
Final Report for NAG1-02040

CAPRI:
A Geometric Foundation for Computational Analysis and Design

Robert Haimes
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
haimes@mit.edu

Introduction

The computational steps traditionally taken for most engineering analysis (CFD, structural analysis,
and etc.) are:
• Surface Generation -- usually by employing a CAD system
• Grid Generation -- preparing the volume for the simulation
• Flow Solver -- producing the results at the specified operational point
• Post-processing Visualization -- interactively attempting to understand the results

For structural analysis, integrated systems can be obtained from a number of commercial vendors.
These components couple directly to a number of CAD systems and are executed from within the
CAD GUI. It should be noted that the structures problem is more tractable than CFD; there are
fewer mesh topologies used and the grids are not as fine (this problem space does not have the
length scaling issues of fluids).

For CFD, these steps have worked well in the past for simple steady-state simulations at the
expense of much user interaction. The data was transmitted between phases via files. In most cases,
the output from a CAD system could go IGES files. The output from Grid Generators and Solvers
do not really have standards though there are a couple of file formats that can be used for a subset
of the gridding (i.e. PLOT3D data formats and the upcoming CGNS). The user would have to patch
up the data or translate from one format to another to move to the next step. Sometimes this could
take days. Specifically the problems with this procedure are:

• File based. Information flows from one step to the next via data files with formats specified for
that procedure. File standards, when they exist, are wholly inadequate. For example, geometry
from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as
well as masses of other information of no interest for the Grid Generator). This is particularly
onerous for modern CAD systems based on solid modeling. The part was a proper solid and in
the translation to IGES has lost this important characteristic. STEP is another standard for CAD
data that exists and supports the concept of a solid. The problem with STEP is that a solid
modeling geometry kernel is required to do anything with this type of file.

• ‘Good’ Geometry. A bottleneck in getting results from a solver is the construction of proper
geometry to be fed to the grid generator. With ‘good’ geometry a grid can be constructed in tens
of minutes (even with a complex configuration) using unstructured techniques. Adroit multi-
block methods are not far behind. This means that a multi-million node steady-state solution
can be computed on the order of hours (using current high performance computers) starting
from this ‘good’ geometry. Unfortunately, the geometry usually transmitted from the CAD
system is not ‘good’ in the grid generator sense. The grid generator needs smooth closed solid
geometry. It can take a week (or more) of interaction with the CAD output (sometimes by hand)
before the process can begin.

• One-Way Communication. All information travels on from one phase to the next. This makes
procedures like node adaptation difficult when attempting to add or move nodes that sit on
bounding surfaces (when the actual surface data has been lost after the grid generation phase).

Until this process can be automated, more complex problems such as multi-disciplinary analysis or
using the above procedure for design and optimization becomes prohibitive. There is also no way to
easily deal with this system in a modular manner. One can only replace the grid generator, for
example, if the software reads and writes the same files.

Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric
approach. This makes the actual geometry (not a just discretized version) accessible to all phases of
the analysis. The connection to the geometry is made through an Application Programming
Interface (API) and NOT a file system. This API isolates the top-level applications (grid generators,
solvers and visualization components) from the geometry engine. Also this allows the replacement
of one geometry kernel with another, without effecting the top-level applications. For example, if
UniGraphics is used as the CAD package then Parasolid (UG’s own geometry engine) or UGOpen
can be used for all geometric queries so that no solid geometry information is lost in a translation.
This is much better than STEP because when the data is queried, the same software is executed as
used in the CAD system. Therefore, one analyzes the exact part that is in the CAD system without
translation (and the errors generated during that step).

CAPRI uses the same idea as the commercial structural analysis codes but does not specify control.
Software components of the CAD system are used, but the control of the software session is
specified by the analysis suite, not the CAD operator. This also means that the license issues (may
be) minimized and individuals need not have to know how to operate a CAD system in order to run
the suite.

The CAPRI API

CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified, object-oriented,
hierarchical view of a solid part integrating both geometry and topology definitions, and (2)
programming access to this part or assembly and any attached data.

A complete definition of the geometry and application programming interface can be found in the
document “CAPRI: Computational Analysis PRogramming Interface” appended to this report. In
summary the interface is subdivided into the following functional components:

1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and
querying the operational status as well as closing the system down.

