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In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic 

measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the 

Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk 

mitigation studies on noise control devices for a flight test performed at Glasgow, Montana 

in 2005. The noise control devices were designed to target the primary main gear noise 

sources as observed in several previous tests. To accomplish this task, devices to reduce noise 

were built using stereo lithography for landing gear components such as the brakes, the 

forward cable harness, the shock strut, the door/strut gap and the lower truck. The most 

promising device was down selected from test results. In subsequent stages, the initial design 

of the selected lower truck fairing was improved to account for all the implementation 

constraints encountered in the full-scale airplane. The redesigned truck fairing was then 

retested to assess the impact of the modifications on the noise reduction potential. From 

extensive acoustic measurements obtained using a 63-element microphone phased array, 

acoustic source maps and integrated spectra were generated in order to estimate the noise 

reduction achievable with each device. 

I. Introduction 

eroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model at the Virginia Tech Stability 

Wind Tunnel were started in 2002 as part of a NASA contract
1
. Beginning in 2004, Virginia Tech provided 

support to the QTD II (Quiet Technology Demonstrator) program, a joint effort by Boeing Commercial Airplanes, 

NASA, Goodrich Corporation, General Electric, and All Nippon Airways
2,3

. Under the airframe noise element of the 

program, one of the objectives of this partnership was the experimental screening of different noise control concepts 

for a Boeing 777 main landing gear being considered for a flight test to be performed in Glasgow, Montana in 2005. 

 For this effort, several noise control devices were designed by Goodrich and Boeing
4
 and extensively tested at 

Virginia Tech. In the preliminary phase, noise control devices were designed and manufactured in stereo-

lithography for the gear components that were determined to be the most dominant in terms of their contribution to 

the overall noise levels
1,5,6

. In this regard, devices to reduce noise were built for the cable harness, the door/strut gap, 

the shock strut, the wheel brakes and the lower truck. In the case of the lower truck fairing, also referred to as the 

“toboggan” fairing, different designs of varying width and forward section shape were evaluated in order to 

determine the impact on the noise emission for each of these parameters. The devices were tested in multiple 

configurations including combinations of devices, different truck angles, and several flow speeds.  
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 As a result of the preliminary testing of these devices, a new design for the lower truck fairing was achieved, 

constructed, and subsequently tested. The new design took into account installation constraints, such as tire 

deflection and brake cooling effects. Given the promising results obtained in wind tunnel testing, the improved 

lower truck fairing was constructed and tested during the QTD II flight test
7
. 

 Aeroacoustic measurements were performed with a 63-element microphone phased array. The array consists of a 

multi-arm spiral using Panasonic Electret microphones coupled with a conditioning circuit developed at NASA 

Langley Research Center by Humphreys and Shams et al.
8
. Results for several noise control devices are presented 

using acoustic maps and integrated spectra as rendered from conventional beamforming processing. Such results are 

compared to those of the baseline landing gear (i.e. with no noise control devices installed) in order to quantify the 

noise reduction potential of each device as well as combinations of them. 

This work serves as an introduction to a series of papers related to airframe noise reduction efforts under the 

QTD II program. The goal of this set of papers is to show the complete process, from design to wind tunnel testing, 

that led to the full scale implementation of a noise control device in the flight test performed in Glasgow, Montana 

in 2005. In this sense, the design and analysis of the full-scale device by Goodrich
4
 and the airframe noise results 

from the QTD II program, to be presented by Boeing
7
, will complete the mentioned process. 

II. Experimental Setup 

This section describes the experimental setup for the tests conducted at Virginia Tech (VT). For this purpose, 

descriptions are provided for the wind tunnel, the landing gear model, and the microphone phased array. 

A. Wind Tunnel Facility 

The experiments presented in this work were conducted at the Virginia Tech Stability Wind Tunnel shown in 

Fig. 1. The facility is a continuous, closed circuit, single return, subsonic wind tunnel with a 24 ft (7.3 m) long 

square test section of 6 by 6 ft (1.83 by 1.83 m). The acoustic treatment of the tunnel
9
 was not in place at the time of 

the tests presented in this work. The tunnel is powered by a 600 hp DC motor driving a 14 ft (4.26 m) propeller 

providing a maximum speed of about 255 ft/s (280 km/h) for the empty wind tunnel, i.e. M=0.23. The main 

characteristics of this tunnel are a uniform flow throughout the test section and low turbulence intensity. 

