AUTOMATIC COLLISION AVOIDANCE TECHNOLOGY (ACAT)

Donald E. Swihart
Air Force Research Laboratory
WPAFB OH 45433

UVS 2007 Paris, France June 12, 2007
Automatic Ground Collision Avoidance (AGCAS)

- Uses Digital Terrain Elevation Data (DTED) for mapping functions
- Uses Navigation data to place aircraft on map
- Scans DTED in front of and around aircraft
- Uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required

Automatic Air Collision Avoidance (AACAS)

- Uses data link to determine position and closing rate
- Contains several canned maneuvers to avoid collision
- Automatic maneuvers occur at last instant and both aircraft maneuver when using data link
- System can use sensor in place of data link

ACAT
• Auto-GCAS recovers an aircraft before it penetrates a minimum clearance distance from the terrain
 - Projects predicted trajectory over a digital terrain map
 - Warns pilot of impending collision
 - Automatically performs recovery at the last instant if the pilot takes no action
 - Features
 - Recovery model easily tailored to different aircraft
 - Embedded integrity monitoring prevents erroneous activation
Development History

- **Auto GCAS Development**
 - *Initial Research & Development – 1984*
 - Limited Envelope
 - Flat Earth
 - *Follow-on Research & Development – 1990*
 - Expanded Envelope
 - Digital Terrain Database
 - *Nuisance Criteria Testing – 1997*
 - *Final Development Testing – 1998*
 - Full Envelope
 - *LFT&E GLOC Demonstration – 1999*
 - *ACC Evaluation – 2000*

- **Over 2200 Auto-Recoveries in Flight**
 - Pilot Activated, SWIM. GLOC, DTS, Flat Earth
- **Over 700 DTS Based Auto-Recoveries**
- **Thousands of Simulation Runs**
- **Over 30 Evaluation Pilots**
- **Prevented the Loss of the AFTI/F-16 in 1995**
• Auto ACAS prevents penetration of a clearance distance from other aircraft
 – Evaluates escape trajectories against other aircraft
 • Does not impede tight formation
 • Uses flight rules such as “UAVs always evade first”
 – Initiates the escape maneuver at last instant
• Features
 • Can utilize many sensors depending on requirements
 • Embedded integrity monitoring prevents erroneous activation
Development History

- Auto ACAS Development
 - Auto GCAS Follow-On – 1999
 - Concept Study – 2000
 - Concept Study
 - Algorithm Development – 2001
 - Focus on Vehicle Control not Sensors
 - Data Link as Primary Sensor
 - Research Flight Evaluation – 2003
 - Develop & Flight Demonstrate Technology
 - 3 Piloted Fighter Aircraft
 - Surrogate UAV
 - Cooperative & Non-Cooperative Sensors (UAV applications.)
 - Demonstration of Automatic Collision Avoidance
 - Buildup for Unmanned Testing
 - Identify Sensor & System Requirements
 - Nuisance Criteria Testing – TBD
 - Final Development Testing – TBD
 - Hosted in 2 Different Architectures
 - 416 Evasions Initiated in Flight
 - Thousands of Simulation Runs
 - 8 Evaluation Pilots
Modular Integrated Architecture
Analytical Findings

- Substantial reductions in F/A CFIT and MIDAIR mishap rates require automatic intervention
- ACAT are feasible & have been proven effective
- If implemented on F-16, F/A-18, F-22, and F-35, ACAT could save over the estimated service lives
 - LIVES 78 pilots
 - ASSETS $6.7B
 - CAPABILITY 136 aircraft

136 aircraft ~ 8 squadrons
SUMMARY

• Auto GCAS
 – Robust & Ready for Production Integration
 – Would Prevent Most CFIT Mishaps in the Fighter Community
 • Inclusion of GPS Navigation Technologies
 • Inclusion of Latest Digital Terrain Data
 – Should be Converted to a More Modular Architecture

• Auto ACAS
 – Promising Technology
 • Platform Specific Requirements & Development Needed
 – Could Prevent Many MAC Mishaps in the Fighter Community
 • Affordable Sensors Appear to be the Primary Limit to Performance
 • Most mishaps occur during training and data link operation can be provided
 – Should be Integrated with Auto GCAS

• Automatic Collision Avoidance Requirements
 – Provide means to ease transition to other air vehicles including UAVs
Automatic Collision Avoidance Technology

Flight Test Development & Evaluation

Mark A. Skoog
NASA Dryden Flight Research Center
UVS 2007
Paris, France
June 12th, 2007
Auto GCAS
Flight Test
Development & Evaluation
Avoid Impeding Operations

Concept

- Nuisance Activations
 - Definition
 - An Unwarranted Recovery as Judged by a situationally aware pilot in command
 - Nuisance Factors
 - A Recovery Must be Both Aggressive and Timely
Avoid Impeding Operations
An Aggressive Recovery

- Nuisance Activations
 - Definition
 - An Unwarranted Recovery as Judged by a situationally aware pilot

- Nuisance Factors
 - A Recovery Must be Both Aggressive and Timely

- Aggressive Recovery
Avoid Impeding Operations
A Timely Recovery

The Recovery Initiation Must be Timely

- Measure of Performance
 - Time Available
The Recovery Initiation Must be Timely

- Measure of Performance
 - Time Available
The Recovery Initiation Must be Timely

- **Performance**
 - Objective ≤ 1.0 sec. Time Available
 - Threshold ≤ 1.5 sec. Time Available
Auto GCAS Results

