Applied Astronomy:
An Optical Survey for Space Debris at GEO

Patrick Seitzer
Department of Astronomy
University of Michigan

Kira Abercromby, Ed Barker, and Heather Rodriguez

Supported by:
Orbital Debris Program Office
NASA Johnson Space Center
Houston, Texas
• What is space debris?
 – Uncontrolled spacecraft
 – Rocket bodies
 – Junk – small parts, etc

• Why track? Collision risk that could disable active satellites.

• Why study in optical?
 – Radar $1/r^{**2}$ versus optical $1/r^{**2}$
 – Radar better at LEO (Low Earth Orbit)
 – Optical better at GEO (Geosynchronous Earth Orbit)
 • Period = 23 hours 56 minutes 4 seconds (1 sidereal day)
 • Radius = 42,164 km
Syncom 1 – launched February 14, 1963
Failed on orbit insertion – 1st piece of GEO debris!
Example of recent GEO payload: XM-2 “Rock” satellite for direct broadcast radio
MODEST – Michigan Orbital DEbris Survey Telescope

the telescope formerly known as the Curtis-Schmidt

Cerro Tololo Inter-American Observatory, Chile

0.61/0.91-m Schmidt telescope
GEO debris survey began February 2001
GEO Debris Survey

- Scanning CCD through a broad R filter (V+R).
- 5 second exposure every 37.9 seconds as track position of constant right ascension and declination all night long close to anti-solar point.
- Cover strip over 100 degrees long by 1.3 degrees high each night.
- Average of 8 detections of each GEO object as it crosses field of view in 5.2 minutes – allows determination of position, brightness, and angular motion.
- 4 detections required for real object, corresponds to S/N = 10 for each detection.
- Assume circular orbit for analysis.
Examples of Detections
Brightness Variations Common
Observed Angular Rates

Dec rate (arc-seconds/sec) vs HA rate (arc-seconds/sec)
What rate distribution is expected?

Object released from station-keeping follows well defined RAAN-inclination relationship with time. So expect locus of objects in angular rate box.
Two Populations at GEO
High Area-to-Mass Ratio Material (A/M)

• Consider sheets of
 – Aluminum foil
 – Spacecraft insulation blankets (MLI)
 – Highly reflective, not very massive.
 – Orbits significantly perturbed by solar radiation pressure.
 – See models by Liou & Weaver (2005)
 – ‘Dark matter’ debris (ball bearings) have low A/M; dominant perturbations from gravitational effects.
Examples of MLI

Intact MLI (A/M=8)
- Kapton outer layers,
- Mylar insulation layers
- with netting (A/M=8)

Space-facing MLI (A/M=22)
- Kaption outer layers,
- kapton insulation layers
- with netting (A/M=22)

Interior piece of MLI:
- white fabric (A/M=43)

Space Craft-facing MLI (A/M=17)

Seitzer
Examples of MLI Release in LEO

• NASA’s Far Ultra-violet Spectroscopic Explorer (FUSE) released 9 pieces of debris that were detected and tracked by US SSN in June 2004
• Tracking data suggested they were consistent with the evolution of high A/M MLI pieces.
Liou & Weaver (2005) models

$A/M = 20 \text{ m}^2/\text{kg}$

$A/M = 1 \text{ m}^2/\text{kg}$
ESA 1-m Telescope Survey

Eccentricity vs Mean Motion (Elliptical Orbits, Aug 02 to Jul 03)

(E Courtesy T. Schildknecht/ESA)
Two Telescopes March 2007

Survey and Follow-up

obtain orbits and colors of all faint debris

• MODEST
 - 1.3 x 1.3 degree FOV
 - 0.9 meter

• 0.9 meter
 - 0.22 deg FOV
How control Space Debris?

• At LEO (Low Earth Orbit) – atmospheric effects important on orbit:
 – Design for minimum debris generation during operation
 – Actively force reentry into South Pacific (MIR station)
 – Maximum 25 year lifetime after end of mission

• At GEO – no natural cleanup mechanism:
 – Design spacecraft and rockets for minimum debris generation
 – Boost active spacecraft at end of lifetime 300-600 km above GEO orbit