 

 

Figure 1. Picture and schematic of the Virginia Tech Stability Wind Tunnel. 

B. Landing Gear Model 

The high fidelity, 26%-scale, 777 main landing gear model used in this study was originally tested under the 

STAR (Subsonic Transport Aeroacoustic Research) program using a semi-span model of the 777 in the NASA 

Ames 40- by 80-ft wind tunnel
6
. The isolated gear model was also evaluated under the AST (Advance Subsonic 

Transport) and QAT (Quiet Aircraft Technology) programs in the NASA Ames 7- by 10-ft wind tunnel
5
. The model 

is shown in Figs. 2a and 2b in the actual landing position. For the current study, the model was mounted on the floor 

of the Stability Wind Tunnel test section, thus, the pictures are presented upside down. 
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 The high-fidelity model features all the 

major gear components: strut, braces, 

torque link, cable harnesses, lock links, 

main door, and wheels. It also includes 

most of the details found in the full-scale 

landing gear, including: oleo lines, cables, 

wheel hubs, brake cylinders, and hydraulic 

valves. The main structure of the model is 

made of steel and aluminum and the details 

are mostly made in stereo lithography up to 

an accuracy of 3mm in full-scale. The main 

differences with the actual landing gear are: 

the wheel hubs do not have the openings 

that allow air to flow freely through the 

wheels, a smaller door located close to the 

wing and attached to the main door is not in 

the model, and the wing cavity is not 

modeled.  

C. Microphone Phased Array 

A 63-element microphone phased array was developed using Panasonic Electret microphones coupled with a 

conditioning circuit developed by NASA
10

. The pattern of this array is an equal-aperture, multi-arm spiral designed 

for VT by J. Underbrink and R. Stoker from the Boeing Company. Figure 3 shows a picture of the array and the 

positioning of the sensors. Sample array responses using conventional beamforming
11-13

 are shown in Fig. 4. The 

beamwidth of this array for a plane parallel to the array at 36” (i.e. similar to testing conditions in the tunnel) is 

given by 
36"

2.45 BW λ= , and the Signal-to-Noise Ratio (SNR) is at least 10 dB. Although the array was designed in 

a nested array configuration, the processing shown in this work includes all microphones. For each configuration, 

the beamforming results for forty-five 1/12th octave bands (band numbers 132 through 176) were computed. These 

bands correspond to center frequencies from 2 to 25 kHz at model scale. However, the anti-aliasing filter of the data 

acquisition system was set to 20 kHz. This action was instigated by the fact that the phased array microphones were 

found to provide reliable levels only up to about 20 kHz. As reported by Humphreys et al.
10

, the microphone 

response is not flat above this frequency. However, as long as the phase is matched, the beamforming maps should 

still be accurate in terms of identifying noise sources. Furthermore, this study was mainly concerned with 

differences in levels when compared to a baseline configuration and, as such, would not be affected by a non-flat 

response of the microphones.  
 

 

Figure 3. 63-element multi-arm spiral VT phased array. a) Picture of the array, and b) microphone locations. 
 

   

Figure 2. High fidelity 26%-scale 777 main landing gear model:      

a) rear and b) front view. 

a) b) 

a) b) 
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Figure 4. 63-element phased array response for a) 5, b) 10, and c) 25 kHz in a plane 36” from the array. 

For aircraft certification 

purposes, the noise emitted by the 

aircraft towards an observer in the 

flyover path is the most important 

component. However, if only a 

phased array in the flyover position 

were used for the measurements, 

most of the noise sources would not 

be identified accurately since they 

would be shielded by the truck and 

wheels. The shielding blocks the 

direct path of propagation assumed 

in the beamforming algorithm. To 

avoid this problem, two different 

array positions were used. The 

phased array was mounted in the 

ceiling of the wind tunnel and close 

to the truck as indicated in Fig. 5a. 

