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Abstract 

This paper presents a preliminary demonstration of 
an automated health assessment tool, capable of real-
time on-board operation using existing engine control 
hardware. The tool allows operators to discern how 
rapidly individual turboshaft engines are degrading. As 
the compressor erodes, performance is lost, and with it 
the ability to generate power. Thus, such a tool would 
provide an instant assessment of the engine’s fitness to 
perform a mission, and would help to pinpoint any 
abnormal wear or performance anomalies before they 
became serious, thereby decreasing uncertainty and 
enabling improved maintenance scheduling. The 
research described in the paper utilized test stand data 
from a T700-GE-401 turboshaft engine that underwent 
sand-ingestion testing to scale a model-based 
compressor efficiency degradation estimation 
algorithm. This algorithm was then applied to real-time 
Health Usage and Monitoring System (HUMS) data 
from a T700-GE-701C to track compressor efficiency 
on-line. The approach uses an optimal estimator called 
a Kalman filter. The filter is designed to estimate the 
compressor efficiency using only data from the 
engine’s sensors as input. 

Notation 
FADEC Full Authority Digital Engine Control 
Ng gas generator speed 
Np power turbine speed 
PS3 compressor exit static pressure 
Q torque 
SHP Shaft Horsepower 
T4.5 Turbine Gas Temperature 
Wf fuel flow 
Δx change in a variable x 
η efficiency 

ηComp compressor efficiency 

ηGG  gas generator turbine efficiency 

ηPT  power turbine efficiency 
σx standard deviation of a variable x 
c corrected (subscript) 

Introduction 
Sand ingestion is a significant problem for 

helicopters operating in desert terrain. In Afghanistan 
and Iraq, operators have found that the sand erodes the 
compressor to the point where the ensuing power loss 
makes the helicopter unfit to operate after relatively 
few missions. This results in engines being pulled from 
service for overhaul at a much higher frequency than 
those operated under less harsh conditions. The 
increased maintenance requirement severely hampers 
the warfighters’ ability to perform because the 
availability of assets is much less certain—mission 
readiness suffers and maintenance costs skyrocket. 

All engines wear naturally with use. In general, as 
turboshaft engines degrade, their performance shifts 
away from that of a new engine. Over time they tend to 
run hotter than a new engine to produce the same 
power. The deterioration takes the form of reduced 
efficiency and altered flow capacity of the engine 
components, increased seal leakage, etc.; these 
variables collectively describe the engine’s “health” 
and are called the engine health parameters. Because 
degradation negatively impacts engine power and it is 
important to recognize when power is compromised, 
complex nonlinear models have been developed to 
predict a turboshaft engine’s available power, provide 
virtual sensors, and perform fault detection (refs. 1 to 
3). These models attempt to match the engine outputs 
by adjusting their health parameters or similar-type 
variables to minimize the residuals, in the process 
generating health parameter estimates that provide the 
best fit to the engine data. 

The degradation process is exacerbated by operation 
in a harsh environment. In particular, turboshaft 
engines operating in the sandy deserts of Iraq and 
Afghanistan have had to be overhauled after as little as 
50 to 100 hr of operation, while engines operating 
under less extreme conditions can remain on wing at 
least 10 times that long (refs. 4 and 5). The desert 
operation of a turboshaft engine results in a special 
case of deterioration because it is directly attributable 
to erosion caused by sand particles, and although some 
of the literature acknowledges that there may be shifts  
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in a variety of health parameters, in general the 
performance loss is attributed substantially if not 
exclusively to compressor efficiency reduction (refs. 4, 
6 to 8). 

The current practice for determining the fitness for 
service of a T700 turboshaft engine, for instance, is 
through a procedure called a Health Indicator Test 
(HIT) check, which is performed daily on the ground. 
It involves checking that the available Turbine Gas 
Temperature (T4.5) margin at a specified steady state 
rotor speed and torque are adequate for each engine 
individually; failing the test means that the vehicle is 
grounded (ref. 9). This test requires pilot involvement, 
and is affected by ambient conditions. It provides 
simply a pass/fail grade, requiring the pilot only to 
make a notation if the margin is acceptable but below a 
threshold. 

