Spaceflight Decompression
Sickness Contingency Plan

Joe Dervay, M.D.
Spaceflight Decompression Sickness Contingency Plan

Dr. Joe Dervay

- Approach
- DCS Contingency Plan Overview
- Extravehicular Activity (EVA) Cuff Classifications
- On-orbit Treatment Philosophy
- Long Form Malfunction Procedure (MAL)
- Medical Checklist
- Flight Rules
- Crew Training
- Flight Surgeon / Biomedical Engineer (BME) Training
- DCS Emergency Landing Site
Mission Support

On-orbit Flight Control Room (FCR) Staffing

Surgeon Console - FCR
Spaceflight Decompression Sickness Contingency Plan

Dr. Joe Dervay

<table>
<thead>
<tr>
<th>Current ISS Prebreathe Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Four hour In-suit (Originally accepted by testing. Currently acceptable by analysis)</td>
</tr>
<tr>
<td>- Campout (Accepted by analysis of related data/similarity to shuttle 10.2 psi staged protocol)</td>
</tr>
<tr>
<td>- Exercise Prebreathe (Accepted by testing utilizing the criteria below)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accept Criteria for ISS EVA Prebreathe Protocols*</th>
</tr>
</thead>
<tbody>
<tr>
<td>- One-year “DCS Risk Definition & Contingency Plan” effort designated accept criteria of research protocol</td>
</tr>
<tr>
<td>» Decompression Sickness (DCS) ≤ 15 % at 95% CL</td>
</tr>
<tr>
<td>» Grade 4 Venous Gas Emboli (VGE) ≤ 20 % at 95% CL</td>
</tr>
<tr>
<td>» No Type II (serious) DCS</td>
</tr>
</tbody>
</table>

This criteria was not applied to the shuttle protocols
• Operational Experience
 – To date, there have been 141 person-EVAs conducted with 10.2 psi Staged PB Protocol
 » 12-16 hr stay at 10.2 --- 20 Final PB
 » 16-20 hr stay at 10.2 --- 4 75 min
 » 20-24 hr stay at 10.2 --- 12 60 min
 » 24 hr > stay at 10.2 ---- 105 50 min
 – In no case has there been any reported symptoms or signs of DCS
OBJECTIVE:

• Develop enhanced plan to diagnose, treat, and manage on-orbit DCS
 – Achieve new level of DCS awareness among flight controllers, astronauts, and the medical community

• Historically, few drivers to modify existing plan

• Significant upcoming increase in EVA activity to build and maintain ISS - “Wall of EVA’s”

• Important to involve International Partners with plan
APPROACH:

- Johnson Space Center multi-disciplinary team: Medical Operations, Astronaut Office, EVA Office, Mission Operations Directorate

- Consultation with military, civilian, and commercial experts

- Review of literature and databases

- Analysis of past Mission Control “Simulation” scenarios

- Overall plan reviewed by expert committee chaired by Dr. Lambertson (1998)
EVA “CUFF CLASSIFICATION” SYSTEM:

- Simple operational classification of DCS symptoms relevant to EVA crewmember

- Provides clear communication of symptoms and associated operational response.

- Defines actions required to place payload in safe configuration and repress affected crewmember

- Sensible system to encourage symptom reporting
EVA CUFF CLASSIFICATIONS

<table>
<thead>
<tr>
<th>Cuff Class</th>
<th>Symptoms</th>
<th>Response</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mild pain, at single or multiple sites and/or single extremity paresthesia. Difficult to distinguish from suit pressure points. -Symptoms do not interfere with performance.</td>
<td>Report in post EVA PMC. No future EVA impact.</td>
<td>1-8</td>
</tr>
<tr>
<td>2</td>
<td>Moderate cuff 1 symptoms that interfere with performance.</td>
<td>Terminate EVA for both crew members, perform worksite clean-up only, minimize activity of affected crew member. Perform repress.</td>
<td>3,6 9-10</td>
</tr>
</tbody>
</table>

Set up PMC post repress.
EVA CUFF CLASSIFICATIONS (cont.)