In addition, the array was installed 

in one of the walls of the wind tunnel, on the braces side, as shown in Fig. 5b. Only results with the array in the 

flyover path are shown in this work. 

To account for flow effects, a simple correction for convection was performed based on a test using a speaker at 

the center of the test section and estimations based on the Green’s function for a monopole with flow. As a result, a 

uniform “shifting” of the maps was performed. As reported in the literature
8
, applying shear layer corrections should 

improve the beamforming results in terms of increasing correlation. However, such corrections were not applied to 

obtain the results presented in this work. 

To avoid the hydrodynamic noise induced over the array microphones by the turbulence in the boundary layer of 

the wind tunnel, the microphones were recessed behind a stretched Kevlar cloth. This mounting technique was 

developed and tested at NASA Ames
14

. Since Kevlar can be considered acoustically transparent in the frequency 

range of interest (i.e. up to 20 kHz), the pressure fluctuations on the microphones due to the boundary layer 

unsteadiness are significantly reduced while allowing the sound to propagate through the cloth
14

. None the less, 

given the high tension applied while stretching the cloth, the Kevlar appears as a hard surface to the flow. 

III. Noise Control Devices 

As mentioned before, the noise control devices tested at Virginia Tech were designed by Goodrich and Boeing
4
 

and targeted the most dominant noise sources in terms of their contribution to the overall noise levels as determined 

from previous wind tunnel testing
1,5,6

. The components most responsible for the noise include the cable harness, the 

door/strut gap, the shock strut, the wheel brakes and the lower truck.  

        

Figure 5. Phased array mounted on a) flyover, and b) braces side of the 

landing gear model. 

25 kHz, BW=1.32” 10 kHz, BW=3.3” 5 kHz, BW=6.6” 

b) a) c) SPL [dB] 

b) a) 
 

Phased Array 
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In order to mitigate the noise from the cable harness, a “bull-nose” fairing was designed as a means to 

“streamline” the flow around such a component (Fig. 6). This device showed no significant noise reduction in the 

flyover direction. Hence, results for this device are not presented in this paper. 

To reduce the noise from the door/strut gap and the components in the shock strut region, a fairing was designed 

to plug the gap and cover the upper frontal section of the strut, as shown in Fig. 7. Design constraints such as gear 

retraction were taken into account to avoid interference in all phases of gear operation.  

To eliminate the noise sources emanating from the brake cylinders, a fairing was designed to cover the brake’s 

finer structures and thus streamline the highly interactive flow field. As shown in Fig. 8, depending on the axle, a 

different design was implemented. Given that this design only covered the section exposed to the flow, it still 

allowed for convective cooling of the brakes. 

In the case of the lower truck fairing, also referred to as the “toboggan” fairing, different designs were tested in 

terms of width and forward section coverage in order to determine the impact of each of these design parameters on 

the noise emission. In terms of the forward or upstream section coverage, two distinct segments corresponding to 

90º and 180º arcs were tested. Figure 9b shows the toboggan fairing with both forward segments. Figure 9c shows 

the toboggan with the 90º forward arc installed on the landing gear. The extension of the forward segment from 90º 

to 180º provided little noise benefit. Therefore, only results for the 90º arc are presented in this paper. To determine 

the noise benefits associated with extending the toboggan width, three different designs that were referred to as 

minimum, medium, and maximum width were tested. Such designs are shown in Fig. 10. The minimum width 

toboggan was designed to extend up to the brake cylinders, allowing air to flow to the brakes and not impacting 

convective cooling. The medium width toboggan design extended the coverage to include the brake cylinders. This 

design was determined to be a good choice in terms of maintaining safe clearance from the tires and other truck 

components while maximizing the width. The maximum width toboggan design was an impractical design in terms 

of implementation on the full scale gear and was tested only to determine the maximum noise reduction achievable 

with a toboggan type fairing. 

 

 

Figure 6. a) Detail of baseline gear, b) “Bull-nose” fairing for front cable harness, and c) fairing installed. 
 