It would be beneficial to actually be able to track 
engine performance deterioration rather than just 
receive a passing grade. The ability to track the engine 
degradation would provide an instant evaluation of the 
engine’s health, and would help to detect any abnormal 
wear or performance anomalies early, thus decreasing 
uncertainty and enabling improved maintenance 
scheduling. 

The objective of this study is to demonstrate an 
algorithm that can estimate engine performance 
deterioration due to sand ingestion from real-time data. 
The algorithm is based on a linear approach, and its 
simple structure lends itself well to real-time operation. 
The following sections will introduce the linear 
estimation technique, set up and validate the estimator 
using a T700 engine, and finally run the algorithm with 
actual flight data to show how it might work in a real 
application. All data have been sanitized for 
publication. 

Model-Based Approach 
An open-loop turboshaft engine can be modeled 

well by a linear discrete time system of the form 
 

( 1) ( ) ( ) ( )
( ) ( ) ( ) ( )

x k Ax k Bu k Lp w k
y k Cx k Du k Mp v k
+ = + + +

= + + +
 (1) 

 
where k is the time index, x(k) is the state vector at time 
k, u(k) is the input vector, y(k) is the output vector, p is 
the health parameter vector, w(k) and v(k) represent 
process noise and measurement noise respectively, and 
A, B, C, D, L, and M are matrices of appropriate 
dimension. It is clear from equation (1) that the health 
degradation, represented by p, is a set of input biases 
which manifest themselves as shifts in the state and 
output variable values. This concept agrees with the 
previous discussion of T4.5, the measured temperature 

used in the HIT check, increasing as the engine 
deteriorates. As long as the linear model represents the 
true engine behavior fairly accurately, a vast array of 
linear tools can be brought to bear on the problem of 
estimating the engine health on-line. 

In this work a recursive algorithm called a Kalman 
filter is used to directly estimate the engine’s health 
condition based on measured data. This is a well-
established linear technique that uses a dynamical 
model of the system to estimate unmeasured state 
variables optimally in a least squares sense as 

 
ˆ ˆ( ) ( 1)

ˆ( ( ) ( 1) ( ))

ˆ ˆ( 1 ) ( ) ( )

x k k x k k

K y k Cx k k Du k

x k k Ax k k Bu k

= −

+ − − −

+ = +

  (2) 

 
where ˆ( 1 )x k k+  is the estimate of x(k+1) given 
measurements up through time k, and K is the optimal 
Kalman gain matrix. The Kalman gain matrix is 
computed as a function of the linear model whose state 
is to be observed (ref. 10). Part of the Kalman filter 
design process includes the determination of weighting 
matrices which are related to sensor noise and model 
accuracy, and affect tracking speed. Kalman filters 
have been used successfully in the past to estimate 
engine health information from turbofan engine test 
data (ref. 11). An engine that has a Full Authority 
Digital Engine Control (FADEC) (such as many 
modern turbofan engines and a planned upgrade to the 
T700-GE-701D) is capable of running a diagnostic 
scheme such as a Kalman filter during the control 
update time (ref. 12). 

Notice that p in equation (1) is not a function of k, 
that is, it is considered to be constant relative to the 
engine dynamics. Thus equation (1) can be rewritten in 
an algebraically equivalent form that incorporates p in 
an augmented state vector. 

