MARINE BOUNDARY LAYER CLOUD PROPERTIES FROM AMF
POINT REYES SATELLITE OBSERVATIONS

Michael Jensen¹, Andrew M. Vogelmann¹, Edward Luke¹, Patrick Minnis², Mark A. Miller¹, Mandana Khaiyer³, Louis Nguyen² and Rabindra Palikonda²,³

¹Brookhaven National Laboratory, Upton, New York
²NASA Langley Research Center, Hampton, VA
³Science Systems and Applications, Inc., Hampton, VA

Corresponding author: Mike Jensen, mjensen@bnl.gov, (631) 344-7021

1. OBJECTIVES

- Use satellite observations to place the AMF surface-based and aircraft observations into a larger-scale context relevant to GCM-sized grids (e.g. 300 x 300 km)
- Quantify the macro- and microphysical properties of California region marine boundary layer clouds.
- Quantify the diurnal cycle of MBL cloud properties from satellite observations

2. CLOUD SCREENING

- Identify GCM-sized boxes containing mainly MBL clouds (cloud fraction > 20%)
- Automated cloud identification algorithm screens to remove scenes containing overlying cirrus and other cloud types
- Compute scene-mean cloud macro- and microphysical properties

3. MACROPHYSICAL PROPERTIES

- Mesoscale cloud structure is quantified using the effective cloud diameter:

\[C_D = \frac{4 \sum A_i}{\sum P_i} \]

\[C_D = \frac{4 \times 0.75}{3} = 1 \]

\[C_D = \frac{4 \times 1.5}{3} = 2 \]

- \(A_i \) = Area of a single cloud element, \(P_i \) = Perimeter of a single cloud element, \(N \) = number of cloud elements

4. CLOUD PROPERTIES

- Large values of \(C_D \) for solid cloud decks. Smaller values for scattered cloud scenes
- Large \(C_D \) generally accompanied by largest optical depth and liquid water path

5. DIURNAL CYCLE

- Max optical depth, LWP and \(R_e \) occur in the morning decreasing through the daytime
- Diurnal cycle of \(C_D \) is consistent with more solid clouds in the morning becoming more scattered in the afternoon.

6. TIME SERIES

- July shows 4-6 day cycle from larger \(C_D \) (more solid) to smaller \(C_D \) (more scattered)
- Large \(C_D \) tends to correlate with large optical depth, large liquid water path

SUMMARY

- \(C_D \) offers a simple measure of MBL cloud organization
- The diurnal cycle of cloud macro-physical properties and \(C_D \) at Pt Reyes are consistent with previous work.
- The time series of \(C_D \) can be used to identify distinct mesoscale organization regimes within the Pt. Reyes observation period

Movie of \(C_D \)