The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

Dr Gary Gear – Embry Riddle Aeronautical University
Dr Thomas Mace – NASA/Dryden Flight Research Center

Presented at the American Society for Photogrammetry and Remote Sensing Annual Meeting, Tampa, FL, May 9, 2007
NASA UAS Legacy

Helios

Hyper-X

X-40

UCAV

X-37 (concept)

Commanche

Altair

Altus

APV-3

NASA UAS Legacy
Global Science Needs

- UAS Strategic component of Global Observing System
Shared Airspace
Autonomous and Manned Vehicles

• Contrast to Military Needs
 – No Enemy
 – Non-cooperating A/C
 – Numerous Agencies involved
 • FAA NAS – COA process
 • ICAO International

• Strong Emphasis on ELOS
 – Sense and Avoid (SaA) non-cooperating A/C high priority

• Social Responsibility
 – Predictable decisions mitigating mission compromise situations
Unique Telemetry Needs

• **C2 must expand to support SaA sensor suites**
 – Near Term very heavy reliance on visual clues
 – Eventually image recognition technology can be incorporated in the A/C

• **Science data very different from C2**
 – Sensor WEBs
 – Disruption Tolerant
 – Bursty and Asymmetrical
 – Security requirements different
System of Systems

Flight Center

Science Center

Simulation Center
Pilot in a Bubble

What Is

What Should Be
More than a pretty picture

- Use panoramic cameras to show features a pilot would see but unknown to the DTD
 - Cameras can be spectrally tuned for better clarity than available to a pilot
 - Camera resolution can be modulated
 - Enhances pilot ability to sense non-cooperating aircraft
Satellite Data Fusion

• Add satellite data to the camera images
 – Terrain
 – Land Cover
 – Infrastructure
 – Debris Field
• Simulation Center Fuses the GIS data to improve pilot’s perception
 – Active contributor to the actual mission
• Provides the ability to simulate UAS flight
 – Training
 – Mission compromise simulation
Live Databases

• Graphic Representation
 – Data from ADS-B and Center RADAR (cooperative A/C)
 – On Board RADAR (non-cooperative A/C)

• Provides the ability to represent non-cooperating aircraft in simulation
 – Pilot training for SaA
Two [computer] Brains are better than One

- **Air [Flight Executive]**
 - Above Autopilot in Authority
 - Advises PIC in the event of a compromise situation
 - Able to make socially responsible decisions in the event of lost C2

- **Ground [Simulation Center]**
 - Provides Enhanced Situational Awareness
 - Fuses live camera images with
 - GIS data
 - Live data feeds
 - Provides Image Redundancy
 - Provides Simulation Capability
 - Training
 - V and V
Today, Tomorrow, and Beyond

• Today
 – heavy reliance on visual clues
 – Flight Executive Computer managing Flight Termination

• Tomorrow
 – Visuals enhanced with image recognition
 – On board RADAR
 – Flight Executive involved in compromise mitigation

• Beyond
 – Collision Avoidance built into the A/C flight Control System
 – Flight Executive handles mission compromises
 • Least Risk algorithms
A Beginning