 

[ ]

( 1) ( )
( ) ( )

0 0
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

Aug Aug Aug

Aug Aug

x k A L x k B
u k w k

p I p
A x k B u k w k

x k
y k C M Du k v k

p
C x k Du k v k

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= + +

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
= + +

(3) 

This manipulation allows p to be estimated by a 
Kalman filter (eq. (2)). The caveat with this approach is 
that the number of health parameters that may be 
observed is limited to at most the number of sensed 
variables on the engine (ref. 13), and specifically in this 
case to the number of sensed variables affected by 
deterioration. This limitation is often a drawback in the 
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general model-based approach because the influence of 
unaccounted-for health parameters can be smeared 
across the estimated values (ref. 14). In the specific 
problem being addressed however, that of sand 
ingestion, it is assumed that this is not an issue because 
the vast majority of deterioration tends to be attributed 
to one health parameter: compressor efficiency. 

This approach will be applied to data from a T700 
engine, which will be described next. 

The T700 Engine Model 

The T700 turboshaft engine is 1600 horsepower-
class, modular, two-spool engine (fig. 1) consisting of a 
gas generator section and a free power turbine (ref. 15). 
The gas generator section is made up of a five-stage 
axial and a single-stage centrifugal compressor, a low 
fuel pressure through-flow annular combustion 
chamber, and an air-cooled, two-stage, axial-flow, 
high-pressure turbine. The free power turbine is a two-
stage, uncooled, axial-flow type. There exists a one-
way coupling between the power turbine and the gas 
generator, i.e., the power turbine extracts work from 
the gas turbine cycle but does not otherwise affect it. 
The power turbine is controlled to a constant speed.  

In this work, a linear T700 model (ref. 16) was used 
to represent the baseline (undegraded) engine. This 
model has the form 

 

( 1) ( ) ( )
( ) ( )

x k Ax k Bu k
y k Cx k
+ = +

=
 (4) 

 

This model was developed for use in a diagnostic 
application, and the state variables have no physical 
meaning, only the inputs and outputs represent actual 
engine variables. The input variables are Wf and Np, 
and the output variables are Ng, Q, T4.5, and PS3. The 
A matrix captures the dynamics of the engine (ref. 16).  

Comparing to equation (1), the model in 
equation (4) has no D, L, or M matrices. The D matrix, 
which would appear as part of the baseline engine 
model, is zero. To incorporate the effects of component 
deterioration on the engine output variables, the 
influence coefficient matrices L and M need to be 
determined; these were not part of the original baseline 
model (ref. 16). Since the state variables in the baseline 
linear model have no physical meaning, L is set equal 
to zero. Therefore in this model the shifts in the output 
variables must be completely accounted for through the 
M matrix. 

The sand ingestion data, which will be discussed 
next, were used to scale the steady state gain of the 
baseline model (fuel flow to each of the output 
variables) and also to construct the M matrix. 

The Data Set 

The data set consists of performance data from a 
sand ingestion test conducted at the Outdoor Engine 
Test Facility, Naval Air Warfare Center, Patuxent 
River, Maryland. Over a two-month period, 70 lbs of 
sand was ingested through a T700-GE-401 turboshaft  
 

 
Figure 1.—Cross-section of a T700 turboshaft engine showing the rotating components and sensor locations. 
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engine to evaluate the effects of sand erosion on engine 
performance. The sand eroded the engine components, 
thus altering their efficiency. Alternating with the sand 
ingestion runs were performance runs, carried out to 
determine how the engine was operating. Each 
performance run consisted of generating multiple 
steady state data points at various values of T4.5 by 
varying the load while maintaining power turbine 
speed. Altogether there were 115 steady state points 
generated in 25 performance runs. Data collected 
included the steady state values of Wf, Np, Q, Ng, T4.5, 
PS3, and ambient conditions. Before the sand ingestion 
testing was begun and again once it was complete, the 
engine components were evaluated to determine their 
overall efficiency and thus their change in efficiency 
due to erosion. Using these data, the linear model in 
equation (3) was scaled to enable the on-line estimation 
of the health degradation due to erosion. 

