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This paper presents an analytic method to generate a reference drag trajectory for the
first entry portion of a skip atmospheric entry. The drag reference, expressed as a poly-
nomial function of the velocity, will meet the conditions necessary to fit the requirements
of the complete entry phase. The generic method proposed to generate the drag reference
profile is further simplified by thinking of the drag and the velocity as density and cumulative
distribution functions respectively. With this notion it will be shown that the reference drag
profile can be obtained by solving a linear algebraic system of equations. The resulting drag
profile is flown using the feedback linearization method of differential geometric control as
guidance law with the error dynamics of a second order homogeneous equation in the form
of a damped oscillator. This approach was first proposed as a revisited version of the Space
Shuttle Orbiter entry guidance. However, this paper will show that it can be used to fly
the first entry in a skip entry trajectory. In doing so, the gains in the error dynamics will
be changed at a certain point along the trajectory to improve the tracking performance.

Nomenclature

Acronyms
CEV Crew Exploration Vehicle
EI Entry Interface
NSEG Numeric Skip Entry Guidance

Symbols
(˙) Time Derivative
()′ Derivative With Respect to Velocity
〈·〉 Mean Value

Subscript
i Initial
f Final (or Exit)
r Reference

I. Introduction

A capsule vehicle such as the one considered in this paper, in the 0.3 to 0.4 lift to drag ratio (L/D) class,
returning from the Moon can fly a maximum of about 3700 Km. (2000 nmi) downrange using an Apollo
like direct entry. In order to fly longer ranges the capsule trajectory must be lofted to decrease aerodynamic
forces. Lofting, or Up-Control, implies using the vehicle lift to push it out of the atmosphere and slow the
rate at which energy is dissipated. During this high-altitude and low-drag skip phase of the entry, the vehicle
can dramatically increase its range capability. The crew flying on such a trajectory will experience a short
exo-atmospheric phase before the second entry.1

This paper is focused on entries from velocities above circular velocities that require a skip phase to
achieve the range necessary to reach the intended destination. Rather than using predictive or optimization

∗Contractor to NASA Johnson Space Center, Aeroscience and Flight Mechanics Division/EG5, 2101 Nasa Parkway, Profes-
sional Member.

1 of 18

American Institute of Aeronautics and Astronautics



methods, this paper explores the possibility of generating analytically a reference drag-vs-velocity profile
for the first entry in a skip entry trajectory. The fundamental idea of an analytic development of a drag
reference profile for entry is an approach already conceived for the Space Shuttle Orbiter guidance logic2

and is based on the fact that the range to be flown during entry is a unique function of the drag acceleration
maintained throughout the flight. This range is predictable using analytic techniques for simple geometric
drag acceleration functions of the relative velocity, provided the local flight path angle is near zero. For
low speeds, where the flight path angle is not sufficiently near zero, range predictions can be analytically
computed for simple drag acceleration functions if the independent variable is changed from relative velocity
to energy with respect to the Earth. Flight throughout the entry corridor can be achieved by linking
these geometric functions together in a series. For the Space Shuttle, five basic drag reference segments were
selected. Two quadratic segments are used at high speeds, a pseudoequilibrium glide segment and a constant
segment in the intermediate speed region and a linear segment, which is a function of energy at low speeds.

In the case of a first entry in a skip entry, the complete drag geometric function for the entire phase
can not be in the form of a quadratic polynomial since this would imply equal derivatives of the drag at
equal drag levels. We will see later that the derivative of the drag is intimately related to the flight path
angle and having, for example, the same drag derivative at entry and at exit would be incompatible with
satisfying entry and exit conditions on the flight path angle. In this paper we propose to express the drag
reference as a polynomial of the velocity with degree higher than two. The degree will be related to the
number of equations needed to generate a reference profile, that is, to meet the conditions necessary to fit
the requirements of the complete entry phase. Also, since the portion we are interested in is the first entry
in a skip entry, the velocities involved will be hypersonic with small flight path angles. Consequently, there
will be no need to change the independent variable to energy.

Meeting the conditions necessary to fit the requirements of the complete entry phase basically means that
it is assumed that the preestablished skipout conditions satisfy the range requirement of the whole entry.
Although this aspect of the mission planning is not going to be addressed in this paper, the assumption is
based on the following rationale: Once the landing site and entry interface are known, if, for instance, the
Apollo guidance is used as the guidance logic for the second entry, there is a set of initial conditions required
for the initiation of that second entry. Those initial conditions, a triplet formed by the range to go, velocity
(V ) and flight path angle (γ), can be chosen to be in the middle of the performance envelope of the Apollo
guidance. As a first approximation, (V , -γ) would constitute the skipout conditions in the first entry, and
by integrating backwards through the Kepler phase the range that must be covered from entry interface can
be determined. The process of finding the target skipout conditions can be further refined. Therefore, for a
given entry interface and landing site, it is possible in principle to define a target set for the skipout or exit
conditions in terms of the relative velocity, flight path angle and range to be covered from entry interface.