2. Geometry data-base queries -- This group of functions allow all top level applications to figure

out and get detailed information on any geometric component in the Volume definition.

3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap

points directly onto geometric entities.

4. Calculated or geometrically derived queries -- These entry points calculate data from the

geometry to aid in grid generation.

5. Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries

so that the boundary conditions can be specified and stored within CAPRI’s data-base.

6. Tag based routines -- This part of the API allows the specification of properties associated with

either the Volume (material properties) or Boundary (surface properties) entities.

7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary

coupling and allows zooming through Boundary Attachments.

8. Geometric creation and manipulation -- These calls facilitate constructing simple solid entities

and perform the Boolean solid operations. Geometry constructed in this manner has the
advantage that if the data is kept consistent with the CAD package, therefore a new design can
be incorporated directly and is manufacturable.

9. Master Model access – This addition to the API allows for the querying of the parameters and
dimensions of the model. The “feature tree” is also exposed so it is easy to see where the
parameters are applied. Calls exist to allow for the modification of the parameters and the
suppression/unsuppression of nodes in the tree. Part regeneration is performed by a single API
call and a new part becomes available within CAPRI (if the regeneration was successful). This
is described in a separate document.

Components 1-7 are considered the CAPRI base level reader.

CAPRI’s Current Status

The CAD/Geometry Kernel coverage has been broadened under this contract. The tables below
display the status of the various CAPRI components against all supported modelers. The reader
component is the basic level of support allowing for loading and querying topology and geometry.
The Solid Creation and Solid Boolean operation module supports the making of simple solids and
intersecting, subtracting and fusing any solid loaded into or created from within CAPRI. The
Master Model component allows for parametric control of parts as well as the control of the shapes
of certain components. This component can also control defeaturing.

CAD System-> Catia V4 Catia V5 ComputerVision I-DEAS

Interface CAT GEO CAA RADE CADDS
Felisa

(Native) OpenIDEAS

Base Reader X X X X X
Solid Creation &
Boolean Ops

X X X -- X

Master Model X N/A X

CAD System-> Pro/ENGINEER SolidWorks UniGraphics
Interface OpenCASCADE Parasolid Pro/TOOLKIT UGOpen
Base Reader X X X X X
Solid Creation &
Boolean Ops X X X X X

Master Model N/A N/A X X X

It should be noted that the full test matrix has another direction. Each of these components can
function against the complete suite of workstations:

Workstation->
LINUX SGI

Windows
NT/2000/XP

IBM RS/6000
Other UNIX

Catia V4 X X
Catia V5 X
Computer Vision X X
Felisa X X X X Alpha, HP, Sun
I-DEAS X X
OpenCASCADE X X X
Parasolid X X X X Alpha, HP, Sun
Pro/ENGINEER X X X
SolidWorks X
UniGraphics X64bit X X

Significant Accomplishments Under This Contract

Closely coupled integration of Computer Aided Engineering (CAE) applications with the CAD
system presents a significant challenge for most simulation-based analyses and is often overlooked
or more simply avoided. Clearly the kind of on-demand access to the CAD model from the native
CAD system (as handled by CAPRI) must be available in order to streamline the downstream
analysis and design applications. However, achieving this is arduous for at least two reasons and
has major implications for using native CAD models directly in CAE. First, CAD APIs are
extremely complex and significant resources have to be devoted to creating and maintaining the
dedicated connection to a CAE application. Second, CAD access and licenses may be limited in an
engineering enterprise particularly for parallel execution (in cluster computing based)
multidisciplinary analyses or optimization. There are several examples of structural and fluid
analysis packages with dedicated direct connections to CAD systems. However, a major drawback
of these packages is that the user is forced to work within their GUI environment that, in general,
requires manual intervention. This lack of generality for implementing and automating complex
multidisciplinary problems is a fundamental problem. These difficulties in CAE tool integration has
also contributed to the adoption of the translator approach which is not tied to any CAD system and
is viewed as simpler to build into a software system.

The software implementation of CAPRI now illustrates these novel approaches to addressing these
issues. These include:

• CAD-neutral CAE-focused API. The API is focused on simulation-based analysis and
design requiring no expertise in Computational Geometry or specific CAD-vendor API
programming. Writing and maintaining applications that interface with downstream mesh
generators, solvers and optimizers in a tightly coupled manner can be done once through the
API; all of the major CAD vendors are then automatically supported. Tracking various
CAD revisions and releases is handled by CAPRI, simplifying the CAE software
maintenance.