Model Scaling 

The first step in the scaling process was to put the 
data into a usable form. Engine operation is strongly 
influenced by the ambient conditions, among other 
things, and it is hard to compare raw data taken on 
different days under different conditions. A way 
around this is to correct the engine variables, that is, to 
adjust all of the data to a common point, in this case 
sea level standard day (ref. 17). This adjustment, which 
is shown in the appendix, significantly reduces the 
scatter in the data and makes it easier to analyze. It also 
makes it easier to design controllers and estimators 
because fewer operating points need to be accounted 
for. Correcting data might collapse it enough to enable 
the use of a single point design rather than a series of 
designs. The corrections based on ambient conditions 
handle the majority of the necessary data adjustment, 
but many other corrections may be applied to account 
for humidity, fuel temperature, and any other type of 
variation between the actual and “defined” conditions 
to potentially reduce the data spread even further. 

In steady state, x(k+1) = x(k), so the steady state 
outputs of the open-loop engine (eq. (4)) may be 
represented as 

 

1

1

( )
( )

x Ax Bu
y Cx
x I A Bu
y C I A Bu

−

−

= +
=

⇒ = −

= −

 

(5) 
 

This gives the steady state relationship between the 
input Wf and each of the outputs within the linear 
range. The steady state gain of the baseline engine, 
which is needed for scaling the linear model, can be 

determined using the corrected data. Figures 2 to 5 
show the highly linear relationship between Wf and 
each of the output variables. In these figures, the color 
bar on the right indicates when the data were collected; 
the earliest, at the beginning of the sand ingestion 
testing, is blue, the latest, at the end of the sand 
ingestion testing, is red. The line on each of the figures 
represents the steady state input-output relationship of 
the baseline engine, thus its slope represents the steady 
state gain. It is assumed that the steady state gain is not 
influenced by degradation, consistent with 
equation (1). Thus the lines were obtained through a 
least squares fit, using baseline data (earliest run) as 
well as degraded data (later runs). In both figures 2 and 
3, the data seem to form a single line, so in each case 
all data points (except the two at the lower left, which 
are out of the linear range) were used to determine the 
slope and y-intercept of the line. In figures 4 and 5, the 
data sets from different performance runs form lines 
that are nearly parallel. Thus the average of these 
slopes was taken to represent the steady state gain for 
T4.5 and PS3. After determination of the slope, the y-
intercept of each line was computed using only the data 
from the earliest run (the baseline condition). Thus the 
lines in figures 4 and 5 characterize the input-output 
relationship at the baseline condition, and as the engine 
degrades, these relationships shift up or down, which is 
expected (ref. 18). 

It is not shown here, but obviously the output 
variables are uncorrelated with Np, since it is held 
constant while they vary. Thus the column of B 
corresponding to the Np input in equation (4) is 
multiplied by a small scale factor, maintaining the 
model form but rendering this input inconsequential. 
This essentially reduces the number of inputs to one: 
Wf. Now it is straightforward to match the steady state 
gains of the model to those determined from the data. 
The correct steady state gains (eq. (5)) were obtained 
by scaling the C matrix in the engine model (eq. (4)) to 
match the data. This was accomplished by multiplying 
the row of C corresponding to the specific output 
variable by an appropriate value so that equation (5) 
matched the slopes determined from the data. 

It is counterintuitive that Ng (fig. 2) and Q (fig. 3) 
do not seem to shift as the engine degrades, but it 
should be noted that even if Q does not shift from the 
baseline condition, the degraded engine still cannot 
produce as much torque at high loads because the 
increased T4.5 will hit a controller temperature limit 
sooner than for a new engine, restricting fuel flow and 
thus limiting power.  

Notice that for T4.5 (fig. 4), the line has a breakpoint 
at which the slope changes. Since the data are used 
with a linear model, the values must actually represent 
deviations from a trim value. Thus, once the data were 
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Figure 2.—Corrected ∆Ng vs. corrected ∆Wf, steady state 
sand ingestion data, units are arbitrary. 
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Figure 3.—Corrected ∆Q vs. corrected ∆Wf, steady 
state sand ingestion data, units are arbitrary. 
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Figure 4.—Corrected ∆T4.5 vs. corrected ∆Wf, steady 
state sand ingestion data, units are arbitrary. 
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Figure 5.—Corrected ∆PS3 vs. corrected ∆Wf, steady 
state sand ingestion data, units are arbitrary. 

corrected, a trim point was selected and subtracted 
from each element of the data set; here the trim value 
corresponds to the point where the discontinuity in the 
slope of figure 4 occurs. Thus all results, starting with 
figure 2, are based on deviations from the corrected 
trim point. 

