Solidification Behaviour of γ'-Ni$_3$Al Containing Alloys in the Ni-Al-O System

Evan Copland

Department of Materials Science and Engineering, CWRU / NASA Glenn Research Centre, Cleveland, Ohio 44135, USA.

The chemical activities of Al and Ni in γ'-Ni$_3$Al-containing systems were measured using the multi-cell Knudsen effusion-cell mass spectrometry technique (multi-cell KEMS), over the composition range 8 – 32 at.%Al and temperature range $T = 1400 - 1750$ K. From these measurements a better understanding of the equilibrium solidification behaviour of γ'-Ni$_3$Al-containing alloys in the Ni-Al-O system was established. Specifically, these measurements revealed that (1) γ'-Ni$_3$Al forms via the peritectoid reaction, $\gamma + \beta (+ Al_2O_3) = \gamma' (+ Al_2O_3)$, at 1633 ± 1 K, (2) the $\{\gamma + \beta + Al_2O_3\}$ phase field is stable over the temperature range 1633 – 1640 K, and (3) equilibrium solidification occurs by the eutectic reaction, $L (+ Al_2O_3) = \gamma + \beta (+ Al_2O_3)$, at 1640 ± 1 K and a liquid composition of 24.8 \pm 0.2 at.%Al (at an unknown oxygen content). When projected onto the Ni-Al binary, this behaviour is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the γ'-Ni$_3$Al phase field.
Solidification Behavior of γ'-Ni$_3$Al Containing Alloys in the Ni-Al-O System

E. Copland
Case Western Reserve University / NASA Glenn Research Center
Cleveland, Ohio

CALPHAD XXXVI: 5/6 - 5/11/2007 – State College, PA, USA
current Ni-Al phase diagram; critical experiments
experiments; multi-cell KEMS, consider Ni-Al-O system
observe different phase equilibrium, 3 independent measurements:

\[a(\text{Al}) \text{ and } a(\text{Ni}): X_{\text{Al}} = 0.08 - 0.32; \ T = 1400 - 1750K \]

\[\text{relative } a(\text{Al}) \text{ and } a(\text{Ni}): \text{Ni-27Al / Ni-23Al} \]

\[\text{ion-intensity ratio } \frac{I_{\text{Ni}}}{I_{\text{Al}}}: X_{\text{Al}} = 0.08 - 0.32 \]

propose a new “Ni-Al” phase diagram
review “meta-stable” \(\gamma + \beta \) eutectic
compare Ni-Al diagrams and summarize
current Ni-Al phase diagram

\[L + \gamma = \gamma' \ (1645K) \]

\[L = \beta + \gamma' \ (1642K) \]

\(\gamma'\)-Ni\(_3\)Al stable up to liquidus

<table>
<thead>
<tr>
<th>Reaction</th>
<th>T (K)</th>
<th>Experimental Technique</th>
<th>Container</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L + \beta = \gamma'$</td>
<td>1668</td>
<td>cooling-curves / metallography</td>
<td>$\text{Al}_2\text{SiO}_5 / \text{Al}_2\text{O}_3$</td>
<td>Alexander 1937</td>
</tr>
<tr>
<td>$L = \gamma + \gamma'$</td>
<td>1658</td>
<td></td>
<td>Al_2O_3</td>
<td>Floyd 1951, 1952</td>
</tr>
<tr>
<td>$L + \gamma = \gamma'$</td>
<td>1635</td>
<td>cooling-curves / metallography</td>
<td>Al_2O_3</td>
<td>Schromm 1941</td>
</tr>
<tr>
<td>$L = \beta + \gamma'$</td>
<td>1633</td>
<td></td>
<td>$\text{Al}_2\text{O}_3 (\text{KEMS})$</td>
<td>Breiner 1988</td>
</tr>
<tr>
<td>$L + \gamma = \gamma'$</td>
<td>1645.4</td>
<td>metallography / DTA</td>
<td>$\text{Al}_2\text{O}_3 (\text{DTA})$</td>
<td>Hilpert 1987, 1990</td>
</tr>
<tr>
<td>$L = \beta + \gamma'$</td>
<td>1642.1</td>
<td></td>
<td></td>
<td>Battezzati 1998</td>
</tr>
<tr>
<td>$L + \gamma = \gamma'$</td>
<td>1645.3</td>
<td>directional solidification /</td>
<td>Al_2O_3</td>
<td>Lee 1991-94</td>
</tr>
<tr>
<td>$L = \beta + \gamma'$</td>
<td>1643.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L + \gamma = \gamma'$</td>
<td>1643.4</td>
<td>assessment</td>
<td></td>
<td>Do 1996</td>
</tr>
<tr>
<td>$L = \beta + \gamma'$</td>
<td>1643.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L + \gamma = \gamma'$</td>
<td>1643.0</td>
<td>assessment</td>
<td></td>
<td>Ansera 1997</td>
</tr>
<tr>
<td>$L = \beta + \gamma'$</td>
<td>1643.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L + \gamma = \gamma'$</td>
<td>1646.7</td>
<td>assessment</td>
<td></td>
<td>Zhang 2003</td>
</tr>
<tr>
<td>$L = \beta + \gamma'$</td>
<td>1646.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- very difficult to observe high-T structures:
- quenching rate; γ' broadens on cooling
- non-isothermal techniques (apart from KEMS)
- Al_2O_3 container ignored
- eutectic \approx peritectic: $\Delta T < 3K$ (to $\sim 0.2K$)
- “meta-stable” $\gamma + \beta$ eutectic (Lee, Hunziker)
effusion-cell