<table>
<thead>
<tr>
<th>Cuff Class</th>
<th>Symptoms</th>
<th>Response</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Severe cuff 1 symptoms or migratory, trunkal or multiple site paresthesia, unusual headache.</td>
<td>Terminate EVA. Assisted return of affected crew member to airlock, buddy perform worksite safing, then airlock repress. Set up PMC.</td>
<td>12,13</td>
</tr>
<tr>
<td>4</td>
<td>Serious symptoms – Central neurological, cardiopulmonary.</td>
<td>Abort EVA. Crew assisted return to airlock. Repress affected crew member. Buddy perform worksite safing, then airlock depress, repress. Set up PMC.</td>
<td>14-19</td>
</tr>
</tbody>
</table>
RATIONALE:

- Spacesuit itself creates pressure points, joint pains, and local paresthesias

- Majority of pain symptoms (86%) in historic database improved or remained the same with time

- Low risk of mild or moderate symptoms progressing to serious

- Worksite safing important for potential Shuttle de-orbit as well as Station operations

- May require 30-45 min. transit to airlock from worksite location

- With serious symptoms, may need to repress affected crewmember ASAP while solo crewmember completes clean-up tasks
TREATMENT PHILOSOPHY:

- Oxygen, pressure, and time are definitive measures
 - Fluids and medications are adjunctive

- Provide higher pressures and longer times than proven 2-hr. Ground Level Oxygen (GLO) – treat gas phase, not just symptoms

- Avoid breaking suit integrity for 20-30 min. for installation of Bends Treatment Apparatus (BTA) [increases suit pressure to 8 psi]

- Development of treatment flows, extensions

- Conversion into Malfunction (MAL) Procedures

- Enhanced Medical Checklist
 - Aftercare
 - Addresses late and recurrent “hit”
Terminate EVA; In Airlock on SCU

If STS at 10.2 psi
- Inspect Suit
- Repress STS to 14.7 psi
- ISS at 14.7 psi

If STS at 14.7 psi
- ISS at 14.7 psi

Stay in Press Mode
- 20 Min in Suit
(10.2 + 4.3 = 14.5 psi)

Possible Suit LiOH Change out

Remain in Suit
- 150 Min.
(14.7 + 4.3 = 19 psi)

Sx Unresolved, Worse or No Change
- 20 Min. Extension
- Doff Suit

If any symptoms remain, Check MCC/PMC
(Possible Additional O₂, BTA, Orlan Ops.)

No Rx Required
- CMO PE/Neuro Check
- Hydrate (Isotonic Fluid po, 1 liter/hr)
- Limit activity
- PMC

Aftercare
- Periodic Medical Eval.
- RTD 24 Hr.
- Reduced Pressure/EVA (Case by Case)
(72 Hr. - 7 Days)

Block 1

Sx Unresolved, Worse or No Change
- 20 Min. Extension
- Doff Suit

Sx Resolved

Class 1

No Rx Required

If STS at 10.2 psi
- Stay in Press Mode
- 20 Min in Suit
(10.2 + 4.3 = 14.5 psi)

Sx Resolved

Remain in Suit
Additional 160 Min.

Doff Suit

- CMO PE/Neuro Check
- Hydrate (Isotonic Fluid po, 1 liter/hr)
- Limit activity
- PMC

Aftercare
- RTD 24 Hrs.
- Medical Check Prior to EVA (72 Hr)

Class 2,3

Terminate EVA; In Airlock on SCU

Repress

 PMC

ISS at 14.7 psi

Block 1

A

B

Sx Resolved

Doff Suit

- CMO PE/Neuro Check
- Hydrate (Isotonic Fluid po, 1 liter/hr)
- Limit activity
- PMC

Aftercare
- RTD 24 Hrs.
- Medical Check Prior to EVA (72 Hr)
DCS Neurological exam:

- Simple exam to assess symptoms, and follow over time (in-suit & out-of-suit)
- Can be performed by non-physician Crew Medical Officer (CMO)
- Challenge to perform exam with patient in the suit