30 Missions 38.3 Flight Hours

- Excellent Ground Collision Prevention
 - Successful in all 316 Cases Tested
 - 81 Successful Cases Run from Crash Data Recorder

Mishap Type
- Pressed Bomb Attack
- Pressed Strafing Run
- SDO into Mountain
- GLOC Supersonic
- NVG Disorientation
- Gear Up Landing

<table>
<thead>
<tr>
<th>Mishap Type</th>
<th>Number of Times Flown</th>
<th>Dive Angle (deg)</th>
<th>Bank Angle (deg)</th>
<th>True Airspeed (kts)</th>
<th>Load Factor (g)</th>
<th>Average Altitude Pad (ft)</th>
<th>Minimum Altitude Pad (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air GLOC</td>
<td>8</td>
<td>20-32</td>
<td>100-132</td>
<td>303-467</td>
<td>0.9-1.4</td>
<td>238</td>
<td>57</td>
</tr>
<tr>
<td>Night Vision Goggle Disorientation</td>
<td>5</td>
<td>13-18</td>
<td>74-93</td>
<td>419-327</td>
<td>1.0-1.1</td>
<td>69</td>
<td>48</td>
</tr>
<tr>
<td>Pressed Bombing Attack</td>
<td>3</td>
<td>20-32</td>
<td>6-0</td>
<td>443-675</td>
<td>0.7-1.1</td>
<td>190</td>
<td>104</td>
</tr>
<tr>
<td>Pressed Strafing Attack</td>
<td>31</td>
<td>11-14</td>
<td>0-8</td>
<td>343-583</td>
<td>0.8-1.0</td>
<td>139</td>
<td>51</td>
</tr>
<tr>
<td>g-Induced Loss of Consciousness</td>
<td>-</td>
<td>5-14</td>
<td>0-70</td>
<td>455-583</td>
<td>0.0-1.2</td>
<td>559</td>
<td>139</td>
</tr>
<tr>
<td>Subsonic</td>
<td>-</td>
<td>5-85</td>
<td>1-102</td>
<td>455-583</td>
<td>0.0-1.2</td>
<td>559</td>
<td>139</td>
</tr>
<tr>
<td>g-Induced Loss of Consciousness</td>
<td>-</td>
<td>60 and 77</td>
<td>1 and 4</td>
<td>1.0 and 1.1 Mach</td>
<td>-0.6 and 0.6</td>
<td>98</td>
<td>-3</td>
</tr>
<tr>
<td>Supersonic</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Altitude Split -S</td>
<td>1</td>
<td>29</td>
<td>178</td>
<td>266 KCAS</td>
<td>21 deg</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>Level Flight Into Mountain</td>
<td>11</td>
<td>0</td>
<td>0-4</td>
<td>461-508</td>
<td>0.2-1.2</td>
<td>200</td>
<td>55</td>
</tr>
<tr>
<td>Spatial Disorientation Into Mountain</td>
<td>5</td>
<td>30</td>
<td>1-9</td>
<td>475-701</td>
<td>1.0-1.3</td>
<td>230</td>
<td>13</td>
</tr>
<tr>
<td>Gear-Up Landing</td>
<td>3</td>
<td>0-5</td>
<td>0-5</td>
<td>188-211 KCAS</td>
<td>1.1-1.5</td>
<td>13</td>
<td>-6</td>
</tr>
</tbody>
</table>

Calibrated Airspeed (knots)

-30 -20 -10 0 10 20 30 40 50 60 70

Dive Angle (degrees)

-30 -20 -10 0 10 20 30 40 50 60 70

Mountainous Terrain Testing

Smooth Terrain Testing
Auto GCAS Results

- **Nuisance Free**
 - Initiates Recovery After Pilot Would
 - Nominally 0.25 Seconds Prior to Required Time
 - Pilot Nuisance Threshold is 1.2 Seconds
 - Nuisance Free Flight at 30 Feet Possible
- SRTM Shuttle Digital Terrain Data
Auto ACAS Results

- Successful Proof of Concept
- Collision Avoidance
 - Head-On
 - Maneuvering Flight
 - Multi-Ship
 - Non-Cooperative (viewed from intruder)
 - Overtaking

- Nuisance Evaluation Incomplete
 - Initiates Recovery After Pilot Would
 - Wingman Work Not Completed

- Follow-On Work Needed
 - Apply Vehicle Specific Requirements
 - Integrate with Vehicle Specific Sensors
 - Complete Nuisance Evaluation
 - Integrate with Auto GCAS
Automatic Collision Avoidance Technology

Flight Test

Conclusions
Top-Level Requirements for Ground Collision Avoidance

Prioritized

1. Do not Cause a Mishap
 - System Wide Integrity Management
 • Do not fly lead into wingman
 • Do not exceed operating limits

2. Avoid Impeding Operations
 - Avoid Unwarranted (nuisance) Activations

3. Avoid Collisions
 - CFIT

4. Minimize Integration Effort (FRRP Requirement)
 - For F-16, F-35 & others
 - Interface definitions
Minimize Integration Effort

• Concept
 – Create a plug & play software capability
 – Ensure interoperability between all platforms

• Requirements
 – Create a modular functionally partitioned software architecture with clear interface requirements
 – Performance: Leave behind a regression level capability for future platform integration
 – Mid-Level Requirement Examples
 a) Establish a common core modular software architecture
 b) Establish the interfaces between the modules
 c) Document the process for tailoring the modules to specific platform requirements
Questions