 
Figure 7. a) Detail of baseline gear, b) shock strut fairing, and c) fairing installed. 

 

 

c) b) a) 

 

c) b) a) 
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Figure 8. a) Detail of baseline gear showing the brake cylinders, b) brake fairings, and c) fairings installed. 

 

 
Figure 9. a) Baseline gear, b) lower truck fairing (“toboggan”), and c) fairing installed. 

 

 
Figure 10. a) Minimum, b) medium, and c) maximum width “toboggan” fairing 

An alternative concept (independent of the fairings described above) for “streamlining” the flow around the gear 

truck involved changing the alignment of the lower truck from a typical “toes-up” inclination (about 13 degrees) to 0 

degrees inclination with respect to the incoming local flow. 

Several combinations of noise control devices were also tested as well as different flow speeds and truck angles. 

Based on the test results that will be presented in the next section, a modified (near final design) version of the 

toboggan fairing was retested in a later stage. The goal was to implement a fairing that would possess the attributes 

of the maximum width toboggan (provide maximum noise reduction) while accounting for implementation issues in 

full scale, i.e. tire deflection and brake cooling effects. To this end, the minimum width toboggan was modified 

using a silicone elastomer with a polyester/fiberglass stiffening element inserted to extend it as close as possible to 

the tires without compromising functionality. The width of this redesigned fairing falls in between the medium and 

c) b) a) 

c) b) a) 180º forward arc 

90º forward arc 

c) b) a) 

Brake Cylinders 
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maximum toboggan widths. A schematic of the device and a picture of its installation on the model are shown in 

Fig. 11. Design and construction details for the toboggan fairing that eventually was flight tested can be found in the 

paper by Abeysinghe et al.
4
 

 

 

Figure 11. a) Front view, b) section schematic, and c) picture of installed “flight test” toboggan fairing. 

IV. Analysis of Results 

This section discusses the most significant results that led to the down selection of the toboggan fairing as the 

most promising concept and the device to be flight tested. Since several configurations were tested, attention is 

focused only on those devices/configurations that were used to quantify the performance of the final design. 

The analyzed results will be presented using maps of acoustic source strength and deltas in integrated noise 

levels
11

 with respect to a baseline landing gear configuration, i.e. no noise control devices. Although acoustic results 

showed very good data repeatability (even for measurements that were conducted many months apart), the results 

for various gear configurations were compared to their respective baseline acquired in the same test entry. The 

results are presented in model-scale frequencies. 

A. Acoustic Maps 

Figure 12 shows a comparison of the acoustic maps for different noise control devices for a 1/12
th

 octave band 

with center frequency of 3.65 kHz. All levels are referenced to the peak in the baseline configuration across the 

entire scanning region. Figure 12a  provides the baseline configuration map that shows noise sources at the front and 

rear brakes as well as a noise source between the front and center wheel. Figure 12b shows the result of using brake 

fairings on all 6 wheels. With the addition of brake fairings, noise radiation increases in the front brake area (about 1 

dB) and it decreases in the rear brake area. This type of result using brake fairings was found for low frequencies 

and will be more noticeable when analyzing the integrated spectra. Figure 12c shows the acoustic map for the 

minimum width toboggan where noise reduction is observed in the front brake area. This device did not show 

significant noise reduction in the rear brake area for low frequencies, i.e. below 4 kHz. It is worth pointing out that 

the noise source between the front and center wheels is still present, suggesting that such a source is from a 

component in the strut. 

Figure 13a shows the acoustic map for a combination of the minimum width toboggan and brake fairings. As can 

be seen, the noise in the brake area is reduced when compared to the baseline configuration of Fig. 12a. The noise 

reduction efficacy of such a combination is more significant at higher frequencies as will be shown later. Note that 

the strut source is still present. To demonstrate that this source is emanating from the strut, Fig. 13b shows the 

results when the strut fairings are added to the gear in conjunction with the toboggan and brake fairings. As can be 

seen, the noise source between the wheels is reduced, confirming that it is related to a component in the strut. 

