
exists within one clique, C6.

On the other hand, if the sub-attribute resides in more than one clique (like “su” for “suitability” in clique C6),
then it resides in at least one common clique. The resolution of this condition is an area of future research. Initial
findings indicate that the simply marginalization of the sub-attribute out of the JPD causes the clique tree to change.
The clique tree transformation process (Figure 5) would be performed again to reveal the modified clique tree of the
marginalized JPD. It is the goal of future research to find an efficient way of discarding sub-attributes resident
within more than one clique.

Adding sub-attributes to a specific clique associated with an attribute
Adding a sub-attribute to a specific clique associated with an attribute follows very similarly to the previous

explanation. Instead of discarding a sub-attribute, this process would add a sub-attribute not currently present in the
dependency model. If the additional sub-attribute were linked to more than one attribute cluster, then the clique tree
would change. Otherwise, the clique tree will remain the same. The resolution of this procedure is also an area of
future research.

Discarding cliques associated with attribute clusters
Cliques associated with attribute clusters can be discarded by marginalizing out the attribute and all of its

associated sub-attributes from the JPD of the evaluation model. If the clique was linked to any common clique, then
all nodes shared in common would have to be marginalized from the common clique. Though this is a technical
solution, it is not viewed as efficient. Future research will be used to reveal an efficient procedure, particularly
when the common clique shares sub-attributes with the discarded attribute cluster.

Adding cliques associated with attribute clusters
Using a slightly modified process, adding cliques is performed by adding the desired attribute and its associated

sub-attributes into the JPD. The resolution of this procedure is also an area of future research.

Clique fungibility (exchanging cliques associated with attribute clusters)
By definition, the process of discarding one clique and replacing it with a different clique is one form of clique

exchange or clique fungibility. Future research will investigate the conditions leading to clique fungibility that will
allow the efficient adaptation of an evaluation model. It has already been analyzed that independent cliques (like C9,

American Institute of Aeronautics and Astronautics

13

C10, and C11 in Figure 12) share a common null clique in common; therefore, they can be exchanged with one
another without producing change to any other attributes in the JPD. Findings on more complex clique structures are
inconclusive thus far. More research is needed to find efficient decomposability properties of secondary structures.

V. Conclusion
Organizations are incorporating more COTS software products into their computer-based systems. Vendors

typically make software product decisions based on strategic economic conditions and not necessarily on technical
concerns. This implies that users of COTS software products must stay in synch with changes to the product or at
least mitigate the risks if a vendor diminishes product support. In both large and small projects alike, software and
system requirements tend to creep and evolve over time. Every change to the requirements inevitably leads to a new
software evaluation. One way of mitigating these risks is by way of periodic or continual software evaluations.
Periodic evaluations due to changes in the requirements or computing system require restarting an evaluation from
scratch. The research in this paper investigates and exploits clique tree structures (revealed through graphical
transformation processes) that can provide efficient insight into how to evolve an evaluation model as a means of
saving time and rework. Efficiency, in this context, is the ability to change or modify only a subset of the original
evaluation model while retaining the integrity, coherency and consistency of the remaining portion. The paper
proposes the use of secondary structures to describe the underlying relationships between attributes and sub-
attributes of an evaluation model. The clique tree transformation process was applied to the ISO/IEC 9126-1
international standard to reveal the resulting clique tree. Initial findings into how to discard cliques from or add
cliques to the secondary clique tree structure were provided as well as directions for future research. Throughout the
research, the proposed paradigm is intended to be used in a probabilistic Bayesian network context.

References
1Ciufo, C. A., “The COTS software market doesn’t run on DoD time,” Military Embedded Systems, Open Systesm

Publishing, Fall 2006.
2Morris, A. T., “A Probabilistic Software System Attribute Acceptance Paradigm for COTS Software Evaluation,” AIAA’s

Infotech@Aerospace Conference, Arlington, Virginia, Sep. 29, 2005.
3Morris, A. T., and Beling, P. A., “Extracting Acyclic Dependency Models from Quality Standards for COTS Software

Evaluation ,” Journal of Aerospace Computing, Information and Communication, Vol. 3, July 2006.
4Wallnau, Kurt, David Carney, Edwin Morris, Patricia Oberndorf and Charles Buhman, “A Tutorial on the Theory and

Practice of COTS Software Evaluation,” half day tutorial, Symposium on Software Engineering, Pittsburgh, PA, 1998.
5Morris, A. T., “A Bayesian Network-Based Scoring Methodology for COTS Software,” Ph.D. Dissertation, Department of

Systems and Information Engineering, University of Virginia, Charlottesville, VA, May 2004.
6Vliet, H. V., Software Engineering: Principles and Practice, 2nd Edition, Wiley & Sons, Inc. West Sussex, England, 2000.
7SEPG 100.0, Procedure for Software Planning, NASA Langley Research Center, Hampton, VA, November 1988.
8NASA Policy Directive 2820.1, NASA Software Policies, Washington, DC, May 1988.
9Abts, C., “COTS Software Life Cycle Cost Modeling,” Ph.D. Thesis, University of Southern California, 1999.
10Basili, V. R., and Boehm, B., “The COTS-Based Systems Top 10 List,” Software Management, May 2001, pp. 91-93.
11ISO/IEC, Information Technology – Software Product Evaluation, ISO/IEC 9126, 1991.
12ISO/IEC, Software engineering - Product quality - Part 1: Quality model, ISO/IEC 9126-1, June 2001.
13Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers,

San Mateo, CA., 1988.
14Campos, L. M., “Characterizations of Decomposable Dependency Models,” Journal of Artificial Intelligence Research, Vol

5, 1996, 289-300.
15Shachter, R. “Probabilistic Inference and Influence Diagrams,” Operations Research, 36:589-604, 1988.
16Castillo, E., Gutierrez, J.M., Hadi, A.S., Expert Systems and Probabilistic Network Models, Springer-Verlag, New York,

1997.
17Huang, C. and Darwiche, A., “Inference in Belief Networks: A Procedural Guide,” Intl. J. Approximate Reasoning, 15(3),

225-263, 1996.
18Kjaerulff, U., “Triangulation of Graphs-Algorithms Giving Small Total State Space,” Technical Report R-90-09, Dept. of

Math. and Comp. Sci., Aalborg University, Denmark, 1990.
19Arnborg, S., Corneil, D. G., and Proskurowski, A., “Complexity of finding embeddings in a k-tree,” SIAM Journal of

Algebraic and Discrete Methods, 8(2), 277, 1987.
20Golumbic, M. C., Triangulated graphs, in Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.