The generic method proposed to obtain the drag reference profile will be further simplified by thinking
of the drag as a density function of the velocity or, conversely, by thinking of the velocity as the cumulative
distribution function of the drag. With this notion it will be shown that the reference drag profile can be
generated by solving a linear algebraic system of equations.

The trajectories generated with this method will be tracked through the implementation of the feedback
linearization method of differential geometric control as a guidance law with the error dynamics of a second
order homogeneous equation in the form of a damped oscillator. This type of guidance law is detailed in
Ref. 3, which demonstrates its commonality with the Shuttle entry guidance. In the case of the Space
Shuttle, the drag geometric functions of the segments described above justify that its entry guidance was
conceived as a triple integrator since that guarantees perfect tracking of a drag expressed up to a quadratic
function of the velocity. In contrast, its revisited version, in Ref. 3, is presented as a double integrator with
proportional and derivative feedback terms in its error dynamics. This is so because the main purpose of
that work was to show that the approach taken in the original derivation of the Shuttle entry guidance had
a lot in common with the, at that time, recently developed, feedback linearization method of differential
geometric control; and the difference between the two laws were more clearly identified by neglecting few
features in both guidance laws, like the addition of an integral feedback term as the one actually present in
the Shuttle entry guidance.

The guidance law, as presented in Ref. 3, in the form of a double integrator, guarantees perfect tracking
of a drag function in the form of, at most, a linear function of the velocity or, equivalently, of a drag in a
quadratic form with a constant error in steady state. However, in this paper it is going to be shown that
using such an entry guidance will allow to track the first entry of a skip entry trajectory with the drag in
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the geometric form of a polynomial of the velocity with degree higher than two.
As we will see later, the generated reference drag profiles, although polynomials of the velocity of degree 5,

at low velocities will approximate a linear function of the velocity, which can be tracked with zero steady state
error with a double integrator. It remains to be seen the performance of such controller at high velocities,
where the drag profile does not necessarily behave as a polynomial of smaller degree. However, although
presumably a triple integrator might result in a better performance at such high velocities, we could also
suspect that the fast dynamics at high velocities could present almost the same challenges to either double
or triple integrator. It will be shown that satisfactory performance is achieved using the double integrator
control scheme.

Also, we will see that, in contrast to what is presented in Ref 3 and to improve the tracking performance,
in our case the coefficients of the damped oscillator equation will not remain constant throughout the flight.
The control gains will be changed depending on the velocity region and the curvature of the drag as a
function of the velocity.

EI-1

EI-2

EI-3

EI-4

Figure 1. Location of the Test Entry Interfaces With Respect to the U.S.

A number of different approaches to skip entry guidance for the Orion CEV spacecraft have been under
evaluation at the Flight Mechanics and Trajectory Design Branch at the NASA’s Johnson Space Center.
Currently, a guidance using predicted capabilities by a numerical approach that uses multiple trajectory
propagations to determine a bank command is providing the most reliable means of meeting the skip en-
try range requirement. This numerical algorithm, called NSEG, combines features of the original Apollo
Guidance algorithm with a numerical scheme for computing a real-time long-range skip trajectory.1

Out of a comprehensive set of 60,000 skip entry cases (20 nominal and 59,980 dispersed) that have been
simulated for the CEV using NSEG, we are going to use the 20 nominal ones as test cases for this paper.
As it was explained before, since the means to obtain the exit conditions from the knowledge of the landing
site and entry interface is not going to be addressed in this paper, our initial and final test conditions will
be those pertaining to these 20 nominal trajectories. The 20 cases are subdivided in 4 groups. Each group
is composed of 5 trajectories that have a common entry interface (figure 1) but different target landing sites
in the west continental United States and different L/Ds (0.3, 0.33 and 0.35).

As it is explained in Ref 1, the flight path angle at entry interface is defined by the skip entry flight corridor
that enables satisfying all the mission design considerations, like acceleration magnitudes and durations,
service module disposal, heat rate and heat load constraints, landing site precision and safe landing after
a failure. Thus, no investigation on the trajectory constraints will be presented in this paper, since we are
going to use as initial flight path angles those of the 20 nominal test cases run with NSEG.

II. Equations of Motion

The Earth-relative longitudinal translational state of the spacecraft is represented by the variables R
(range), h (altitude above the Earth’s surface), V (Earth relative velocity) and γ (Earth relative flight path
angle). The equations of motion in this document use a coordinate system with one axis oriented along the
Earth-relative velocity vector, one axis perpendicular to the plane formed by the position and Earth-relative
velocity vectors, and a third axis completing the right-hand coordinate system. The equations of motion are
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as follows

Ṙ = V cosγ (1)

ḣ = V sinγ (2)

V̇ = −D − g sinγ (3)

γ̇ =
1
V

[
L cosφ +

(
V 2

re + h
− g

)
cosγ

]
(4)

where re is the mean Earth radius and g is the gravity acceleration. These equations of motion neglect the
Coriolis and centripetal accelerations due to Earth’s rotation because these accelerations are small compared
to the aerodynamic acceleration.