Figure 14 shows a comparison of the acoustic maps for the minimum width toboggan and the brake fairings for a 

1/12
th

 octave band with center frequency of 8.2 kHz. Note that in these maps, the noise reduction is more significant 

in the truck and brake areas. This is a trend found for frequencies between 5 and 20 kHz. Also, notice that for higher 

frequencies, the toboggan fairing reduces the noise radiated by the brakes in the flyover direction. 

 

c) b) a) 

Flexible material to 
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Rigid material, 
 i.e. stereo 
lithography 
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Figure 12. Acoustic maps comparison at 3.65 kHz: a) baseline, b) brake fairings, and c) minimum width 

toboggan fairing  
 

 

Figure 13. Acoustic maps comparison at 3.65 kHz: a) combination of minimum width toboggan and brake 

fairings, and b) same configuration plus strut fairings  
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Figure 14. Acoustic maps comparison at 8.2 kHz: a) baseline, b) brake fairings, and c) minimum width 

toboggan fairing  

Figure 15 shows a comparison between the minimum width toboggan and brake fairings that were installed 

separately and in combination, for a 1 /12th octave band with center frequency of 8.2 kHz. In this case, the data for 

the toboggan and brake fairings are the same as in Fig. 14, but the contour map coloring has been modified in order 

to accentuate the differences. Note that the combination of the two noise control devices clearly shows a marked 

improvement over the results obtained from each of the concepts separately. Testing of different toboggan widths 

showed that the noise radiation from the brakes to the flyover path decreases as the width of the device increases. An 

example of such results for the maximum width toboggan is shown in Fig. 15d where the noise reduction observed 

is more significant that the previous combination of truck and brake devices.  This suggests that brake fairings are 

not necessary if the toboggan is wide “enough.” This is mostly related to shielding effects by the toboggan rather 

than localized flow modifications as in the case of the brake fairings. 

For the reason mentioned above, it was desired to have a toboggan fairing as wide as possible. However, 

different constraints arise for such implementation, i.e. brake cooling, tire deflection/rub, and interference with the 

rear wheels steering mechanism. More details on how these and other constraints were addressed in the final design 

can be found in the companion paper
4
 that is devoted to the description of the full scale toboggan fairing. 

After several months of intense design work on the full-scale flight test article, a new toboggan fairing design 

was made available for testing at Virginia Tech (see Fig. 11). The new design was tested in the same facility and 

with the same instrumentation. Other configurations, including the baseline, where also retested. Sample acoustic 

maps from this entry for the baseline and “flight-test” toboggan are shown in Fig. 16 for a 1/12
th

 octave band with a 

center frequency of 8.2 kHz. The corresponding results for 10.3 kHz are shown in Fig. 17. It is evident from both 

figures that a significant reduction in the noise radiated from the truck and rear brakes areas is achieved. This trend 

was observed at most frequencies.  

 Flow 
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Figure 15. Acoustic maps comparison at 8.2 kHz between a) brake fairings, b) min. width toboggan fairing, c) 

combination of minimum width toboggan and brake fairings, and d) maximum width toboggan fairing. 
 

 
Figure 16. Acoustic maps comparison at 8.2 kHz between a) baseline landing gear, and b) flight test toboggan 

(model scale frequency) showing significant noise reduction. 
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Figure 17. Acoustic maps comparison at 10.3 kHz between a) baseline landing gear, and b) flight test 

toboggan (model scale frequency) showing significant noise reduction. 

B. Integrated Spectra Results 

In order to summarize the results and compare the noise reduction potential of each device, the difference in the 

integrated spectra between the previously mentioned devices and the baseline landing gear will be shown next, i.e. 

noise reduction as a function of frequency (in model scale). To this end, the integrated spectrum of each 

configuration was calculated over a volume enclosing the landing gear with a threshold of 10 dB below the 

maximum level. The region “under” the truck was included in the integration to account for variations in the noise 

from sources in the main strut area. The results were normalized to account for the width of the point spread 

function as indicated by Dougherty
11

. 