Facial Nerves	16 Facial Muscles: Crewmember raises eyebrows, squeezes eyes shut and puffs up cheeks without difficulty.	AB	NL
Strength	17 Arm Bending Strength: Crewmember bends elbow, with palm towards face and holds for two seconds against examiner resistance. Repeat both sides.	AB	NL
	18 Leg Bending Strength: Crewmember bends knee and holds for two seconds against examiner resistance. Repeat both sides.	AB	NL
Coordination Functions	19 Finger-to-Finger: Starting with hands wide apart, Crewmember easily and accurately touches fingertips together with eyes closed.	AB	NL
Sensory Function	20 Gross Sensation: Examiner squeezes Crewmember’s forearms, feet and knees through suit. Crewmember should feel squeezing of the forearms, feet and legs.	AB	NL
Spaceflight Decompression
Sickness Contingency Plan

Medical Operations
Dr. Joe Dervay
Medical Operations

Dr. Joe Dervay

Spaceflight Decompression Sickness Contingency Plan
MEDICAL KITS

• IV Fluids
 – Shuttle: 3.1 liters normal saline
 – ISS: 12.1 liters normal saline

• Medication
 – Compiled to cover broad range of potential conditions
 » Includes limited quantities of Dexamethasone and Lidocaine

• ISS Respirator – Autovent 2000 (Allied Health)

• ISS Defibrillator – PD 2000 (Zoll Medical)
FLIGHT RULES:

- Pre-established rules for Flight Control Team to respond in coordinated manner

- Avoid miscommunication across multiple disciplines

- Documents Cuff Classes, deorbit requirements to Primary Hyperbaric Care site (3 CONUS, Hickam, Guam), deorbit within 10 hrs. for unresolved Type II symptoms
<table>
<thead>
<tr>
<th>Medical Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Joe Dervay</td>
</tr>
</tbody>
</table>

Spaceflight Decompression Sickness Contingency Plan

TRAINING:

- **Astronauts**
 - MAL checklists
 - New class on Medical Evaluation of DCS
 - Physiology, symptoms, treatment, neuro exam
 - Video of DCS Neurological exam

- **Flight Surgeon/Biomedical Engineer**
 - DCS syllabus, console requirements, CME courses

- **Mission Control Simulations**
DCS EMERGENCY LANDING SITES

• Primary Hyperbaric Care Landing Sites
 – Chamber capabilities, proximity to trauma center, points of contact being coordinated with DDMS medical personnel

• Russian Landing Site Capability and Response
 – Work in progress to further document plan
Medical Operations
Spaceflight Decompression
Sickness Contingency Plan
Dr. Joe Dervay

PRP EXERCISE STRATEGIES

Upright dual arm and leg cycle exercise (ALE)

Semi-recumbent intermittent light exercise simulating astronaut tasks (ILE)
RESULTS: 2 HOUR PROTOCOLS
(not to scale)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time (min)</th>
<th>Activity</th>
<th>DCS Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0-100</td>
<td>Rest</td>
<td>10 min</td>
</tr>
<tr>
<td>II</td>
<td>110-150</td>
<td>Rest</td>
<td>75% VO₂ peak</td>
</tr>
<tr>
<td></td>
<td>150-210</td>
<td>Light Work</td>
<td>40 min</td>
</tr>
<tr>
<td>III</td>
<td>210-215</td>
<td>Rest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>215-250</td>
<td>Light Work</td>
<td>95 min Light Work</td>
</tr>
<tr>
<td>IV</td>
<td>250-525</td>
<td>Rest</td>
<td></td>
</tr>
</tbody>
</table>

4 hr EVA Simulation
Mission Support

- Extravehicular Activity (EVA) Monitoring
Medical Operations

Spaceflight Decompression Sickness Contingency Plan

Dr. Joe Dervay

DCS Contingency Plan

EVA Checklist Development

Improved On-Orbit DCS Treatment

DCS Flight Rules Development

Ground Support Infrastructure

DCS Disposition Policy

Shuttle / EMU

ISS / EMU

Russian / ORLAN

Insuit Treatment

BTA Mods

Hyperbaric Chamber Technology Dev.