The final step in the model development was the 
determination of the influence coefficient matrix M 
from equation (3), with L assumed to be zero. It is 
reasonable for L to equal zero because it affects the 
state variables, which have no physical meaning in this 
linear model, and the shifts in output variables (T4.5 
and PS3) can be completely captured through the M 
matrix. Table 1 shows the direction of influence of the 
efficiency shifts (losses) on the measured variables 

based on information in the literature (refs. 19 to 21), 
and the data. 

Based on the sand ingestion results, the influence of 
degradation on Q and Ng was set to zero, the influence 
on T4.5 was set to be negative (it increases as 
efficiency decreases) and the influence on PS3 was set 
to be positive (it decreases as efficiency decreases). 
Two points must be made here. First, the effect of the 
power turbine efficiency shift is apparently not 
observable in the measured parameters since Q is the 
only variable measured downstream of the power 
turbine and it shows no change with deterioration, 
implying that ηPT cannot be estimated. Second, since 
only two sensed variables are affected by the 
degradation, only two component efficiencies at most  
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can be estimated (or two combined effects, since 
ΔηComp actually represents the combined shift in the 
axial and centrifugal compressors). Thus potentially 
only ηComp and ηGG can be individually estimated, and 
if ΔηPT is truly not observable from the measured data, 
the fact that the entire shift is attributed to ΔηComp and 
ΔηGG does not introduce error in the estimates. 
However, efficiency shifts will be individually 
observable only if their effects are linearly independent 
of each other, i.e., if the columns of M are linearly 
independent. Looking at table 1, it is clear that shifts in 
ηComp and ηGG have similar effects on the output 
variables, making it hard to distinguish between them. 
Thus in this case, ηComp and ηGG can be lumped into a 
single efficiency parameter, η. This implies that M is a 
single column, similar to the “Data” column in table 1. 

The engine that underwent the sand ingestion testing 
was evaluated pre- and post-test to determine the total 
efficiency shift of the components due to erosion. The 
shift, ∆η, was assumed to be the direct cause of the 
shift in T4.5 and PS3 and thereby used to scale the M 
matrix of the linear model of the T700 engine to 
account for degradation. Post-test analysis of the 
eroded engine components indicated a decrease in 
efficiency of the three components. For illustrative 
purposes, say ΔηComp = –1.8 percent, ΔηGG = –0.7 
percent, and ΔηPT = –0.5 percent. It was noted that this 
pattern of degradation is atypical and that in the field 
primarily ηComp is affected. Although the sand ingestion 
data do not represent the results of true desert 
operation, the implementation used in this effort is still 
applicable for that situation. While shifts in three 
efficiencies occurred during the testing, ηPT is not 
observable, and ΔηComp and ΔηGG have similar effects 
and thus are lumped together into one parameter, Δη, 
which is estimated and all deterioration attributed to it. 
The effect of this lumped parameter is similar to that of 
ηComp alone had there been no change in ηGG, which is 
the case with desert operation. Here Δη = 
ΔηComp+αΔηGG where αΔηGG corresponds to an 
equivalent value of ΔηComp that would produce a 
similar shift in the output variables; for the example, 
say α = 1. 

