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Abstract 
 

 

Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the 

leading imaging modality in future human space flight programs.  While trauma sonography (TS) 

has been well recognized for terrestrial trauma settings, the technique had to be evaluated for 

suitability in space flight prior to adopting it as an operational capability.  The authors found the 

following four-phased evaluative approach applicable to this task: 1) identifying standard or novel 

terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques 

with suggested modifications on the ground (1g) either in clinical settings or in animal models, as 

appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and 

implementing for clinical use in space.  In Phase I of the TS project, expert opinion and literature 

review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models 

were developed and tested in ground studies, and clinical studies were carried out in collaborating 

trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced 

Gravity Laboratory.  Preliminary results of the first three phases demonstrated potential clinical 

utility of TS in microgravity. Phase IV studies have begun to  address crew training issues, on-board 

imaging protocols, and data transfer procedures necessary to offer the modified TS technique for 

space use. 

 

 

Keywords: microgravity, sonography, abdominal injury, thoracic injury, human space flight, 
International Space Station 
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1. Introduction 

  

 Practical restrictions on mass, power, volume, communications, and training of space crews have 

resulted in a very modest medical capability aboard the International Space Station (ISS).  The current 

response to a serious trauma sustained on Space Shuttle or the ISS is intended to be immediate 

evacuation to a definitive care facility on Earth. The Soyuz capsule continues to be the main means of 

evacuation from ISS. The probability and the severity of injury in space will increase due to the greater 

number of hours spent on orbit and the multitude of demanding tasks including movement and 

construction of large masses, which, once accelerated in weightlessness, could deliver crushing or 

lacerating blows[19,23,24,36]. Given such risks, diagnostic capabilities on board the ISS should be 

maximized to prevent unnecessary medical evacuation on the one hand, and to increase the chances of 

survival and recovery if the trauma sustained results in a serious injury, on the other. 

 

2. Trauma Capability Requirements for ISS 

 

  In rating the “probable incidence versus impact on mission and health” for space missions, the 

National Aeronautics and Space Administration (NASA) places trauma at the highest level[2].  With 

accurate diagnosis, many traumatic injuries could be temporized or treated by relatively simple 

measures. In previous reviews, inadequate volume resuscitation, poor airway control, and delayed or 

missed appreciation of abdominal and chest injuries were the main causes of preventable death in 

isolated and rural treatment facilities [11,17,20,50].  Physical examination is often not sensitive for 

detecting intra-peritoneal injuries, especially with a concomitant central nervous system injury or altered 

level of consciousness [41,53]. While the need for rapid clinical diagnosis of hemo- or pneumothorax is 
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an emphasized principle in trauma care, many cases are easily missed and only diagnosed by chest 

radiography (X-ray).  Standard techniques for imaging injuries include conventional X-ray, sonography, 

computed tomography (CT), and invasive procedures such as diagnostic peritoneal lavage (DPL) and 

surgical endoscopy.  The ISS is  not equipped to support CT, radiography, or surgical endoscopy, and a 

DPL carries greater risks of iatrogenic injuries due to the lack of gravitational bowel retraction away 

from the anterior abdominal wall[9].   

 

In space, any suspected abdominal or thoracic trauma would need to be treated as a surgical 

emergency until proven otherwise, possibly mandating evacuation to a tertiary care facility on the 

ground.  An unnecessary evacuation would cause significant mission impact and a very high expense.   

As an ultrasound system was present onboard the ISS as a research device, a potential was recognized 

for its use as an accurate and safe diagnostic and interventional tool that could be used in multiple 

anatomical areas if proper techniques were developed for its effective operational application. 