Adjunctive Drug Therapy

Mission Control

DCS Simulation Program

Crew Flight Surgeon Training

Primary Hyperbaric Landing Sites

Cooperative USAF/NASA Programs

Russian EMS Plan
EVA “CUFF CLASSIFICATION” SYSTEM:

- Simple operational classification of DCS symptoms relevant to EVA crewmember
- Provides clear communication of symptoms and associated operational response
- Defines actions required to place payload in safe configuration and repress affected crewmember
- Sensible system to encourage symptom reporting
FLIGHT RULES:

- Pre-established rules for Flight Control Team to respond in coordinated manner

- Avoid miscommunication across multiple disciplines

- Documents Cuff Classes, deorbit requirements to Primary Hyperbaric Care site (3 CONUS, Hickam, Guam), deorbit within 10 hrs. for unresolved Type II symptoms
20.1 DCS TREATMENT

1. Determine Cuff Class
 - Cuff Class 1
 - Cuff Class 2 or 3 (Report to MCC)
 - Cuff Class 4 (Report to MCC)

2. Continue EVA
 - If symptoms resolve upon REPRESS, go to Cuff Class 2
 - Report to Surgeon next PM

3. Terminate EVA (Cuff Cl. 7)
 - Unaffected crewmember slow safety tether
 - Perform worksite cleanup and/or PLB saing
 - MCC for PLB config
 - Perform INGRESS (Cuff Cl. 4)

 If terminating for Cuff Class 3:
 - FMC on AVG 1
 - COMM Mode - HL
 - AUD CTR UHF AVG 2 - T/R
 - AG 1 - OFF

 (L2)
 - O2/N2 CNTLR VLV SYS 1,2 (two) - OP
 - Perform PRE-REPRESS (REPRESS Cue Card)
 - Perform REPRESS, cmd step 2 (REPRESS/CUE Card)
 - Perform DCS exam (MED Cl)

 Rest on SCU

 MCC requires EMU LCH changeout?

 YES
 NO

4. Perform LCH REPLACEMENT
 (CREWMEMBER IN SUIT) EMU CONT @MH, completing steps 3, 17, 18

5. Can P < 10.2?

 YES
 NO
 11

 - Perform 10.2 PSI MAINTENANCE
 (10.2 PSI CABIN)
 - Leave 02 ACT - PRESS for 20 min

 OCS signs or symptoms resolved?

 YES
 NO
 10

 - Leave 02 ACT - PRESS for addtl 160 min
 - CMO report changes in OCS symptoms per OCS exam criteria to Surgeon as requested

12

NOTE
DO NOT perform POST EMERGENCY REPRESS
- Abort EVA (Cuff Cl. 6) with ingress asept from unaffected crewmember
- Unaffected crewmember perform PLB saing

If single crewmember abort:
- Outer hatch Equal vlv caps (two) - remove
- Unstow resuscitator from O2/SMS (MED Cl)
- CPR STATION, OXYGEN SUPPLEMENTAL

Crewmember conscious?

YES
NO

- Can crewmember speak in full sentences w/o respiratory distress?

YES
NO

18

19
RESULTS: 90 MIN PROTOCOLS
(not to scale)

Time (min) 0 160 200 250 550
Altitude (ft) 0

V-1
Rest 44 min 2/2: 60% 3 DCS/10 trials = 30% 4 hr EVA

V-2
Rest 34 min 3/2: 60% 0/2 = 0% Simulation

30K
Spaceflight Decompression Sickness Contingency Plan

Medical Operations

Dr. Joe Dervay
Spaceflight Decompression Sickness Contingency Plan

Dr. Joe Dervay

4 hr In-suit Protocol Timeline
(Note: Pre-sleep time not shown)

<table>
<thead>
<tr>
<th>1:15</th>
<th>2:45</th>
<th>2:57</th>
<th>6:57</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST SLEEP 75 min</td>
<td>EVA PREP 90 min</td>
<td>Purge</td>
<td>EMU PREBREATHE 4 hours</td>
</tr>
<tr>
<td>C/L Depress (30 min)</td>
<td>* Metox C/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:27</td>
<td>13:57</td>
<td>15:1</td>
<td></td>
</tr>
<tr>
<td>*EVA PET = 6:30</td>
<td>Rep</td>
<td>POST EVA w/o H2O</td>
<td></td>
</tr>
</tbody>
</table>

Note: Assume depress pump and EMERG MPEV & AL VAJ; 30 min C-Lk depress without built in hold at 5psi. With 2 hours of Pre-sleep, STS Crew Day length = 17:17.

