AUTOMATIC COLLISION AVOIDANCE TECHNOLOGY (ACAT)

Donald E. Swihart
Air Force Research Laboratory
WPAFB OH 45433

UVS 2007 Paris, France June 12, 2007
Automatic Collision Avoidance

- **Automatic Ground Collision Avoidance (AGCAS)**
 - Uses Digital Terrain Elevation Data (DTED) for mapping functions
 - Uses Navigation data to place aircraft on map
 - Scans DTED in front of and around aircraft
 - Uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required

- **Automatic Air Collision Avoidance (AACAS)**
 - Uses data link to determine position and closing rate
 - Contains several canned maneuvers to avoid collision
 - Automatic maneuvers occur at last instant and both aircraft maneuver when using data link
 - System can use sensor in place of data link
Auto GCAS

• Auto-GCAS recovers an aircraft before it penetrates a minimum clearance distance from the terrain
 - Projects predicted trajectory over a digital terrain map
 - Warns pilot of impending collision
 - Automatically performs recovery at the last instant if the pilot takes no action
- Features
 - Recovery model easily tailored to different aircraft
 - Embedded integrity monitoring prevents erroneous activation
Development History

• Auto GCAS Development
 – Initial Research & Development – 1984
 • Limited Envelope
 • Flat Earth
 – Follow-on Research & Development – 1990
 • Expanded Envelope
 • Digital Terrain Database
 • Full Envelope
 – LFT&E GLOC Demonstration – 1999
 – ACC Evaluation – 2000

– Over 2200 Auto-Recoveries in Flight
 • Pilot Activated, SWIM, GLOC, DTS, Flat Earth
– Over 700 DTS Based Auto-Recoveries
– Thousands of Simulation Runs
– Over 30 Evaluation Pilots
– Prevented the Loss of the AFTI/F-16 in 1995
Auto ACAS prevents penetration of a clearance distance from other aircraft
- Evaluates escape trajectories against other aircraft
 - Does not impede tight formation
 - Uses flight rules such as “UAVs always evade first”
- Initiates the escape maneuver at last instant
- Features
 - Can utilize many sensors depending on requirements
 - Embedded integrity monitoring prevents erroneous activation
• Auto ACAS Development
 – Auto GCAS Follow-On – 1999
 – Concept Study – 2000
 • Concept Study
 – Algorithm Development – 2001
 • Focus on Vehicle Control not Sensors
 – Data Link as Primary Sensor
 • Develop & Flight Demonstrate Technology
 – 3 Piloted Fighter Aircraft
 – Surrogate UAV
 – Cooperative & Non-Cooperative Sensors (UAV applications.)
 – Demonstration of Automatic Collision Avoidance
 – Buildup for Unmanned Testing
 • Identify Sensor & System Requirements
 – Nuisance Criteria Testing – TBD
 – Final Development Testing – TBD
 – Hosted in 2 Different Architectures
 – 416 Evasions Initiated in Flight
 – Thousands of Simulation Runs
 – 8 Evaluation Pilots
• Substantial reductions in F/A CFIT and MIDAIR mishap rates require automatic intervention
• ACAT are feasible & have been proven effective
• If implemented on F-16, F/A-18, F-22, and F-35, ACAT could save over the estimated service lives
 – LIVES 78 pilots
 – ASSETS $6.7B
 – CAPABILITY 136 aircraft

136 aircraft ~ 8 squadrons
• Auto GCAS
 – Robust & Ready for Production Integration
 – Would Prevent Most CFIT Mishaps in the Fighter Community
 • Inclusion of GPS Navigation Technologies
 • Inclusion of Latest Digital Terrain Data
 – Should be Converted to a More Modular Architecture

• Auto ACAS
 – Promising Technology
 • Platform Specific Requirements & Development Needed
 – Could Prevent Many MAC Mishaps in the Fighter Community
 • Affordable Sensors Appear to be the Primary Limit to Performance
 • Most mishaps occur during training and data link operation can be provided
 – Should be Integrated with Auto GCAS

• Automatic Collision Avoidance Requirements
 – Provide means to ease transition to other air vehicles including UAVs
Automatic Collision Avoidance Technology

Flight Test Development & Evaluation

Mark A. Skoog
NASA Dryden Flight Research Center
UVS 2007
Paris, France
June 12th, 2007
Auto GCAS

Flight Test

Development & Evaluation
Avoid Impeding Operations

Concept

- Nuisance Activations
 - Definition
 - An Unwarranted Recovery as Judged by a Situationaly aware Pilot

- Nuisance Factors
 - In command

A Recovery Must be Both Aggressive and Timely

Aggressive but not timely

Timely but not aggressive

Recovery Initiation
Avoid Impeding Operations
An Aggressive Recovery

- Nuisance Activations
 - Definition
 - An Unwarranted Recovery as Judged by a situationally aware pilot
 - Nuisance Factors
 - A Recovery Must be Both Aggressive and Timely
Avoid Impeding Operations
A Timely Recovery

The Recovery Initiation Must be Timely

- Measure of Performance
 - Time Available
The Recovery Initiation Must be Timely

- Measure of Performance
 - Time Available

Too Late

Time Available

Delayed Recovery Profile
The Recovery Initiation Must be Timely

- **Performance**
 - **Objective** \(\leq 1.0 \text{ sec. Time Available} \)
 - **Threshold** \(\leq 1.5 \text{ sec. Time Available} \)

\[
T_o = \frac{h_{\text{min}}}{(V_{\text{init}} + T_o + a_{\text{init}}) + V_{\text{init}} \cdot \sin(y_{\text{min}})}
\]