 

3. Trauma Sonography 

 

The ISS Human Research Facility (HRF) Phillips HDI 5000 ultrasound system has been 

specially modified for space flight to support biomedical research on ISS, and could provide the 

capability to perform sonographic examinations.  Trauma sonography (TS) is noninvasive, fast, safe, 

effective, repeatable, and tele-transmittable, and can screen for the presence of intra-cavitary (peritoneal, 

pericardial, and pleural) hemorrhage or visceral leakage [3,5,28,29,43,44].  The most established 

terrestrial indication for TS is screening for injury after abdominal trauma.  This has been defined as the 
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Focused Assessment with Sonography for Trauma (FAST), an exam that does not look for individual 

organ injuries, but instead focuses on the detection of intra-peritoneal fluid [47].   Recently, ultrasound 

has also been used to detect fluid collections in the pleural space and pericardium, and plays an 

increasing role in penetrating abdominal trauma [4,30,44,48,51].  Another potential component of TS 

involves the diagnosis of a pneumothorax.  Unlike abdominal injury, the sonographic detection of 

pneumothorax had never been evaluated for accuracy in the acute trauma resuscitation setting.  The 

direct detection of a pneumothorax by sonography is presumably hampered by the high acoustic 

impedance of air-containing structures [49], and only artifacts are expected to be seen at the visceral-

parietal pleural interface.  By demonstrating this interface with real time sonography though, 

investigations had discovered that thoracic injuries such as pneumothorax and hemothorax could be 

reliably excluded with an expanded TS technique[13-15,26,27,33,34,42,46].  

 

 Before TS could be adopted for use in space medicine, potential limitations needed to be 

addressed.  TS relies on the demonstration of gravitationally dependent sonolucent areas (fluid stripes) 

in typical anatomic locations. Understanding the behavior of intra-cavitary fluid in weightlessness (0-g) 

is important; if the fluid does not localize to the expected anatomical sites, erroneous interpretations of 

trauma sonograms could render the study non-diagnostic or even misleading.  The clinical use of 

sonography to detect pneumothorax in acute trauma was previously unexplored even for conventional 

use in 1-g.   

 

4. The Clinical Care Capability Development Program (CCCDP)  
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The Clinical Care Capability Development Program (CCCDP) was initiated at the Johnson Space 

Center to enhance the medical capabilities onboard the ISS.  It was recognized that in the weightless 

environment, standard medical techniques and devices, such as gravity-driven intravenous (IV) 

infusions, spinal anesthesia, or suction devices, would be ineffective.  The NASA Reduced Gravity 

Research Program uses a KC-135 aircraft to achieve effective microgravity for intervals of up to 30 

seconds during flight with parabolic manoeuvres.  Short segments of 0-g alternate with 1.8-g intervals 

during “pull-up” manoeuvres, requiring the lengthy procedures to be broken up into multiple 20-25 

second segments. Experiments aboard the KC-135 on training mannequins or animal models have 

demonstrated the feasibility of endotracheal intubation, mechanical ventilation, cardiopulmonary 

resuscitation (CPR),  IV infusions, IV anaesthesia, central arterial, venous, and intracranial pressure 

monitoring, wound debridement and closure , splinting and casting of limbs, and insertion of urinary or 

nasogastric catheters[9,35,36].  Open surgical procedures on anaesthetised animal models have included 

exploratory laparotomy with visceral and vascular procedures[8].  Endoscopic procedures have included 

laparoscopy[7,10], thoracoscopy[10], and cystoscopy[22].     

 

5. The Operational Ultrasound Project 

 

The Operational Ultrasound Project was a specific NASA initiative to study the suitability of TS 

for operational space medicine use, using the four phase approach (Table 1.).  Commitment to each 

subsequent level was contingent upon success of the previous level.  In general, if sufficient evidence of 

efficacy already exists, phase II trial may be considered unnecessary.  Both phases II and III might 

require animal studies prior to human investigations due to ethical considerations. In the case of TS, all 

four phases were deemed sequentially appropriate[39]. 
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Phase I: Identification of an effective standard terrestrial technique, or recognition of a 
potential non-standard or novel potential technique 
 

 

The trauma study was conceptualized and organized into two main portions; 1) abdominal 

sonography, evaluating the FAST in 0g, and 2) thoracic sonography, evaluating the effectiveness of 

ultrasound imaging for the diagnosis of hemo- and pneumothorax.  In this initial phase, it was 

recognized that abdominal TS has replaced Diagnostic Peritoneal Lavage (DPL) as the screening test of 

choice for blunt abdominal trauma in the majority of North American trauma centers [3].  The potential 

use of sonography to detect pneumothoraces was also recognized[14,40].  These indications thus 

warranted further evaluation of TS for space, as sonography is the imaging modality most suitable for 

use in space medicine. 