• Lightweight Applications. Building applications that tightly couple to the CAD system can
require a complex build so that all of the software components of the system are linked
together (including components of the CAD system itself). This makes the application
specific to that CAD environment. This is now not the case for CAPRI; the build has been
simplified by encapsulating portions of the API that are CAD-specific into software
components using DLLs or share object libraries. The application link then only requires the
CAPRI libraries. When executing the application the CAD-specific portions are loaded at
runtime. Again, this can greatly simplify upgrading to new revisions of a CAD system
where each version is handled by the appropriate dynamically loaded library. This software
handling enables the application to remain lightweight and truly CAD-neutral, where each
CAD system is handled by its own dynamically loaded back-end.

• Client/Server Deployment. CAE applications that need on-demand access to the CAD
services do not have to be co-located with the CAD resources, and can be distributed among
various disciplines in an enterprise. This enables the best use of an enterprise’s CAD
resources. This also allows for the use of CAPRI on systems that do not support CAD
systems such as Apple’s Macintosh running OS X and ITANIUM based servers (for
example Columbia at NASA Ames Research Center).

 The client/server implementation in CAPRI is based upon SOAP, which uses RPC and
XML to pass the data between client and server. The CAPRI port uses gSOAP, which
provides a pre-compiler that generates the XML (from C structures/C++ class definitions)
and the RPC stubs from the function definitions found in specific headers. The result has
minimal impact as far as the network is concerned, this requires nothing more than what a
Web browser does (at the client-side) and acts like a web server for the CAPRI server
(requiring only an open port). The web-based technologies utilized in CAPRI are described
below:

 SOAP. Simple Object Application Protocol is used as the foundation for CAPRI
client/server. SOAP is RPC based and data gets passed between client and server
using XML. This is all hidden from the CAPRI application programmer.

 Attachments for moving files. DIME is used to move the CAD/Geometry Kernel
files from client to server, so that the server can have easy access. DIME is also used
to move files back to the client after models have been saved. This provides a
situation where access, ownership and permission are not an issue. The server owns
the files (on the server machine) after being transmitted.

 Message Compression. All XML and DIME communication passes through a
compression phase. The data is uncompressed upon arrival. This was done with the
notion that the bottleneck will always be network bandwidth and spending some
processor time to (un)compress the data is a more optimal approach.

 Secure SSL Option. HTTPS can be used for situations that require more security.
There is a secure server and a matching secure client-side dynamic back-end.
Additional steps need to be taken to generate protected certificates and keys.

 Access through proxy servers. When the CAPRI server is not visible through the
local network (but requires a proxy server to get to the machine), the CAPRI client-
side back-end can be notified to go through the proxy server. This is done via
environment variables so that no API changes are required.

Though this contract was neither responsible for CAPRI’s inception or was it the only funding
source during the period, it was primarily responsible for the directions listed above.

Progress over the Last Year

• Maintenance and Support

General maintenance and support of the CAPRI API has been provided in order to assist continued
development of derivative applications. This included assistance with problems encountered with
building against all supported systems, additional I/O issues uncovered as part of application
testing, enhancements to the existing API.

• Client/Server

The first state of the web-based client/server implementation in CAPRI (using gSOAP) had been
conceptualized, written and evaluated at the beginning of this task. It worked and functioned
efficiently for many applications but there are issues in the implementation. The problems
addressed during this last phase of the grant were:

 Multiple clients accessing the same model. The first implementation segregated data from
each client. This was done for security reasons. The server ends up owning all data (on the
machine that the server is running upon) and therefore needs to keep it separate. This causes
a problem in the case of a parallel job where all processes are looking at the same model.
Each will load the model overloading the server with a duplication of data. A scheme was
developed whereby the initial client to load the model (i.e. the owner) can request an
encoded and encrypted key (a character string) that defines the load. If the owner passes this
string to other clients wishing to gain access to the model then the non-owing clients can
load the model by key. The owner is the only client that can change, mark-up or remove the
model from the server. This required no changes to gain access at the API level. Clearly,
this solution deals with the issue of security (ownership/privileges) and permission.