Where:
- \(h_{\text{min}} \)
- \(V_{\text{init}} \): Initial Velocity
- \(T_o \): Time Available
- \(a_{\text{init}} \): Initial Acceleration
- \(y_{\text{min}} \): Minimum Approach Angle

Nuisance Criteria

Too Soon
- Recovery Initiation

Too Late
- Time Available

Too Soon
- Time Available

Too Late
- Recovery Initiation
Auto GCAS Results

30 Missions **38.3 Flight Hours**

- **Excellent Ground Collision Prevention**
 - Successful in all **316** Cases Tested
 - **81** Successful Cases Run from Crash Data Recorder

- **Pressed Bomb Attack**
- **Pressed Strafing Run**
- **SDO into Mountain**
- **GLOC Supersonic**
- **NVG Disorientation**
- **Gear Up Landing**

<table>
<thead>
<tr>
<th>Mishap Type</th>
<th>Number of Times Flown</th>
<th>Dive Angle (deg)</th>
<th>Bank Angle (deg)</th>
<th>True Airspeed (kts)</th>
<th>Load Factor (g)</th>
<th>Average Altitude Pad (ft)</th>
<th>Minimum Altitude Pad (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Score</td>
<td>8</td>
<td>20-32</td>
<td>100-132</td>
<td>303-467</td>
<td>0.9-1.4</td>
<td>238</td>
<td>57</td>
</tr>
<tr>
<td>Night Vision Goggle Disorientation</td>
<td>5</td>
<td>13-18</td>
<td>74-93</td>
<td>419-327</td>
<td>1.0-1.1</td>
<td>69</td>
<td>48</td>
</tr>
<tr>
<td>Pressed Bombing Attack</td>
<td>20</td>
<td>20-32</td>
<td>6-0</td>
<td>443-675</td>
<td>0.7-1.1</td>
<td>190</td>
<td>104</td>
</tr>
<tr>
<td>Pressed Strafing Attack</td>
<td>19</td>
<td>0-8</td>
<td>0-7</td>
<td>363-483</td>
<td>0.7-3.7</td>
<td>27</td>
<td>-2</td>
</tr>
<tr>
<td>g-Induced Loss of Consciousness</td>
<td>7</td>
<td>54-86</td>
<td>1-102</td>
<td>455-583</td>
<td>0.0-1.2</td>
<td>559</td>
<td>139</td>
</tr>
<tr>
<td>Subsonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g-Induced Loss of Consciousness</td>
<td>2</td>
<td>60 and 77</td>
<td>1 and 4</td>
<td>1.0 and 1.1 Mach</td>
<td>-0.6 and 0.6</td>
<td>98</td>
<td>-3</td>
</tr>
<tr>
<td>Supersonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Altitude Split -S</td>
<td>1</td>
<td>29</td>
<td>178</td>
<td>266 KCAS</td>
<td>21 deg</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>Level Flight Into Mountain</td>
<td>11</td>
<td>0</td>
<td>0-4</td>
<td>461-508</td>
<td>0.2-1.2</td>
<td>200</td>
<td>55</td>
</tr>
<tr>
<td>Spatial Disorientation Into</td>
<td>5</td>
<td>30</td>
<td>1-9</td>
<td>475-701</td>
<td>1.0-1.3</td>
<td>230</td>
<td>181</td>
</tr>
<tr>
<td>Mountain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear-Up Landing</td>
<td>3</td>
<td>0-5</td>
<td>0-5</td>
<td>188-211 KCAS</td>
<td>1.1-1.5</td>
<td>13</td>
<td>-6</td>
</tr>
</tbody>
</table>
Auto GCAS Results

- **Nuisance Free**
 - Initiates Recovery After Pilot Would
 - Nominally 0.25 Seconds Prior to Required Time
 - Pilot Nuisance Threshold is 1.2 Seconds
 - Nuisance Free Flight at 30 Feet Possible
- **SRTM Shuttle Digital Terrain Data**
Auto ACAS Results

- Successful Proof of Concept
- Collision Avoidance
 - Head-On
 - Maneuvering Flight
 - Multi-Ship
 - Non-Cooperative (viewed from intruder)
 - Overtaking
- Nuisance Evaluation Incomplete
 - Initiates Recovery After Pilot Would
 - Wingman Work Not Completed
- Follow-On Work Needed
 - Apply Vehicle Specific Requirements
 - Integrate with Vehicle Specific Sensors
 - Complete Nuisance Evaluation
 - Integrate with Auto GCAS

325 - 580 Knots Calibrated Airspeed

Timeliness (sec)

Flight Test (Initial Corrupted Software)
Simulation (Initial Corrupted Software)
Simulation (Final Corrected Software)
Top-Level Requirements for Ground Collision Avoidance

1. Do not Cause a Mishap
 - System Wide Integrity Management
 - Do not fly lead into wingman
 - Do not exceed operating limits

2. Avoid Impeding Operations
 - Avoid Unwarranted (nuisance) Activations

3. Avoid Collisions
 - CFIT

4. Minimize Integration Effort (FRRP Requirement)
 - For F-16, F-35 & others
 - Interface definitions
Minimize Integration Effort

• Concept
 – Create a plug & play software capability
 – Ensure interoperability between all platforms

• Requirements
 – Create a modular functionally partitioned software architecture with clear interface requirements
 – Performance: Leave behind a regression level capability for future platform integration
 – Mid-Level Requirement Examples
 a) Establish a common core modular software architecture
 b) Establish the interfaces between the modules
 c) Document the process for tailoring the modules to specific platform requirements
Questions