 
Phase II: Validation of the technique in clinical practice or animal models (1g) 
 
 
 Many FAST trials have been conducted in clinical practice to demonstrate its excellent accuracy 

and safety [5,6,31,37,38,43,44,52]. The Phase II of our study, therefore, specifically focused on refining 

the technique for future microgravity use.  For the detection of abdominal fluid, ground studies were 

only required to validate the porcine model for human TS.    In fully anesthetized animals, we studied 

the ability of sonography to detect aliquots of fluid injected into specific intraperitoneal locations. In 

contrast with some  previous reports [1], we found good correlation between the known volumes of fluid 

and the imaging data [25]. 

 

 The ability to diagnose pneumothorax has a high priority in space medicine, given the severe 

consequences of a failure to identify  pneumothorax, the difficulty a non-clinician would have in making 
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a clinical diagnosis with a stethoscope in a noisy environment[21], and the need to avoid the risks of 

unnecessary tube thoracostomy.  Unlike FAST, the sonographic diagnosis of pneumothoraces was still a 

largely unproven technology. To investigate this potential, both animal and human studies were 

undertaken in normal gravity before any evaluation in Phase III could be considered.   

 

Clinical human studies were conducted to evaluate the effectiveness of sonography in detecting 

pneumothoraces in trauma victims at two international trauma centers.  A pilot prospective study at the 

Detroit Receiving Hospital demonstrated reliable detection of pneumothorax, and revealed that normal 

sonographic findings had a negative predictive value of 100% [15].  Data from companion studies at the 

Vancouver General Hospital using CT as the gold standard correlated well with the Detroit findings 

[32,42].  All studies suggested that chest sonography may be more accurate than supine chest 

radiography in detecting traumatic pneumothorax [15,26,32,42].  Pleural fluid and air behavior and their 

sonographic representations were also further examined in Vancouver.  A porcine model of 

pneumothorax was created and validated, with controlled introduction of air aliquots in an anesthetized 

animal with sonographic monitoring.  After subsequent evacuation of air, the normal pattern of pleural 

motion consistently returned [46].  

 

 
Phase III: Validation and refinement of the technique in microgravity environment (0g) 
 

 

After the phase II success, a decision was made to proceed with an evaluation of TS in parabolic 

flight.  A series of KC-135 microgravity flights were performed to determine the ability to diagnose 

abdominal and chest trauma in a porcine model using sonography equipment with both an advanced 

high-definition system (HDI-5000, ATL/Phillips,  Bothell, WA) and a 2.4 kg portable ultrasound 
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scanner (Sonosite-180, Sonosite Inc., Bothell, WA).  Prior to flight, catheters were either 

laparoscopically pre-positioned, or inserted blindly using a closed DPL technique in the abdomen for air 

or fluid introduction during 0g exposures.  Fluid was injected during periods of microgravity to simulate 

the effects of traumatic injury in low earth orbit[25]. Laparoscopic and thoracoscopic visualization of 

these catheters and other surgical procedures were also performed. The ability to detect fluid and air in 

the thorax using sonography in microgravity was also investigated[18]. A catheter was placed in the 

right chest cavity during a level flight (1-g), to introduce air and fluid during the following 0-g 

exposures.   

 

From all the videotapes of the main TS studies, individual segments corresponding to each 

hypergravity and microgravity period were randomized and combined into  a series of segments on a 

videotape, with references to time and gravitational configuration removed.  A CD ROM describing the 

project and explaining a standardized scoring system was sent to noted experts in sonography.  This 

blinded review subsequently confirmed that TS in parabolic flight is a suitable technique with accuracy 

comparable to that on the ground, and that the FAST exam could be completed with a thoracic 

component without significant time penalty and with considerable clinical gain [25].  One limitation of 

this study though, was the posterior loculation of intra-abdominal fluid during the 1.8-g pullout 

maneuver. Injected fluid was found to form at the catheter injection site during 0-g and did not loculate 

to the 1-g conventional ultrasound portals until the 1.8-g pullout. 