The specific drag and lift are given by

D = ρV 2

(
SrCD

2m

)
(5)

L = ρV 2

(
SrCL

2m

)
(6)

where Sr and m are the reference surface and mass of the vehicle respectively. The drag and lift aerodynamic
coefficients (CD and CL) are assumed constant since only hypersonic velocities are going to be involved in
the phase of interest.

An exponential atmospheric density model with constant atmospheric density at base altitude is assumed
for this study

ρ = ρ0e
− h

hs (7)

where hs is the atmospheric density scale height.
The translational state is controlled by adjusting the vertical lift-to-drag ratio (L/D)cosφ. Equivalently,

the bank angle φ is taken to be the control in the following analysis.

III. Generation of the Reference Drag Trajectory

The phase under consideration is the first entry in a skip atmospheric entry. The origin for this phase
is an initial velocity and flight path angle, and its destination is a set of specific exit conditions in terms of
velocity and flight path angle at a desired range.

The idea behind this method is, first, to assume a reference drag trajectory as a polynomial expression
of the velocity

D(V ) =
m∑

n=0

anV n (8)

and, second, to resolve the m + 1 equations required to determine the coefficients an.
Five equations can be considered as basic to generate a drag reference profile: four equations establishing

the initial and final (or exit) conditions on velocity and flight path angle, and a fifth equation establishing
the condition on the range flown.

The four equations relating the initial and final conditions are obtained as follows: Two equations relate
the initial and final velocities to the initial and final drags

Di,f ≡ D(Vi,f ) =
m∑

n=0

anV n
i,f (9)
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In order to find the relation between the drag and the flight path angle we need to make use of the
equation for the atmospheric density. Differentiating Eq. (7) with respect to time the following equation is
obtained

ρ̇

ρ
= − ḣ

hs
(10)

On the other hand, by differentiating Eq. (5) with respect to time and dividing by D results

Ḋ

D
=

ρ̇

ρ
+

2V̇

V
(11)

Now, combining Eqs. (10 and 11) results

Ḋ

D
+

2D

V
= − ḣ

hs
(12)

where it has been assumed that the drag coefficient, CD, does not change with time. Using the equations
of motion, the relation between the altitude rate and the flight path angle is known, thus, we need to know
how the time derivative of the drag is related to the expression of the drag as a function of the velocity

Ḋ

D
=

1
D

dD

dt
=

1
D

dD

dV

dV

dt
= −dD

dV
(13)

where small flight path angles have been assumed since the flight path angle during a typical first entry in a
skip entry is sufficiently small as to approximate the sinγ to 0, thus V̇ ≈ −D. Substituting Eq. (13) in Eq.
(12) results

−dD

dV
+

2D

V
= −V sinγ

hs
(14)

Hence, the other two equations relating the initial and final velocities and flight path angles to the initial
and final drags are

D′
i,f ≡ dD

dV

∣∣∣∣
i,f

=
m∑

n=1

nanV n−1
i,f =

Vi,fsinγi,f

hs
+

2Di,f

Vi,f
(15)

A specific range R must be covered between the initial and final conditions. For small flight path angles
combining Eqs. (1 and 3), separating variables and integrating yields

R = −
∫ Vf

Vi

V

D(V )
dV (16)

Having the drag expressed as a polynomial of the velocity implies that Eq. (16) can be solved analytically,
and therefore the last of the five basic equations, the range equation, will be given by

R =
m∑

j=1

rj∑m
n=1 nanrn−1

j

log

(
Vi − rj

Vf − rj

)
(17)

where rj are the roots of D(V ).
However, the equation for range can be simplified by transforming it into an equation in terms of time.

If a mean drag is associated to the phase under consideration, integrating Eq. (16) results

〈D〉 =
(
V 2

i − V 2
f

)
/2R (18)

Also, from the mean of the drag, the time duration of this phase can be found

∆T = −∆V/ 〈D〉 (19)

Now that ∆T is known, since V̇ ≈ −D, the range equation in terms of time can be calculated
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∆T = −
∫ Vf

Vi

1
D(V )

dV =
m∑

j=1

1∑m
n=1 nanrn−1

j

log

(
Vi − rj

Vf − rj

)
(20)

From a computational stand point, Eq. (20) is better suited than Eq. (17) due to the absence of the
terms rj in the numerator.

In summary, by solving the system composed of Eqs. 9, 15 and 20, a drag reference profile expressed as
a degree 4 (m = 4) polynomial of the velocity can be generated. Appendix A provides more detail on how
to obtain the coefficients of the drag polynomial when one of the equations is in the form of Eq. (20).

A. Alternate Method for Range Equation

The equation on range, Eq. (20), implies that numerical methods need to be used to find at least one of the
coefficients in the drag polynomial (see Appendix A). It would be highly desirable to find a relation such that
the set of equations to obtain the coefficients of the drag polynomial could be solved as a linear algebraic
system. This section presents a method to generate a substitute to Eq. (20) such that the system containing
the five basic equations becomes a linear algebraic system.