EVA DAY SUMMARY
• Post Sleep (1 hour 15 mins total)
• EVA Prep (1 hour 30 mins)
 – EVA Prep for Donning (30 mins)
 – Suit Donning at 10.2 (1 hour)
• Suit Purge (12 mins)
 – Airlock Repress to 14.7
• In-suit Prebreathe (4 hours)
• Crewlock Depress to vacuum (30 mins)
• EVA tasks (6 hours 30 mins)
• Airlock Repress (20 mins)
• Post EVA without EMU H2O Recharge or METOX Regeneration (1 hour)
• Pre Sleep (2 hours)
CEVIS Exercise Protocol Timeline

Spaceflight Decompression Sickness Contingency Plan

Dr. Joe Dervay

EVA DAY SUMMARY

- **Post Sleep (1 hour 15 mins)**
- **EVA Prep (Total of 2 hours 50 mins)**
 - Mask Prebreathe (1 hour 20 mins)
 - 10 mins exercise for EV1
 - 10 mins exercise for EV2
 - 10.2 psi Airlock Depress (20 mins)
 - Mask Prebreathe Termination
 - Suit Donning at 10.2 (1 hour)
- **Suit Purge (12 mins)**
 - Airlock Repress to 14.7
- **In-suit Prebreathe (60 mins)**
- **Crewlock Depress to vacuum (35 mins)**
- **EVA tasks (6 hours 30 mins)**
- **Airlock Repress (20 mins)**
- **Post EVA without EMU H2O Recharge or METOX Regeneration (1 hour)**
- **Pre Sleep (2 hours)**

<table>
<thead>
<tr>
<th>POST SLEEP 75 min</th>
<th>EVA PREP 170 min</th>
<th>Purge</th>
<th>EMU Prebreathe (60 min)</th>
<th>C/L Dep (35 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise PB/Prep for Donning - 80 min on mask total</td>
<td>EMU Donning 55 min</td>
<td>Ck</td>
<td>Rep</td>
<td></td>
</tr>
<tr>
<td>50 min on mask prior to start of 10.2 depress</td>
<td>20 min Dep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV1 ex*</td>
<td>EV2 ex*</td>
<td>Req 45 min mask P/B after exerc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 min reqd before below 11.8 psi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* EV1 must start exercise within 10 min after PB initiate, EV2 must start exercise within 25 min after PB initiate to maintain 45 minute of mask time after exercise per FR

Note: Assume depress pump and EMERG MPEV & AL VAJ; 40 min C-Lk depress with built in hold at 5psi PET = 25. With 2 hours of Pre-sleep, **STS Crew Day length = 15:42.**
Shuttle 10.2 PSI Staged Protocol Timeline

<table>
<thead>
<tr>
<th>Time at 10.2 psi</th>
<th>Initial Prebreathe Time</th>
<th>Final EMU Prebreathe Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 minutes</td>
<td>60 minutes</td>
<td>60 minutes</td>
</tr>
<tr>
<td>40 minutes</td>
<td>24 hours</td>
<td>50 minutes</td>
</tr>
<tr>
<td>20 minutes</td>
<td>16 hours</td>
<td>60 minutes</td>
</tr>
<tr>
<td>10 minutes</td>
<td>12 hours</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

The less time spent at 10.2, the longer the Final EMU Prebreathe time will be; thus, resulting in an overall longer crew day length.

* If the EVA is scheduled later than 36 hours from 10.2 Dep, the Initial PB may be eliminated.

