Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

David Voracek
Presenting the
Flight Test Analysis and Evaluation done by:
Robert Clarke,
Michael J. Allen, Ryan P. Dibley,
John Hodgkinson and Joseph Gera

NASA Dryden Flight Research Center

F/A-18 AAW Airplane

F/A-18 AAW Control Surfaces

- **Trailing edge flap**: +45°/-8°, 18°/s
- **Inboard leading edge flap**: +34°/-5°, 15°/s
- **Outboard leading edge flap**: +34°/-10°, 45°/s
- **Rudder**: ±30°, 56°/s
- **Stabilator**: +10.5°/-24°, 40°/s
- **Aileron**: +45°/-25°, 100°/s
Flight Test Background

- **Phase I** - from Nov 02 to Jun 03
 - Flutter clearance, air data calibration, aerodynamic and loads model development
- **Phase II** - from Dec 04 to Mar 05
 - Boeing & DFRC CLAW designs
- **Phase IA** - Mar 05
 - Aeroservoelastic research
- **Phase IIA** - Mar 05
 - CLAW’s at several test points were redesigned
Roll Control Effectiveness Regions

AAW Design Test Points

AAW Phase I Test Maneuvers

- OBES ASE/flutter clearance
- Air data calibration
 - Tower flyby
 - Level accel’s
 - POPU’s
 - Slow β sweeps
- Simulated OLEF failure (left OLEF)
- OBES pitch and roll doublets
- Demonstration maneuvers
 - 5-g WUT
 - 1-g bank-to-bank/360° rolls (incremental build-up to full stick or load limit)
 - 4-g RPO
OBES Pitch Doublets

OBES Roll Doublets
Phase I - Lessons Learned

• Phase I flight tests using OBES provided good data for aerodynamic and loads model development, but hindsight showed some of the doublet maneuvers were too small
• Phase I results showed no tendency for aileron reversal (flexibility of the aileron may have contributed to this)
• The AAW airplane was unable to accomplish any testing at two of the highest dynamic pressure test points
• Aileron hinge moment loads were a design driver for the Phase II CLAW’s
Control Law Development and Verification & Validation Testing

- Both Boeing and NASA DFRC teams developed control laws for each design test point
 - Boeing used ISMD design process
 - NASA used CONDUIT® design process
- Verification testing and limited validation testing conducted by Boeing (FAST and piloted HIL)
- Extensive HIL V&V testing conducted at DFRC
 - Aerodynamic modeling issues were examined for safety-of-flight
 - IADS displays were used as part of test (built confidence in them before they were used for flight test)
 - Several errors in the flight code caught and fixed
 - Rudder trim gain had incorrect value
 - Transient free switches caused control surfaces to drift
AAW Phase II RFCS Envelopes

AAW 1-g Phase II Flight Test

• 1-g bank to bank and 360° rolls
 – Tested the primary AAW technology (ability to roll the airplane using only wing control surfaces)
 – Tested the ability of the control laws to achieve acceptable roll performance and flying qualities while maintaining loads within limits

• Learned how well the aerodynamic and loads models predicted the vehicle’s response (issues were linearity and superposition)
Region I - Subsonic 1-g Rolls

Region I - Subsonic 1-g 360° Roll
Region II - Supersonic 1-g Rolls

Region III - Subsonic 1-g Rolls

Region III - Subsonic 1-g 360° Roll

Roll Axis HOS/LOS Comparison
Region II - Supersonic (open-loop)

$\tau = 0.25$
Roll Axis HOS/LOS Comparison
Region II - Supersonic (closed-loop)

\[\tau = 0.22 \]

AAW Phase II Elevated-g Flight Test

- Windup Turn
 - Tested the ability of the control law designs to reduce wing loads (maneuver load control) or replicate basic F/A-18 trim schedules

- Rolling Pull Out
 - Tested the primary AAW technology (ability to roll the airplane using only wing control surfaces)
 - Tested the ability of the control laws to achieve acceptable roll performance and flying qualities while maintaining loads within limits

- Learned how well the aerodynamic and loads models predicted the vehicle’s response (issues were linearity and superposition)
Region I - Subsonic 4-g RPO
Region I - Subsonic 4-g RPO

Phase II - Lessons Learned

• The RFCS worked well in both Phases I and Phase II
• The AAW program was the first program at DFRC to utilize a RFCS in a safety of flight critical envelope
• The IADS® displays worked well for safety monitoring
• Comparison of the flight data and predicted airplane response ranged from fair to excellent