One way to achieve the remaining algebraic equation is by relating the range to the integral of the drag
along the velocity ∫ Vi

Vf

D(V )dV =
m∑

n=1

an

n

(
V n

f − V n
i

)
(21)

The problem is that, in principle, we only know how to relate range and drag through Eq. (16). The
following steps are proposed to achieve the desired algebraic relation. We know that

dV = −Ddt (22)

Multiplying Eq. (22) by the drag and integrating results∫ Vf

Vi

DdV = −
∫ tf

ti

D2dt (23)

Expressing the integral in the second member of Eq. (23) in terms of means and increments yields∫ Vf

Vi

DdV = −
〈
D2

〉
∆T (24)

The mean of the drag and in turn the time duration can be calculated from Eqs. (18 and 19). However,
the mean of the square of the drag must be calculated in order to find the integral of interest. The next
method is proposed to find

〈
D2

〉
.

The relation between velocity, drag and time in Eq. (22) may allow us to think of the velocity as the
cumulative distribution function related to the drag, which we can think of as a density function. Note that
a density function f is defined in terms of its distribution function F as4

f(x) = dF (x)/dx (25)

Therefore, the relation between velocity and drag could be understood as the relation between a cumu-
lative distribution function and its density function that have been specifically scaled and initialized. For
instance, if it was not for the negative sign, the velocity cumulative distribution of the drag density would be
very similar to the Maxwell distribution and density functions. Figure 2 shows a comparison of actual data
from the simulation of the first entry portion of a skip entry flight to that generated by a Maxwell density
and distribution functions that have been properly scaled and initialized for comparison purposes.

Let us assume that the drag in terms of time can be considered as a density function. In that case,
a function expressing the variance, σ2, in terms of 〈D〉2 could exist, as it is the case, for example, in the
Maxwell distribution, where σ2 ∝ µ2 with µ being the mean value.4 If such relation exists, then

〈
D2

〉
could

be easily found since 〈
D2

〉
= σ2 + 〈D〉2 (26)
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Figure 2. Example of Drag and Velocity Signals During the First Entry in a Skip Entry Compared to Maxwell
Density and Distribution Functions.

Ultimately, the relation between
〈
D2

〉
and 〈D〉2 could be as simple as a linear function. From our 20 test

cases, referred to in the introduction, we may try to find empirically the relationship between
〈
D2

〉
and 〈D〉2,

and check if it follows a specific relation. Figure (3) presents that relation. A data correlation coefficient of
0.998 for the 20 nominal cases shows that

〈
D2

〉
and 〈D〉2 are, in fact, highly correlated (this analysis was

also carried out for the 59,980 dispersed cases. For the dispersed cases, the correlation coefficient was found
to be 0.985).

Figure 3. Relation Between
〈
D2

〉
and 〈D〉2 in the Phase of Interest for 20 Nominal Skip Entries Flown Using

NSEG.

From figure (3) we deduce that 〈
D2

〉
= kd1 〈D〉2 + kd2 (27)

and the range equation, Eq. (20), can now be substituted by

m∑
n=1

an

n

(
V n

f − V n
i

)
=

(
kd1 〈D〉2 + kd2

)
∆T (28)

where the range is indirectly accounted through the terms 〈D〉 and ∆T .

B. Constraint Equations

The five basic equations with which a drag reference profile can be generated have been derived. If only
these five equations were considered then our drag polynomial should have degree 4 (m = 4) to have five
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unknown coefficients (a0 . . . a4). Should we be interested in adding constraint equations to the drag profile,
the degree of the drag polynomial should increase accordingly.

In this section, one additional constraint equation is going to be generated. From the equations derived
so far, the drag reference trajectory may turn out to have a maximum drag acceleration at an arbitrary
velocity. We are interested in generating drag reference trajectories whose shape is more in line with realistic
shapes flown in the thousands of skip entry cases already simulated using NSEG. From all those cases, a
quite simple trend can be found by inspection of the drag profiles: the velocity at which the maximum drag
occurs has a high correlation with the product of the initial and final velocities (figure 4). The correlation
factor found is 0.991 for our 20 nominal test cases (this analysis was also carried out for the 59,980 dispersed
cases. For the dispersed cases, the correlation coefficient was found to be 0.851).

Figure 4. Relation Between the Velocity at Maximum Drag and the Product of the Initial and Final Velocities
in the Phase of Interest for 20 Nominal Skip Entries Flown Using NSEG.

Therefore, our constraint equation will be given by

D
′

Dmax
=

m∑
n=1

nanV n−1
Dmax

= 0 (29)

where the velocity at maximum drag, VDmax
, can be expressed as

VDmax = kv1ViVf + kv2 (30)

C. Summary and Results

From the results obtained in the previous subsections, the algebraic system of 5 or 6 linear equations (de-
pending on whether the drag is expressed as a 4 degree or 5 degree polynomial respectively) from where the
reference drag trajectories can be obtained is