Figure 18 shows the integrated spectra for the devices presented in the previous section. As mentioned before, it 

was found that the brake fairings do not provide noise reduction at low frequencies (below 4 kHz). At mid 

frequencies (4 to 11 kHz), this fairing shows noise reductions of about 1 to 2 dB. Above 11 kHz, the reduction is 

less than 1 dB. The minimum width toboggan fairing shows no noise reduction at low frequencies and reductions of 

1 to 3 dB at mid frequencies. At higher frequencies, the reduction is about 1 dB. The combination of these two noise 

control devices (minimum width toboggan and brake fairings) behaves similarly to the toboggan only configuration 

below 7 kHz. However, significant improvement is obtained above 7 kHz. As the plot shows, reductions of at least 2 

dB and up to 5 dB are obtained. Aligning the gear with the incoming local flow provides modest noise reduction 

benefits. Overall, gear alignment provides 1 dB noise reduction for frequencies below 4 kHz and between 2 dB to 3 

dB for frequencies above 4 kHz. As expected, the maximum width toboggan shows an improvement in noise 

reduction over the combination of minimum width toboggan and brake fairings. The noise reduction is between 3 

and 8 dB over most of the frequency range. As mentioned before, this last result led to redesigning the toboggan 

fairing in order to maximize the width while accounting for implementation constraints. 

Finally, the “flight-test” toboggan results show that the noise reduction potential is comparable to that of the 

maximum width toboggan. For this device, reductions ranging from 3 to 8 dB are obtained in the frequency range 

from 4 to 20 kHz. This observed noise benefit also reinforces our earlier assertion that beyond a certain width, the 

shielding characteristics of the toboggan fairing render the presence of the brake fairing unbeneficial.  

Note that, given the relative size of the model and the test section, these results were obtained with the phased 

array in the flyover position and thus relatively close to the model. Thus, it is not clear if such values correspond to 

actual noise reduction or the influence of decorrelation effects over the array aperture. This effect would result in 

lower beamforming output and thus lower integration levels, i.e. rendering in some configurations a noise reduction 

higher than the actual one. As suggested by Brooks and Humphreys
13

, the effect of decorrelation could be studied by 

processing the data in “sub-arrays”. Hence, if decorrelation effects are not significant, the integrated spectra values 

should not vary significantly between sub-arrays. However, no studies were carried out to resolve this point. 

b) a) 
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Recently, further testing was conducted at the acoustically-treated Virginia Tech Stability Tunnel to address the 

previously mentioned issues
15

 and those results will be published in the near future.  

 

 

Figure 18. Integrated spectra noise reduction for different noise control devices when compared to baseline 

landing gear (model scale frequencies). 

V. Conclusions 

A series of noise control devices for a Boeing 777 main gear were tested at the Virginia Tech Stability tunnel as 

part of a risk mitigation study in support of the QTD II flight test program. The noise reduction devices targeted the 

major gear noise sources found in previous testing, i.e. the cable harness, door/strut gap, shock strut, wheel brakes 

and lower truck. A down selection was performed based on the aeroacoustic data obtained with a 63-element 

microphone phased array. As a result, the toboggan fairing was redesigned to account for implementation constraints 

in the full-scale gear and tested again in the same facility. The results for the redesigned fairing showed significant 

noise reduction in the lower truck and brake areas. It was found that the use of brake fairings is not necessary if the 

toboggan has the correct width, i.e. extending as close as possible to the wheels. The integrated spectra for the flight 

test toboggan showed noise reduction of at least 4 dB over most of the frequency range when the array was located 

in the flyover position. Given the promising results obtained in wind tunnel testing, this device was selected for the 

QTD II flight test of a Boeing 777 performed in Glasgow, Montana in 2005. The aligned gear concept was also 

chosen for the flight test due to the combination of modest noise reduction benefits and the relative ease of 

implementation. 

It is noted, however, that due to the close proximity between the array and the model, decorrelation effects over 

the array aperture may have affected the beamforming output and thus the integrated levels, i.e. the reported noise 

reduction levels can not be directly extrapolated or attributed to an observer in the far field. No studies were carried 

in this work to quantify such effects. However, recent studies to address this issue were conducted at the renovated, 

acoustically-treated Virginia Tech Stability Tunnel and will be published in the near future. 
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