Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

Lena DeSantis
Lockheed Martin Mission Services

Mihriban Whitmore, PhD
NASA Johnson Space Center

May 15, 2007
DoD HFE TAG #57
Concept of Operations for Future EVA activities

- Desert Research and Technology Studies (RATS)
- Advanced EVA Walkback Test
- Primary Life Support Subsystem (PLSS) design evaluations
- EVA Information System design evaluations
Desert RATS

• Collaboration with...
 – Other NASA Centers
 – Industry
 – Universities

• Technologies evaluated
 – Head mounted display
 – Speech recognition system
 – Rover usability
 – Backhoe usability
Advanced EVA Walkback Test

- Can a suited crewmember walk back 10 km at Lunar gravity?
- Collaboration with...
 - Multi-disciplinary team from within JSC
 - Exercise Physiology
 - Space Human Factors Labs
 - Engineering
 - Building 9 facility
- Metabolic costs
- Joint biomechanics
- Subjective measurements
 - Rating of perceived exertion (RPE)
 - Modified Cooper-Harper
 - CG stability
 - Discomfort
 - NASA TLX
 - Target tracking task
Walkback Subjective Results

- RPE = 11.8
- Cooper-Harper = 3.5
- Discomfort = 1.5
- NASA TLX
 - Physical demand and Effort – two factors contributing to workload
 - 40%, moderate amount of perceived workload
- Target tracking task
 - Participants gamed the system – were aware it was being used to assess cognitive capability
 - Two participants did not game the system
 - Performance was same pre and post for one
 - Increase in time to completion for the other
Integrated Suit Test 1

• Characterize suit parameters that contribute to metabolic costs of operating in a suit
 – Vary suit pressure
 – Vary suit weight
 – Vary inertial mass
• Currently collecting data – projected completion at the end of May 2007
• Subjective measurements
 – Rating of perceived exertion
 – Modified Cooper-Harper
 – Discomfort
 – Thermal comfort
Portable Life Support Subsystem (PLSS)

- Collaboration with...
 - Other NASA Centers
 - Industry
- Design evaluations for packaging PLSS components
- Human Factors personnel offering input on physical and visual access for maintenance and general good human factors practices
Flex PLSS Design Process

- Basic problem – time and money
- Goal – develop process to minimize schedules for design, efficient in redesign for any changes in future (new technology), utilize most effective tools we can find – reduce verification testing time
- Flex PLSS Packaging method allows for reconfiguration of the design – schematics, new technology, etc
- *Design Structure Matrix (DSM)* - standard representation for system architecture that can be used to address modularity and changeability associated with these criteria
EVA Information System

• Collaboration with Glenn Research Center (GRC)
• Proof of concept for a head mounted display and speech recognition system
• Initial human factors evaluation conducted at GRC in April 2007
 – Data is still being analyzed
EVA Information System

• Initial results – time to complete (min:sec ± min)
 – HMD 1st = 22:24 ± 5
 – HMD 2nd = 17:53 ± 5
 – Cue Cards 1st = 17:18 ± 4
 – Cue Cards 2nd = 11:21 ± 5
 – Geology = 6:26 ± 1
EVA Information System

• Initial recommendations for improvement
 – Improve the system’s ability to recover from errors
 – Improve ease of adjustment on HMD, angular adjustment
 – Improve comfort of HMD – pinched head
 – Decrease wait period between keyword and command
 – Add an indicator to the display that voice commanding is activated
 – Add a zoom feature
 – Filter out background noise to reduce false-positives
 – Add a “mute” option
Thank you!

• Any Questions?