1 Vi V 2
i V 3

i V 4
i | V 5

i

1 Vf V 2
f V 3

f V 4
f | V 5

f

0 1 2Vi 3V 2
i 4V 3

i | 5V 4
i

0 1 2Vf 3V 2
f 4V 3

f | 5V 4
f

Vf − Vi
V 2

f −V 2
i

2

V 3
f −V 3

i

3

V 4
f −V 4

i

4

V 5
f −V 5

i

5 | V 6
f −V 6

i

6

−−− −−− −−− −−− −−− | − −−
0 1 2VDmax 3V 2

Dmax
4V 3

Dmax
| 5V 4

Dmax





a0

a1

a2

a3

a4

−−
a5


=



Di

Df
Vi sin γi

hs
+ 2Di

Vi
Vf sin γf

hs
+ 2Df

Vf

c1c2

〈
D2

〉
∆T

−−−−−−
0


(31)

In the second member of Eq. (31), c1 is an empirically derived constant that accounts for the error
resulting from using the 〈D〉 calculated with Eq. (18) instead of the actual 〈D〉 that was being used to
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generate kd1 and kd2 in Eq. (27). From the results shown in figure 5, we can deduce that c1 = 1.043. This is
in itself an interesting result. It shows a linear dependence between the actual 〈D〉 and the 〈D〉 calculated
with Eq. (18).

The constant c2 (also in the second member of Eq. (31)) is a correction, or calibration, factor empirically
derived to minimize the mean of the absolute value of the range errors found in the set of 20 reference
trajectories generated using Eq. (31) when the obtained ranges are compared to the actual ones of the
considered 20 nominal trajectories simulated using NSEG (c2 = 1.056).

Figure 5. Comparison of the Results Obtained for the Integral of the Drag Along the Velocity When the
Actual 〈D〉, the Calculated 〈D〉 and the Empirically Corrected Formula are Used.

Figure 6 shows the degree 5 drag reference trajectories generated using Eq. (31) when the range and initial
and final conditions of the 20 nominal test cases considered in this document are used. With generality, a
skip entry is defined whenever the Up-Control acceleration drops below 0.2g during the Up-Control phase of
the flight, therefore, the final drag was chosen to be 0.2g. For simplicity, in the generation of the trajectories
shown in figure (6), the initial drag was set equal to the final drag (Di = Df = 0.2g).

The range error subplot in figure 6 shows that this method provides for range errors smaller than 1% in
magnitude, with an average value of 0.47%.

Figure 6. Drag Reference Trajectories Generated Using Eq. (31) and Resulting Range Errors with Respect
to the Actual Ranges of the 20 Nominal Skip Entry Cases Flown Using NSEG.
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D. Feasible Trajectory Generation

Given a reference trajectory D(V ), is it possible to know, a priori, that it is feasible? That is, can we
guarantee the existence of a bank control command such that D(V ) can be tracked? The approach to derive
the reference bank control consists of time differentiating the drag along the trajectory (i.e., taking the Lie
derivative of the drag) until the first appearance of the control. This has been done in references 2 and 3,
and the reference bank angle can be expressed as

φ = arccos

D̈ − Ḋ
(

Ḋ
D − 3D

V

)
+ 4D3

V 2 + D
〈hs〉

(
V 2

re+〈h〉 − 〈g〉
)

− D2

(L/D)〈hs〉

 (32)

where the mean values of g, hs and h have been used.
Equation (13) shows the time derivative of the drag in terms of the drag and the derivative of the drag

with respect to the velocity. In order to find the second time derivative of the drag, to be substituted in Eq.
(32), we need to differentiate Eq (13) a second time. This operation results in the following expression for D̈

D̈ = D

(
dD

dV

)2

+ D2 d2D

dV 2
(33)

The resulting bank angle profiles, corresponding to the drag reference trajectories depicted in figure (6),
are shown in figure (7) grouped by entry interface. A saturation can be appreciated at the beginning of the
trajectory for a small velocity interval, when the drag is still fairly low. The following section will show how
this feature is dealt with when the guidance law is implemented. Besides this undesired feature, the bank
profiles remain completely feasible.

Figure 7. Reference Bank Angle Profiles Associated to the Drag Reference Trajectories Generated Using Eq.
(31).

IV. Reference Trajectory Tracking

Once the reference drag vs velocity trajectory is chosen, the bank-angle control law must be developed for
tracking the reference trajectory. The tracking control law we are going to use to fly the drag profiles shown
in figure (6) is the guidance law for the Space Shuttle Orbiter revisited using nonlinear geometric methods,
with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. This
work is detailed in reference 3 and, therefore, only a summary of its theoretical development and background
is going to be presented here.

The approach to deriving the bank-angle control law begins with time differentiating the drag along a
trajectory (i.e., taking the Lie derivative of the drag) until the first appearance of the control. The first
derivative is obtained by differentiating Eq. (5)
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Ḋ = −DV

〈hs〉
sin γ − 2D2

V
(34)

and the second derivative is given by

D̈ = a(V,D, Ḋ) + b(V,D, Ḋ)u (35)

where

a = Ḋ
(

Ḋ
D − 3D

V

)
− 4D3

V 2 +
(
〈g〉 − V 2

re+〈h〉

)
D

〈hs〉

b = −D2/ 〈hs〉
u = (L/D) cos φ

(36)

Equations (34) and (35) have been derived with the approximations D + g sin γ ≈ D and cos γ ≈ 1 and
with the mean values of g, h and hs.

