NASA Experience with UAS Science Applications

Robert E. Curry
Chris Jennison

NASA Dryden Flight Research Center
Edwards, CA

American Society for Photogrammetry & Remote Sensing
May 7-11, 2007
Tampa, FL
• Background

• Science demonstration missions
 – USCG Alaska
 – NOAA Channel Islands
 – Western States Fire
 – Esperanza Fire

• Current Status of NASA Dryden UAS Science Platforms

• Summary
Background

• NASA Sub-Orbital Science Program
 – Objectives
 ♦ Development of space-based sensors
 ♦ Satellite calibration/validation
 ♦ Ephemeral phenomena
 ♦ Atmosphere/near-space in-situ observations
 ♦ Improve Earth process models
 – Aircraft Platforms
 ♦ Traditional: ER-2’s, DC-8, WB-57’s, others
 ♦ New Technology: UAS’s

• Why Unmanned Aerial Systems (UAS’s) for Science Missions?
 – Unique capabilities
 ♦ duration
 ♦ range
 – Operations in hazardous locations
 ♦ extended polar missions
 ♦ volcanic plumes, hurricane
 – Implications for the future of environmental monitoring & response missions
Science UAS Development Challenges

- Science missions impose unique requirements on UAS vehicles and operations
 - Access to national/international airspace
 - Unusual flight profiles
 - Reconfigurable sensor installations
 - Cost control
 - Global tele-presence for instrument command and control

- Conducting representative, scientific missions is the best way to push the technology
 - Confirm performance and capabilities
 - Expose limitations and unexpected issues
 - Progressive build-up of mission complexity
 - Engage the science community

“Flight research separates the ‘real from the imagined’ and makes known the ‘overlooked and unexpected’”

Hugh L. Dryden
USCG Alaskan Maritime Surveillance

- Objective: Evaluate use of a UAS for intelligence, surveillance, and reconnaissance (ISR) operations

- Objective: Evaluate use of a UAS for intelligence, surveillance, and reconnaissance (ISR) operations

- Overview
 - United States Coast Guard (USCG), NASA, GA, and others
 - General Atomics Altair (high-altitude Predator B derivative)
 - Payload
 - surface surveillance radar, . . .
 - internal integration
 - Flight Operations: Summer, 2004
 - Self deployment from California to Alaska
 - Launch and recovery team operating remote from mission operations center in Juneau
 - Over the horizon shore to ship communications relay
Major Accomplishments
- Long-range, remote deployment of aircraft, crews, and project team
- Multiple aircraft control and communication hand-offs
- Established Northern latitude limit for geostationary satellite data link
- Provided streaming video to support Alaska wildfire management

Issues: Reduced Mission Scope
- Sensor integration complications
- High latitude satellite coverage less than anticipated
- Flight limitations due to low satellite elevation angle
Objective: Evaluate the use of a UAV for future science and operational requirements
- Atmospheric research
 - sample low-level Eastern Pacific jets
- Atmospheric research
 - coastal mapping, wildlife monitoring, marine enforcement

Overview
- NOAA, NASA joint project
- General Atomics Altair
- Internal payload integration
- Flight operations
 - Spring, 2005 and Fall, 2005
 - Flights in National Air Space (NAS) under Certificate of Authorization (COA)
 - primarily at FL430
 - descents below 18,000 ft escorted by chase plane
NOAA/NASA UAV Demonstration Project

- Major Accomplishments
 - 20 hour missions
 - over 2500 miles of ocean coverage
 - UAS in the National Airspace with FAA experimental type certificate

- Issues
 - Airspace coordination complications
 - UAS systems reliability under extended high altitude operation
 - Complexity of internal payload integration
Western States Fire Mission

- Objective: Identify and monitor wildfire events throughout the Western United States and provide near real-time products to field units

- Overview
 - NASA, USFS, NOAA, GA partnership
 - General Atomics Altair with centerline pod
 - Payload
 - Wildfire sensor – Developed at NASA Ames
 - 13 spectral bands optimized for fire characterization
 - Fully autonomous
 - near real-time data transfer
 - on-board processing (geo-rectification)
 - overlayed with Google-Earth imagery
 - internet access by end users
 - in-situ atmospheric sampling
 - experiment command and control from ground
 - Flight operations: Fall, 2006
 - XX flights from base at Grey Butte, CA; primarily in military airspace
 - Only 1 flight into National Air Space (NAS), always at FL430
Western States Fire Mission