** Note: Assume depress with AIRLK DEPRESS vlv; 15 min. With 2 hours of Pre-sleep, STS Crew Day Length = 14:17.

** Shuttle 10.2 PSI Staged Protocol Protocol Timelines**

- Pre Sleep (2 hours)
- EVA Prep (1 hour)
- EVA Prep for Donning (20 mins)
- EVA Prep (1 hour 15 mins total)
- EVA Prep (1 hour)
- EVA Prep at 10.2 psi (12 hours minimum)
- STS Crew Day Length = 14:17

EVA Day Summary (continued)

- In-suit Prebreathe (40 to 75 mins depending on the time at 10.2 psi)
- Crewlock Depress to Vacuum (15 mins)
- EVAC tasks (6 hours 30 mins)
- EVA Depress (7 hours 15 mins)
- POST EVA without EMU H2O recharge or METOX regeneration (1 hour)

Dr. Joe Dervay

Medical Operations

Sickness Contingency Plan
Table 1

Prebreathe Protocols - Observed and Estimated Risks

<table>
<thead>
<tr>
<th>Prebreathe Protocol</th>
<th>Observed Risk (total DCS)</th>
<th>Flight Experience</th>
<th>Predicted Risk Accounting for Flight Factors* (microgravity, purge, leak check, depressurization rate, etc.)</th>
<th>Predicted Risk (serious Type II DCS) Accounting for Flight Factors*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXERCISE (CEVIS)</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>45</td>
<td>0 / 34</td>
<td>1.7% <4.0% @ 95% ci**</td>
<td>1 / 4972 (1/3447 – 1/8928 ci)</td>
</tr>
<tr>
<td>DCS</td>
<td>0% (<6.5% @ 95% cl)**</td>
<td></td>
<td>1.7% <4.0% @ 95% ci**</td>
<td>1 / 4972 (1/3447 – 1/8928 ci)</td>
</tr>
<tr>
<td>Grade IV VGE</td>
<td>6.6% <16.3% @ 95% cl)</td>
<td></td>
<td>3.8% <12.4% @ 95% cl</td>
<td></td>
</tr>
<tr>
<td>4.0 HOUR (In-suit)</td>
<td></td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>28</td>
<td>0 / 4</td>
<td>4.6% <9.4% @ 95% cl</td>
<td>1 / 1372 (1/960 – 1/2402 ci)</td>
</tr>
<tr>
<td>DCS</td>
<td>21% <38.0% @ 95% cl)</td>
<td></td>
<td>4.6% <9.4% @ 95% cl</td>
<td>1 / 1372 (1/960 – 1/2402 ci)</td>
</tr>
<tr>
<td>Grade IV VGE</td>
<td>39% <56.6% @ 95% cl)</td>
<td></td>
<td>9.9% <32.2% @ 95% cl</td>
<td></td>
</tr>
<tr>
<td>CAMPOUT (ISS)</td>
<td></td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>No direct ground tests</td>
<td>N/A</td>
<td>2.8% <5.9% @ 95% cl#</td>
<td>1 / 936 (1/656 – 1/1635 ci)#</td>
</tr>
<tr>
<td>DCS</td>
<td></td>
<td></td>
<td>2.8% <5.9% @ 95% cl#</td>
<td>1 / 936 (1/656 – 1/1635 ci)#</td>
</tr>
<tr>
<td>Grade IV VGE</td>
<td></td>
<td></td>
<td>5.8% <19.0% @ 95% cl#</td>
<td></td>
</tr>
<tr>
<td>10.2 PSIA STAGED</td>
<td></td>
<td></td>
<td>5.8% <19.0% @ 95% cl#</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>35</td>
<td>0 / 141</td>
<td>3.8% <7.6% @ 95% cl</td>
<td>1 / 311 (1/217 – 1/549 ci)</td>
</tr>
<tr>
<td>DCS</td>
<td>23% <37.5% @ 95% cl)</td>
<td></td>
<td>3.8% <7.6% @ 95% cl</td>
<td>1 / 311 (1/217 – 1/549 ci)</td>
</tr>
<tr>
<td>Grade IV VGE</td>
<td>23% <37.5% @ 95% cl)</td>
<td></td>
<td>8.0% <26.0% @ 95% cl</td>
<td></td>
</tr>
</tbody>
</table>

*Includes operational margin, microgravity simulation (non ambulation), accounts for exercise with CEVIS protocol. Published/peer-reviewed models.

**ci is upper 95% binomial confidence limit, based on observation of test result.

***ci is the upper part of the 95% confidence interval, based on a statistical regression.