It is necessary that the transient response is sufficiently fast. It is the reference drag vs velocity trajectory
that leads to the desired range at the specified velocity; if the control law does not cause quick enough recovery
from perturbations off the reference trajectory, the desired final condition will not be achieved.

Let

ν = a(V,D, Ḋ) + b(V,D, Ḋ)u(V,D, Ḋ) (37)

and consider u to be a function of the arguments shown. Defining ∆a = a−ar, ∆b = b−br, and ∆u = u−ur,
where ar = a(V,Dr, Ḋr) and similarly for br and ur, Eq. (37) is rewritten as

ν = (ar + brur) + (∆a + ∆bur + b∆u) = νr + ∆ν (38)

where νr and ∆ν correspond to the first and second expressions in parentheses, respectively, and ∆ν(V,Dr, Ḋr)
= 0. Equation (35) becomes

D̈ = νr + ∆ν (39)

Choosing

νr = D̈r (40)

and defining ∆D = D −Dr, the dynamics for the tracking error are given by

∆D̈ = ∆ν (41)

The feedforward control

ur = (1/br)(−ar + D̈r) (42)

obtained by solving Eq. (40) for ur using the relation in Eq. (38) between νr and ur thus produces perfect
tracking beyond any value of V for which ∆D and ∆Ḋ are both zero. However, if only the feedforward
control is used, the resulting time-varying error dynamics are

∆D̈ = ∆a + ∆bur (43)

which may not be acceptable. The simplest acceptable error dynamics are of the linear, time-invariant form

∆D̈ + 2ζω∆Ḋ + ω2∆D = 0 (44)

with positive natural frequency ω and positive damping ratio ζ, since the error dynamics are then asymp-
totically (or, more precisely, exponentially) stable with respect to the origin.

In the formalism of the feedback linearization method a nonlinear state transformation and a state-
dependent control transformation to linearize the input-output dynamics have been used. The state variables
(h, γ, V ) were transformed to (D, Ḋ, V ) and the control was transformed according to Eq. (37). Using the
notation (z1, z2, z3) = (D, Ḋ, V ), the transformed state equations are
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ż1 = z2

ż2 = ν

ż3 = −z1 + 〈g〉 〈hs〉 (z2z3 + 2z2
1)/z1z

2
3

y = z1

(45)

The dynamic system between input ν and output y is linear, time invariant, and in double-integrator
form.

Note that by specifying

ν = a + bu = ∆D̈ + 2ζω∆Ḋ + ω2∆D (46)

the desired error dynamics given in Eq. (44) are achieved exactly. The required actual control, obtained by
solving Eq. (46) for u, is

u =
1
br

(−ar + D̈r − ω2∆D − 2ζω∆Ḋ) (47)

Therefore, the commanded bank angle will be given by

φc = arccos
{

1
(L/D)br

(−ar + D̈r − ω2∆D − 2ζω∆Ḋ)
}

(48)

A. Test Results

The performance of the drag tracking control is evaluated on the 20 nominal test cases. At this stage, the same
set of control gains will be used in all the simulations regardless of the initial and final conditions. During
the controlled simulation, the drag profile is not updated or modified to reduce the range error. Therefore,
the target miss accumulated at guidance termination will be a measure of the control performance.

In all simulations, the control starts operating once the initial drag acceleration is higher than 1g. Prior
to that point, the commanded bank angle is constant and equal to 80 deg to avoid the saturation observed
in the reference bank angle at the initiation of the entry (figure 7).

Also, the bank angle rate of change and acceleration were limited to ± 15 deg/s and ± 6 deg/s2 respec-
tively.

Each controlled simulation is divided in two phases, determined by the velocity and the curvature of the
drag as a function of the velocity. Figure 6 shows that the drag becomes almost linear at low velocities.
It was determined that changing the set of control gains when the curvature was smaller than a certain
threshold resulted in an improvement of the tracking performance. The curvature is defined in Eq. (49),
and the curvature threshold was chosen to be -0.05

κ =
d2D/dV 2

(1 + (dD/dV )2)3/2
(49)

The values of the control gains in phase 1 (high velocities) are ζ = 0.4 and ω = 3/(80 · ζ) = 0.0938. In
phase 2 (low velocities and −0.05 < κ < 0) the control gains are ζ = 0.68 and ω = 3/(25 · ζ) = 0.1765.
Note that for the calculation of ω, the 5% criteria has been used (settling time equal to 3 times the time
constant of the system). Figure 8 shows, for each of the test cases, the absolute range and final flight path
angle percentile errors with respect to the values in the 20 nominal cases flown using NSEG.

Figure 8 depicts similar error values for the cases sharing the same entry interface. This can lead us
to think that specific sets of control gains can be selected for each group with the same entry interface to
improve the tracking performance. Furthermore, the latter could imply that an optimal relation between
control gains and the set of initial and final conditions can indeed be found. However, the study of this
aspect is not within the scope of this paper and is not going to be addressed here.

Figures 9 and 10 show the results of four controlled trajectories, one from each entry interface. Figure
11 shows the drag error signals for the same set of 4 trajectories.
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Figure 8. Absolute Range and Final Flight Path Angle Errors of the Controlled Trajectories with Respect to
the Values of the 20 Nominal Skip Entry Cases Flown Using NSEG.