• Major Accomplishments
 – grid patterns over Yosemite National Park
 – re-direction based on satellite data
 – 23 hour flights
 – coordination with satellite overpasses
 – outstanding data quality
 – demonstrated the importance of virtual presence for experimenters

• Issues: Reduced Mission Scope
 – FAA processes in transition
 – complex risk management issues

Flight Planning Challenges
 • FAA control boundaries
 • Special use airspace
 • E_C calcs (avoid pop. centers)
 • Contingency routing
 • Alternate and emerg. landing sites
Esperanza Fire Emergency Response

- California Office of Emergency Services requested NASA assistance
 - 40,000 acres (62 sq mi)
 - 5 firefighters killed
 - 34 homes destroyed

- First use of FAA Emergency COA for civilian disaster response
Esperanza Fire Emergency Response

- Friday, Oct. 27 10:00 AM - Received request

- Saturday at 3:45 PM – Aircraft launched
 - FIRE sensor returned to Grey Butte and installed on A/C
 - Ground safety analyses
 - Requested and received FAA approval
 - Aircraft prepared for flight

- Sunday 7:30 AM - Landing

16 flight hours
94 images, 44 shapefiles
Ikhana (Predator B)

A NASA Unmanned Aerial System
Supporting Long-Duration Earth Science Missions

‘Mission ready’ in July, 2007

Capabilities

- Endurance > 24 hours
- Altitude > 40,000 ft
- Payload > 2,000 lbs (750 in pod)
- Range 3,500 nautical miles

- Highly reliable UAS
 - Standard MQ-9 w/digital engine control
 - Triple redundant flight control systems, dual redundant power & networks
 - Predator family has logged over 200,000 hours
Ikhana (Predator B)

Payload Areas
- Wing-mounted pods
- Avionics Bay
 - Payload Tray
 - Chin compartment

Experimenter Network
- Ethernet network connecting avionics bay and remote pods
- Communications, recording, downlink, time code, aircraft state data
Other Mission Support Features

- Experimenter network and data system
- Mobile ground control station
 - Ku Satcom for over the horizon missions
 - 6 experiment monitoring stations
- Airborne Research Test System
 - 3 processor research flight control and/or mission computer
 - allows autonomous control of the aircraft and some systems
 - able to host research control laws
• **Objective**: Advanced airborne SAR capability
 – autonomous operation
 – interferometry products

• Radar development - NASA JPL

• Aircraft modifications and flight testing – NASA Dryden
 – Development activity on G-3
 – Instrument housed in external pod
 – A/C precision navigation for
 ♠ repeat pass interferometry
 ♣ flight path control to within +/- 5 m

• Portable to Predator B class UAS
 – long duration for continuous event monitoring
 – high altitude for long uninterrupted flight lines
Global Hawk

Capabilities
- Endurance > 30 hours
- Altitude 65,000 ft
- Payload > 1,500 lbs
- Highly reliable, mature UAS

Mission Support Features
- Multiple payload locations
 - 40 ft³ pressurized
 - 62 ft³ un-pressurized
 - Can accommodate wing pods (future)
- Flies above conventional air traffic
- Fully autonomous control system, take-off to landing
Related Technologies

• Sub-orbital Tele-presence (Airborne Sensor Web)
 – Develop/demonstrate low-cost services for science payloads
 ♣ Situational awareness
 ♣ Decision support; productivity
 ♣ Sensor web: i.e. Instrument interaction/C4I
 – Applicable to all suborbital platforms, but special significance for UAS

• Access to airspace
 – Near-term expectations (next five years or so)
 ♣ Certificate of Authorization processes
 – Long-term
 ♣ Rules and procedures for UAS certification and routine operation in the national air space
 ♣ Technology development
• Unmanned Aerial Systems offer great potential for Earth science missions of the future

• Performing representative science missions has been critical to understanding and guiding UAS technology implementation

• New platform and sensor capabilities are under development

• A follow-on to the Western States Fire Mission will be conducted in Summer, 2007 with the NASA Ikhana aircraft