- “closed” isothermal container: \{ alloy + vapor + Al_2O_3 \}
- sample vapor phase by effusion
- complex vapor phase... need mass spectrometry (KEMS)
Ni-Al-O system

- phase rule (P, T): $f = c - p + 2$
- invariant: 5 phases
- uni-variant fields (T): 4 phases
 \{γ + γ' + Al₂O₃\} or \{γ' + β + Al₂O₃\}
- bi-variant fields (X_i, T): 3 phases
 \{γ + Al₂O₃\} or \{β + Al₂O₃\}
 ... vapor always present
thermodynamic measurements

multi-cell KEMS

pressure measurement

\[p(i) = I_{ik}^+ T / S_{ik} \]

activity measurement

\[a(i) = \frac{p(i)}{p^0(i)} = \frac{I_i}{I_i^0} \]

\[a(i) = \frac{p(i)}{p^0(Au)} \cdot \left[\frac{p^0(Au)}{p^0(i)} \right] = \frac{I_i}{I_{Au}^0} \cdot \frac{S_{Au}}{S_i} \cdot \frac{g(R)}{g(A)} \]

\[p^0(Au) / p^0(i) \]

\(i = Ti, Al, Al_2O \)
alloys compositions

$a(\text{Al})$ vs $1/T$: $X_{\text{Al}} = 0.08 - 0.32$

$T \text{ (K)}$

$10^4/T \text{ (K}^{-1})$

Reference: $\{\text{Al(l) + Al}_2\text{O}_3\}$
\[a(Ni) \text{ vs } 1/T: \quad X_{Al} = 0.08 \text{ – } 0.32 \]

\[T(K) \]

\[10^4/T (K^{-1}) \]

reference: \{Ni(s,l) + Al_2O_3\}
\{\gamma + \gamma' + \text{Al}_2\text{O}_3\} \text{ and } \{\gamma' + \beta + \text{Al}_2\text{O}_3\} \text{ remain separated by } \gamma' \text{ and } L \\
\downarrow \\
a(\text{Al}), a(\text{Ni}) \text{ must be different}

W. Huang, Y. Chang, Intermetallics, 1998, 6, 487.
direct measurement

\[
a(i)_{(\gamma'+\beta)-(\gamma+\gamma')} = \frac{a(i)_{(\gamma'+\beta)}}{a(i)_{(\gamma+\gamma')}} = \frac{I_i^{\gamma'+\beta}}{I_i^{\gamma+\gamma'}}
\]

- relative \(a(Al)\) and \(a(Ni)\)… Ni-27Al / Ni-23Al
- identify differences in phase equilibrium over range of \(T\)
- isothermal condition \(\rightarrow\) equilibrium at each \(T\)
relative activities for Ni-27Al / Ni-23Al

\[
\Delta \mu_i \text{ across } \gamma' \quad \Delta \mu_i \text{ across } \gamma + \gamma' \beta + \gamma + \Gamma + Al_2O_3
\]

\[
\ln \left(\frac{a_i}{RT} \right) = \frac{\Delta H_i}{R} - \frac{\Delta S_i}{RT}
\]

\[
T (K) \quad 1610 \quad 1620 \quad 1630 \quad 1640 \quad 1650
\]

\[
0.8 \quad 1.0 \quad 1.2 \quad 1.4
\]

\[
\{ \beta + \gamma + Al_2O_3 \}
\]

\[
\{ \gamma' + \beta + \gamma + Al_2O_3 \}
\]

\[
\{ L + \beta + \gamma + Al_2O_3 \}
\]