Figure 9. Examples of Drag vs Velocity Trajectories of 4 Controlled Trajectories, One from Each Entry
Interface.

1. Lateral Logic

In this section the tracking performance when a lateral logic is introduced is evaluated. The initial sign of
the bank angle is chosen as to reduce the heading miss with respect to the landing site. A lift vector reversal
will be made when a specific crossrange deadband is exceeded. In this study we are using an Apollo-like
guidance deadband.5 In a first approximation, this deadband is proportional to the capsule’s lateral ranging
capability at the current velocity and is given by the following relation

Y =
L/D

24

(
V

Vsat

)2

(50)

where Vsat is the satellite velocity.
Figure 12 shows the results when the lateral logic is included in the guidance logic. The same set of gains

when no lateral logic was included are used now for all the cases as well.
In figure 12, cases 1 to 3 did not require any bank reversal to comply with the deadband as established in

Eq. (50). Cases 12, 13 and 16 called for a bank reversal when the velocity was very close to the exit velocity,
which allows for very precarious physical capability to satisfy the exit requirements. These last three cases
require a more sophisticated lateral logic to prevent such situation. Although bank reversals could have been
forced at some point along the trajectory with the purpose of evaluating the lateral logic, it was deemed that
the obtained results, as shown in figure 12, suffice to convey the level of tracking performance. In general,
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Figure 10. Examples of Drag vs Time Trajectories of 4 Controlled Trajectories, One from Each Entry Interface.

Figure 11. Examples of Drag Acceleration Error Signals of 4 Controlled Trajectories, One from Each Entry
Interface.

the results of figure 12 show comparable results to the ones obtained when the lateral logic was not included
(figure 8).

V. Conclusion

This paper shows that a feasible reference drag trajectory for the first entry portion of a skip atmospheric
entry can be generated as a polynomial expression of the velocity. The coefficients of that polynomial are
found through the resolution of a system composed of m + 1 equations, where m is the degree of the drag
polynomial. It has been shown that a minimum of five equations (implying a drag polynomial of degree 4)
are required to establish the range and the initial and final conditions on velocity and flight path angle. From
this foundation, it has been shown that constraints on the trajectory can be imposed through the addition of
equations in the system, which must be accompanied by the increase in the degree of the drag polynomial.

In order to simplify the resolution of the system of equations, the notion of the drag being considered as
a density function of the velocity, with the velocity as a cumulative distribution function of the drag, has
been introduced. Through this notion, together with the introduction of empirically derived constants, it has
been shown that the system of equations required to generate the drag profile can be successfully reduced
to a system of linear algebraic equations.

The resulting drag profiles have been flown using the feedback linearization method of differential geo-
metric control as a guidance law with the error dynamics of a second order homogeneous equation in the
form of a damped oscillator. Although this approach was first proposed as a revisited version of the Space
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Figure 12. Absolute Range and Final Flight Path Angle Errors of the Controlled Trajectories When the
Lateral Logic is Included. The Errors are with Respect to the Values of the 20 Nominal Skip Entry Cases
Flown Using NSEG.

Shuttle Orbiter entry guidance to demonstrate the commonality of both guidance laws, it has never been
used to fly a skip-like entry trajectory, where, at least for the first entry, the entire drag profile does not fit
a quadratic polynomial of the velocity. This approach has been combined with an Apollo-like lateral logic,
and satisfactory results were achieved when the gains in the error dynamics were changed at a certain point
along the trajectory that is dependent on the velocity and the curvature of the drag as a function of the
velocity.

A guidance law that includes an integral feedback term, as is the case in the actual Space Shuttle entry
guidance and as is proposed in Ref 6, could be tried in future studies to assess whether its use results
in an improvement of the tracking performance, and to evaluate the design needs when determining the
control gains. The introduction of dispersions and the capacity to update the drag profile in flight should be
studied as well in future works. Also, future studies should attempt to link the guidance for the first entry,
as presented in this paper, with a more standard concept for the second entry, such as the Apollo entry
guidance, to try to assess the overall skip entry performance.

Appendix A

When we deal with the five basic equations required to generate a drag reference profile, the drag
polynomial must have degree 4 (m = 4) to result in five unknown coefficients (a0, ..., a4). The equation on
range, Eq. (20), implies that numerical methods need to be used to find at least one of the coefficients in
the drag polynomial. By using the other four equations, each coefficient can be expressed in terms of one
coefficient of our choice. In this way, only that one coefficient shall have to be determined through numerical
methods. If, for instance, a3 is the coefficient selected, a0, a1, a2 and a4 can be expressed in terms of a3.