 

After the initial phase III studies had provided proof of concept using the animal models, further 

flights were carried out to refine the techniques to provide ultrasound image acquisition with human test 

subjects.  Initially, the procedures for two-person (operator and subject) scanning were developed. The 
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most effective means to restrain both the operator and the patient was the ISS crew medical restraint 

system (figure 1).  Next, the procedures for remote guidance of a non-skilled ultrasound operator by 

telemedicine transmission were developed with an expert either on the ground, or onboard but isolated 

from the operator. Finally, multiple techniques of self-scanning were attempted by operators of varying 

skill levels and the position and techniques of choice for self-scanning were determined (figure 2.). 

Following the KC-135 procedural validation, a procedure set for ISS on-orbit scanning was written, with 

plans for further space flight validation. 

 
 
Phase IV: Operational implementation of the technique for use in space (0g) 
 
 

Implementation of an ultrasound examination such as the FAST on-orbit required end-to-end 

testing to validate the procedures not only for the imaging itself, but also for deployment of the 

hardware, configuration of power, cooling, data storage and protection, and communications.   The 

protocols also included both two-person and self scanning by the Crew Medical Officer, depending on 

who the test subject is.  To evaluate this concept, a complete FAST examination with a thoracic 

component was performed aboard the ISS using a self-scanning technique under remote guidance from 

the ground (Figure 3.)[45].  To further explore the potential of the on-board US; just-in-time training, 

combined with remote experienced physician guidance was evaluated to evaluate the ability to perform 

detailed analyses of the rotator cuff and the eye[12,16].  Both examinations provided diagnostic quality 

images that were downlinked to remote experts who provided both positioning feed-back as well as 

remote interpretation.  Such techniques may provide a useful approach to complex medical tasks 

performed by nonexperienced personnel in a variety of remote settings, including current and future 

space programs.  Further reports regarding other sonographic applications and resulting data for a range 

of space medicine questions are expected  in the near future.  
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8. Conclusions 

 

The seamless integration of a standard accepted terrestrial technique (FAST) and a novel largely 

unproven diagnostic strategy (sonography for pneumothoraces) into the same organizational and 

logistical research methodology illustrates the adaptability and flexibility of the four-phased hierarchal 

approach.  We believe that this approach will provide an approach to evaluating other future potential 

technologies for operational space medicine. The current translation of the successful results of the 

Phase I-III phases into an operationally tested technique for the limited space medicine armamentarium 

is an ongoing task. One of the major limiting factors is the nonmedical background of the operators; for 

this reason, interest is currently focused not only on the delivery of expertise from the ground as 

appropriate in the Low Earth Orbit scenario, but also on increasing the autonomy of the mission through 

adaptive tutorials, guidance algorithms, and other proficiency enhancement software, non-real-time 

focused telementoring, and telemedical methodology.  The knowledge learned in these investigations 

will allow continued research and planning for the space medicine capabilities for future space 

exploration. Telemedical aspects of these developments are directly applicable to many terrestrial 

settings with limited medical resources and specialized expertise. 
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Tables 

 

Table 1. The Clinical Care Capability Development Project (CCCDP) Approach 

 

PHASE I:  Identification of an effective current terrestrial standard technique used on 

humans  

or  

recognition of a non-standard or novel potential technique. 

PHASE II:  Validation of the technique in clinical practice or animal models (1-g). 

PHASE III:  Validation and refinement of the technique in a microgravity analogue 

environment (0-g) 

PHASE IV:  Operational implementation of the technique for use on humans in space (0-g). 
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Figure 1. Two-crew-member sonographic technique for ISS being simulated in parabolic 
flight (patient and examiner) 
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 Figure 2. One-person sonographic technique for ISS being simulated in parabolic flight 
(patient is the examiner) 
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Figure 3. Astronaut Peggy Whitson performing self-imaging FAST examination aboard 
the International Space Station 

 
 

   
 

 22



  
 

 23


	2. Trauma Capability Requirements for ISS