1633\pm1 K

1640\pm1 K
review

- same a(Al) and a(Ni) for $X_{\text{Al}} = 0.23 - 0.27$; $T = 1633 - 1640$ K
- inconsistent with current Ni-Al phase diagram...
- L unstable $T < 1640\pm1$ K; γ' unstable $T > 1633\pm1$ K
 - eutectic: $L (+ \text{Al}_2\text{O}_3) = \gamma + \beta (+ \text{Al}_2\text{O}_3)$ at $T = 1640\pm1$ K
 - peritectiod: $\gamma + \beta (+ \text{Al}_2\text{O}_3) = \gamma' (+ \text{Al}_2\text{O}_3)$ at $T = 1633\pm1$ K
 - $\{\gamma + \beta + \text{Al}_2\text{O}_3\}$ stable over $T = 1633 - 1640$ K
- need to propose new phase equilibrium...
- recheck behavior: ion-intensity ratio $I_{\text{Ni}} / I_{\text{Al}} \propto a$(Ni) / a(Al)
 - direct measurement, from a single effusion-cell
 - independent of variations in instrument sensitivity
 - more sensitive to phase transformations...
\[\ln \left(\frac{I_{Ni}}{I_{Al}} \right) \text{ vs. } \frac{1}{T} \]

\[5.5 \quad 6.0 \quad 6.5 \quad 7.0 \quad 7.5 \]

\[\ln \left(\frac{I_{Ni}}{I_{Al}} \right) \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[\text{Ni-8Al} \quad \text{Ni-15Al} \quad \text{Ni-20Al} \quad \text{Ni-23Al} \quad \text{Ni-25Al} \quad \text{Ni-27Al} \quad \text{Ni-29Al} \quad \text{Ni-30Al} \quad \text{Ni-32Al} \]

\[1750 \quad 1650 \quad 1550 \quad 1450 \quad 1350 \]

\[T(K) \]

\[\beta \quad \gamma \quad \gamma' \quad L \quad A \quad B \]

\[10^4 / T(K^{-1}) \]

\[6.5 \quad 6.0 \quad 5.5 \]

\[L+\gamma \quad \gamma'+\gamma \quad \gamma' \quad L \quad L+\beta \]
uni-variant phase fields

\[\ln \left(\frac{I_{Ni}}{I_{Al}} \right) \]

\[T (K) \]

\[1400 \quad 1450 \quad 1500 \quad 1550 \quad 1600 \quad 1650 \quad 1700 \quad 1750 \quad 1800 \]

\[\gamma + \beta (+ Al_2O_3) = \gamma' (+ Al_2O_3) \]

\[L (+ Al_2O_3) = \gamma + \beta (+ Al_2O_3) \]

\[L + \beta \]

\[T (K) \]

\[1400 \quad 1610 \quad 1620 \quad 1630 \quad 1640 \quad 1650 \quad 1660 \quad 1800 \]
proposed “Ni-Al” diagram

alloy saturated with O and in equilibrium with Al₂O₃
→ projection from Ni-Al-O onto Ni-Al binary

L \(X_{Al} = 0.248 \pm 0.002 \)
“meta-stable” $\gamma + \beta$ eutectic

- Lee: Bridgman technique
- Hunziker: Laser surface resolid.
- used current Ni-Al diagram
- $\gamma + \beta \leftrightarrow \gamma' + \beta$ independent of DS
 - $\gamma + \beta$ fastest cooling
 - $\gamma' + \beta$ slower cooling
- unexplainable solidification

proposed Ni-Al phase diagram explains solidification behavior

\downarrow

$\gamma + \beta$ eutectic is the equilibrium structure

J. Lee, J. Verhoeven, J. Crystal Growth, 1994, 143, 86.

Compare “Ni-Al” diagrams

W. Huang, Y. Chang, Intermetallics, 1998, 6, 487.
summary

- these results show γ'-Ni$_3$Al is not stable up to solidus...

- **equilibrium solidification:**
 - eutectic: $L (+ \text{Al}_2\text{O}_3) = \gamma + \beta (+ \text{Al}_2\text{O}_3)$ at $T = 1640\pm1$ K
 - peritectoid: $\gamma + \beta (+ \text{Al}_2\text{O}_3) = \gamma' (+ \text{Al}_2\text{O}_3)$ at $T = 1633\pm1$ K
 - $\{\gamma + \beta + \text{Al}_2\text{O}_3\}$ stable over $T = 1633 - 1640$ K

- explains: “unusual” steady-state DS structures… consistent with all previous measurements

- need to quantify O effect… Ni-Al-O \rightarrow Ni-Al

- **multi-cell KEMS** is a very powerful tool:
 - thermodynamic properties \rightarrow solution behavior
 - understand complex phase transformations
acknowledgements:

Nathan Jacobson (NASA Glenn),
Judy Auping (NASA Glenn),
Christian Chatillon (Saint Martin d’Hères, France),
Brian Gleeson (ISU),
Pat Martin and Dallis Hardwick (AFRL, Wright-Patterson AFB)