To simplify the expressions, the following definition is going to be made

∆(n)V ≡ V n
f − V n

i , n > 1 (51)

The system of four algebraic linear equations (range equation not included) is given by
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
1 Vi V 2

i V 3
i V 4

i

1 Vf V 2
f V 3

f V 4
f

0 1 2Vi 3V 2
i 4V 3

i

0 1 2Vf 3V 2
f 4V 3

f




a0

a1

a2

a3

a4

 =


Di

Df

D′
i

D′
f

 (52)

Doing the necessary operations in Eq. (52) the following equations result for the coefficients a0, a1, a2 and
a4

a4 = a41 + a42a3

a2 = a21 + a22a3

a1 = a11 + a12a3

a0 = a01 + a02a3

(53)

where

a41 = (∆D′(2Vi −∆(2)V/∆V ) + 2∆D − 2D′
i∆V )/k

a42 = −(3∆(2)V (2Vi −∆(2)V/∆V )− 2(3V 2
i ∆V −∆(3)V ))/k

k = 4∆(3)V (2Vi −∆(2)V/∆V )− 2(4V 3
i ∆V −∆(4)V )

a21 = (∆D′ − 4a41∆
(3)V )/(2∆V )

a22 = −(3∆(2)V + 4a42∆
(3)V )/(2∆V )

a11 = (∆D − a21∆
(2)V − a41∆

(4)V )/∆V

a12 = −(a22∆
(2)V + ∆(3)V + a42∆

(4)V )/∆V

a01 = Di − a11Vi − a21V
2
i − a41V

4
i

a02 = −(a12Vi + a22V
2
i + V 3

i + a42V
4
i )

(54)

With these results, the problem has been reduced to find numerically the coefficient a3 that satisfies
the system formed by the range equation in terms of time (Eq. (20)) and the root equation for the drag
polynomial. Using this method, the resulting drag reference profile was generated for 4 of the 20 nominal
cases considered in this study, one for each entry interface. Those profiles are depicted in figure 13.

Figure 13. Four Drag Reference Trajectories, One from Each Entry Interface, Generated Using the Range
Eq. (20), and Resulting Absolute Range Errors with Respect to the Actual Ranges of the Corresponding Test
Nominal Skip Entry Cases Flown Using NSEG.
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Appendix B - Roots of the Drag Polynomial

This section intends to provide some insight into why the drag polynomial resulting from Eq. (31) happens
to be positive in the interval of interest [Vi, Vf ]. Specifically, the following analysis is going to be focused on
a degree 5 drag polynomial. The conclusions from this case can be easily applied to the case of a degree 4
polynomial.

All the drag curves found have shown to have three real roots and two imaginary roots. Figure 14 shows
the drag curves outside the interval of interest.

Figure 14. Drag Reference Curves Extended Outside the Interval of Interest.

The drag polynomial of degree 5 can be expressed as

D(V ) = (V − Vi)(V − Vf )P3(V ) + Di (55)

where two roots of the drag evaluated at the initial and final drag values (Df = Di) are the initial and final
velocities, and where P3(V ) stands for a generic polynomial of degree 3. A polynomial of odd degree, such
as P3(V ), always has at least one real root, which in our case we will call Vr. Therefore, the drag polynomial
can rewritten as

D(V ) = (V − Vi)(V − Vf )(V − Vr)x2(V 2 + x1V + x0) + Di (56)

If Vr is forced to be smaller than Vf , as was the case with the 20 runs considered, then the signs of all
factors, but one, in the interval [Vi, Vf ] can be determined. Let’s say Vr = Vf − y2, then

D(V )−Di =

−︷ ︸︸ ︷
(V − Vi)

+︷ ︸︸ ︷
(V − Vf )

+︷ ︸︸ ︷
(V − Vf + y2) x2(V 2 + x1V + x0) (57)

Hence, to have the drag defined as a positive polynomial in the interval of interest the sign of x2(V 2+x1V +x0)
must be negative, at least in that interval. The fact that the initial and final flight path angles are negative
and positive respectively means that D

′

i < 0 and D
′

f > 0 and therefore

D′(Vi) =

+︷ ︸︸ ︷
(Vi − Vf )

+︷ ︸︸ ︷
(V − Vf + y2) x2(V 2 + x1V + x0) < 0

D′(Vf ) =

−︷ ︸︸ ︷
(Vf − Vi)

+︷ ︸︸ ︷
(V − Vf + y2) x2(V 2 + x1V + x0) > 0

(58)

which implies that, at least, in the bounds of the interval [Vi, Vf ] the factor x2(V 2 + x1V + x0) is actually
forced to be negative to satisfy the imposed conditions on the flight path angle. This conclusion does not
demonstrate that the drag is necessarily positive within the interval of interest but, at least, provides some
insight into what happens in the cases examined.
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Two conditions that must be met in order to have x2(V 2 + x1V + x0) defined negative are: first, x2 < 0
and second, the roots of V 2 + x1V + x0 must be imaginary, which implies that its two roots will be complex
conjugates. The second condition implies that x2

0 > x2
1/4 and therefore the drag polynomial with the

condition to be positive with no real roots in [Vi, Vf ] can be rewritten generically as

D(V ) = (V − Vi)(V − Vf )(V − Vf + y2)(−x2
2)(V

2 + x1V + x2
1/4 + x2

0) + Di (59)

Equation 59 accounts for the roots at Vi and Vf at D = Di = Df and hence only four coefficients have to
be found, one for each of the remaining equations.
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