The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

Dr Gary Gear – Embry Riddle Aeronautical University
Dr Thomas Mace – NASA/Dryden Flight Research Center

Presented at the American Society for Photogrammetry and Remote Sensing Annual Meeting, Tampa, FL, May 9, 2007
NASA UAS Legacy

- Helios
- Hyper-X
- X-40
- UCAV
- X-37 (concept)
- Commanche
- Altair
- Altus
- APV-3
Global Science Needs

- UAS Strategic component of Global Observing System
Shared Airspace
Autonomous and Manned Vehicles

• Contrast to Military Needs
 – No Enemy
 – Non-cooperating A/C
 – Numerous Agencies involved
 • FAA NAS – COA process
 • ICAO International

• Strong Emphasis on ELOS
 – Sense and Avoid (SaA) non-cooperating A/C high priority

• Social Responsibility
 – Predictable decisions mitigating mission compromise situations
Unique Telemetry Needs

• **C2 must expand to support SaA sensor suites**
 – Near Term very heavy reliance on visual clues
 – Eventually image recognition technology can be incorporated in the A/C

• **Science data very different from C2**
 – Sensor WEBs
 – Disruption Tolerant
 – Bursty and Asymmetrical
 – Security requirements different
System of Systems

Flight Center

Science Center

Simulation Center
Pilot in a Bubble

What Is

What Should Be
More than a pretty picture

• Use panoramic cameras to show features a pilot would see but unknown to the DTD
 – Cameras can be spectrally tuned for better clarity than available to a pilot
 – Camera resolution can be modulated
 – Enhances pilot ability to sense non-cooperating aircraft
Satellite Data Fusion

• Add satellite data to the camera images
 – Terrain
 – Land Cover
 – Infrastructure
 – Debris Field

• Simulation Center Fuses the GIS data to improve pilot’s perception
 – Active contributor to the actual mission

• Provides the ability to simulate UAS flight
 – Training
 – Mission compromise simulation
Live Databases

• Graphic Representation
 – Data from ADS-B and Center RADAR (cooperative A/C)
 – On Board RADAR (non-cooperative A/C)

• Provides the ability to represent non-cooperating aircraft in simulation
 – Pilot training for SaA
Two [computer] Brains are better than One

• Air [Flight Executive]
 – Above Autopilot in Authority
 – Advises PIC in the event of a compromise situation
 – Able to make socially responsible decisions in the event of lost C2

• Ground [Simulation Center]
 – Provides Enhanced Situational Awareness
 • Fuses live camera images with
 – GIS data
 – Live data feeds
 – Provides Image Redundancy
 – Provides Simulation Capability
 • Training
 • V and V
Today, Tomorrow, and Beyond

• **Today**
 – heavy reliance on visual clues
 – Flight Executive Computer managing Flight Termination

• **Tomorrow**
 – Visuals enhanced with image recognition
 – On board RADAR
 – Flight Executive involved in compromise mitigation

• **Beyond**
 – Collision Avoidance built into the A/C flight Control System
 – Flight Executive handles mission compromises
 • Least Risk algorithms
A Beginning