 Collections of CAPRI calls/macros executing at the server. Because of the network-based
nature of the client/server implementation there are some situations where it was noticed
that performance is a problem. This was seen during mesh generation where many
thousands of queries of the geometry may be required in that each query will generate a
request packet and then a response packet. This was mitigated by allowing for collections of
certain CAPRI calls to be concatenated and treated as a single network request/response.
The result provided much greater performance but uncovered other issues with both
Pro/ENGINEER and SolidWorks. These CAD packages have APIs that also operate in a
client/server fashion (specifically, these modes are required for CAPRIs dynamic back-end
operation). This means that the collected group of packets needed to be passed on to each
system as the aggregated whole. This was accomplished by dynamically loading a CAPRI-
based plug-in to be resident directly with the CAD system.

• Continued Improvements in Surface Meshing

Over the last couple of years there has been great success in the use of quadrilateral methods to
quickly generate surface triangulations. This is impressive for CAD Faces that are naturally
trimmed on isoclines where the spacing of the mesh can then be driven by the Edge discretization
alone. The resultant meshes are anisotropic, follow the surface curvature, and have minimal counts
in comparison to the default (isotropic) scheme. Also, the maximum angles found in the
triangulation are well bounded (since these tend to be right-triangles).

During last year grant there were attempts at taking current isotropic surface tessellator and
supporting anisotropic triangular meshing by changing the triangle side swapper. One of the
swapping techniques used in the triangulation scheme drives the tessellation toward isotropic (using
a MinMax predicate). This is done in the underlying surface’s parameter space (u,v). Since the
parameter space is artificial (i.e. not physical) any 2D mapping could be used. Therefore a
transformation from a 2D space that could support an anisotropic stretching to the surfaces
parameter space would be all that is required to achieve the anisotropy found in the quadrilateral
patch method. There are a number of approaches that allow for anisotropic triangular meshing. In
general these schemes locally remap the space and triangulate against some isotropic predicate in
the stretched space. They require a background grid or some way to get local curvature throughout
the surface being meshed. This is difficult in our procedure in that we are attempting to generate the
surface triangulation for the first time (and with no original reference). It is also not clear what
degree of control these approaches offer in regards to mesh orthogonality.

Changing the swapping scheme did not work well, but what did work was an insertion scheme that
placed new vertices at intersections of a (u,v) grid. From preliminary tests this new alignment
scheme provides nice anisotropic meshes but needs further testing. Also, there are now 3 surface
triangulation methods. The selection of the appropriate scheme based on the underling surface and
its trimming must be automated. Part of this task is to look at techniques to automatically select the
appropriate method (either isotropic, quadrilateral templates or alignment). Not much progress was
made. Time and effort was diverted in support of a Quilting package that has been added to
CAPRI. This allows for sliver Faces to be integrated into neighboring (larger) Faces. The triangles
associated with the Face are then merged so less geometry will be presented to the application.

In a real sense Quilting changes the solid part’s topology without affecting the underlying
geometry. This is an important characteristic; the physical object remains unchanged but the
topology is being modified to potentially reflect the engineering analysis (and not the method of
CAD construction).

The effort here was is in support of work done at Syracuse University by Prof. John Dannenhoffer
and has resulted in the following papers:

 Dannenhoffer, J. and Haimes, R., “Surface Parameterization of 3D Configurations via
Quilts”, AIAA Paper 2005-5238, June 2005.

 Dannenhoffer, J. and Haimes, R., “Using Quilts to Generate Grids from Imperfect CAD
Assemblies”, AIAA Paper 2006-0943, Jan. 2006.

Deliverables

Throughout the life of this contract access to CAPRI has been given to NASA Langley Research
Center. This access is the most concrete deliverable in that it embodies all of the research and
development (except for the Quilting) described above.

Access to CAPRI has facilitated in the construction of the NASA Langley Research Center’s grid
generation suite GridEx, which contains both an interactive component and a non-interactive mode
(BatchEx). Being able to query actual geometry (in an easy to build and maintain manner) has also
allowed for the construction of the LaRC software package REFINE that allows for tetrahedral
mesh adaptation. In this solver driven grid modification application CAPRI is used to move
vertices directly on the surfaces of the bounding volume of interest.

