Changing the Cultural Paradigm to Meet Emerging Requirements

William W. Robbins
Space Station Program Office
Johnson Space Center
(281) 244-7722
wrobbins@ems.jsc.nasa.gov
Old Business, New Business

From 1986 until 2004, The International Space Station Program planned it’s entire logistics infrastructure around the transportation element.

- Five Shuttle flights per year
- Augmented by International Partner Expendable Launch Vehicles

Maintenance Concept –
Three level
Spares Procurement plans –
Limited buys
Ground repair infrastructure –
Repair and re-fly
Cargo processing infrastructure –
Shuttle launch site
Ground transportation plans –
Shuttle launch site
Contractor structure –
U.S. Infrastructure
The New Vision For Space Exploration

The President’s Vision for Space Exploration determined that:

- Space Shuttle flights end in 2010.
- Station assembly complete by 2010.
- Station will operate until 2015.
- Return to the moon by 2020, then on to Mars.
The New Transportation Paradigm:

- Progress (Russia)
- HTV (JAXA)
- ATV (ESA)
- Commercial Orbital Transportation System?

New Cultural Paradigm:

- Maintenance Concept – *Two level*
- Spares Procurement plans – *Replenish, not reuse*
- Ground repair infrastructure – *Phase out*
- Cargo processing infrastructure – *US and Partner roles*
- Ground transportation plans – *Partner launch sites*
- Contractor structure – *Global Infrastructure*
What must change?

- Budgets
- Station Systems architecture
- International Partner agreements
- Program organizational structure
- People
Where to start?

- Build a new budget.
 - Identify operational drivers: upmass, failure rates, supplier availability
 - Gather historical cost data
 » DDT&E costs
 » Costs of spares bought previously
 - Model your new operational environment
 » Functional Availability
 » PRICE (ECIRP)
 - Use assumptions, educated guesses to modify cost factors
 » Production gaps
 » Start up costs

- Iterate with new data
Spares Budget Methodology

- Utilize unit cost information from original spares procurements.
- Use PRICE (ECIRP) methodology (unit cost + tech. info + weight distribution) = Development cost estimates
- Group ORU development costs by system and sanity check against the actual system level development costs collected during Station development
- Calculates a % non-recurring cost as a function of non-recurring actuals. Attempts to account for:
 - Penalty vs. gap time (4% / Yr)
 - Method provides for adjustments due to retention status, difficulty, parts status, known issues, etc.
 - Provides a consistent methodology to use until vendor proposals are available.
Integrate Across Disciplines

- Logistics, engineering, budget office, Program planning
- Government and contractor teams
- Form ad hoc groups to address questions, issues, concerns
Identify Gaps/Trades

- Buy more spares? Redesign?
- New capabilities/hardware needed?
- Certification of hardware to fly on new vehicles
- New packing/flight support equipment
- Hardware processing – who will do what?
Spares Procurement Decisions

- Start with Model outputs
- Core drill initial results by System team
 - Government & contractor
 - Logistics, engineering, reliability, budget office
- Trades:
 - Use parts in inventory for new spares or buy additional parts, protect repair capability
 - Buy existing design, or design repackaging for better reliability/maintainability
Spares Procurements

- Schedule requires multiple spares procurements in parallel
 - Initiating procurements in 2007 to support 2010 - 2015
- Requires changes to organization, processes, roles & responsibilities
 - Contractor had to form multi-discipline teams for each procurement
 - Near daily schedule coordination meetings
 - NASA Logistics “drafted” help from System teams, budget office, KSC
- Schedule rigor is paramount
- Upper level management commitment must be there and stay there
 - Feed information up to them that piques their interest
Contractors/Vendors/Subvendors

- Initial budget was developed using assumptions, parametrics and SWAGs to estimate the budget profile when drawing down the ground repair infrastructure.
- Next step: determine drawdown plan for each manufacturer and depot
- Again, requires government/contractor teams including logistics and systems personnel
Contractors/Vendors/Subvendors

- Twenty Manufacturers
- Four depots
 - NASA Space Systems Depot
 - NASA Space Logistics Depot
 - White Sands Test Facility
 - Houston Product Support Center
- How long will manufacturers be building spares?
 - Are they responsible for repairing other hardware that we are not buying spares for?
 - Book repair retention tasks (property management, equipment maintenance, skills) against spares procurement or maintain retention contract?
- Do suppliers have hardware that requires preventive maintenance while in storage?
 - If yes, is that enough work to make it worthwhile to keep them open after spares build, or transfer work to a depot?
- What is the business case for government depots?
 - Impact of loss of Shuttle business
 - Phasing in of Constellation work
The Elephant in the Room

- The cost of maintaining the ground infrastructure is minimized by supporting the on-orbit vehicle

- Hardware emulators, engineering test beds, laboratories all have hardware related to Station
 - Manufacturers and depots available to repair hardware if and when needed
 - Once need for repair of Station flight hardware goes away, ground hardware support becomes a stand alone requirement
 - First cut is that it is a “new” $3M per year cost
One Example

The HighSpeed Aerospace Manufacturing (HAM) Company is on a Retention contract for repairs of the Left Handed Deviator ORU.

- One spare is on hand.

There are two potential directions.

- One is to buy one more Left Handed Deviator spare (procurement is currently planned for 2010).
 - If a spare is procured, no more retention spending is needed. Put Property Management and equipment maintenance on the Procurement Order. Accelerate the procurement to 2009 in order to halt retention spending.

- The other is to eliminate the need for a Left Handed Deviator through a re-architecture of the Guidance system.
 - If Guidance system redesign eliminates the Left Handed Deviator, stop retention spending and rely on the remaining spare to support until the new architecture is in place.

- Either option reduces annual retention cost by $400K per year 2009-2015!

HOWEVER,

- There are Left Handed Deviator emulator units in the Guidance Simulation Lab that must be supported through 2015.

- Retaining the HAM Company through 2015 will incur a total cost of $2.4M over six years.

Need a better solution for supporting ground hardware.
Conclusions

- Changing the Transportation paradigm created new requirements that drive the entire Logistics paradigm

- Changing the paradigm requires:
 - Strategic thinking
 - Flexibility of organization
 - Flexibility of people
 - Government/Contractor Teams
 - Money