Since the actual degradation values are known, the 
elements of M must be selected as the ratio of the total 
shift in measured variables over the sand ingestion  

testing to the efficiency shift, with signs that 
correspond to the data influences in table 1. Thus 
the elements of the M matrix are computed as [0 0 
∆T4.5 ∆PS3]T = M∆η. The Kalman filter was then 
generated based on equation (3) using the matrices 
from equation (4) (ref. 16) and M, with D and L zero. 
Because of the breakpoint in the T4.5 slope, two 
different Kalman gains were computed and the 
appropriate one used depending upon whether Wf was 
above or below the trim value. The piecewise linear 
approach could be extended to lower power levels, 
given enough data to generate the additional linear 
models. 

Results 
The objective of this effort was to demonstrate the 

feasibility of estimating engine deterioration on-line in 
real time. This required dynamic data and an estimator 
appropriate for the on-line application. The “dynamic” 
data set was created from the performance run data by 
first taking the 115 data points in order, each consisting 
of a set of steady state input/output values, and 
“holding” the values for 500 samples each (100 sec at 
five samples/second), thus generating a time series 
made up of steps for each variable. The time series data 
were then low pass filtered to round the steps in an 
effort to mimic dynamic performance—the intention 
was not to add artificial T700 engine dynamics, just to 
provide a smooth transition between steady state 
points. Finally, noise was added to each variable. The 
sequence of the model input variable Wf is shown in 
figure 6. 

Running this data set through the Kalman filter 
simulated real-time, dynamic operation of the system, 
although the data sequence was generated with steady 
state data. The estimation performance of the Kalman 
filter is shown in figures 7 and 8. The sequences of 
residuals (differences between estimated and actual 
measurements) for the output variables Ng, Q, T4.5, 
and PS3 are shown in figure 7. The efficiency estimate, 
along with the average estimate from each performance 
run, is shown in figure 8. Clearly the result matches the 
known value (the difference of the lumped efficiency 
shift ∆η = ∆ηComp+∆ηGG = –2.5 percent, between the 
end points) as seen from the estimation average. 

 

TABLE 1.—DEVELOPMENT OF M (Wf, AND Np HELD CONSTANT) FROM THE DATA AND THE LITERATURE 

Literature 
Variable Data ηComp 

(loss) 
ηGG 

(loss) 
ηPT 

(loss) 
Ng unchanged decreased decreased unchanged 
Q unchanged decreased decreased decreased 

T4.5 increased increased increased unchanged 
PS3 decreased decreased decreased unchanged 
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Figure 6.—Corrected input variable Wf, deviation from 

trim, arbitrary units. 

Recall that each performance run consisted of several 
steady state points at different loads but the same  

deterioration level, so the stair-stepping effect seen in 
figure 8 is a function of power level. The deterioration 
level at the in-between points (during the sand 
ingestion testing) is not known so these intermediate 
results cannot be validated, but show a general 
downward trend from the start point to the end point 
which is what one would expect. This helps to build 
confidence that the estimator is working as intended. 

The development and validation of an on-line 
component efficiency estimation tool using the sand 
ingestion data is now complete. However, in order to 
make the estimator more practical, a significant 
implementation issue must still be considered, that of a 
reduced data set. This is discussed next. 

Practical Considerations 

Although Full Authority Digital Engine Controllers 
(FADECs) are planned for use on the T700-GE-701D, 
current T700s without a digital controller have few 
digital measurements available. In fact, there is no  
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Figure 7.—Residuals of corrected output variables, difference between estimated and actual, % of trim. 
 



NASA/TM—2007-214843 8

 
 
 
 
 

0 2000 4000 6000 8000 10000 12000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Lumped Health Parameter Estimate

Δη
 (

%
)

seconds

 

 
Estimated
Average of Performance Run

 
Figure 8.—Efficiency estimate (%) using Kalman filter and average estimate of data gathered in each 

performance run, deviations from trim. 
 

digital measurement of fuel flow or PS3, leaving only 
T4.5, Q and Ng from the previously used set (ref. 22). 
Since the data seem to support a strongly linear 
relationship between Wf and Ng and Wf and Q, 
unaffected by degradation, Ng and Q can be used to 
estimate a value for Wf. Since T4.5 is the only 
measured variable that is affected by deterioration, a 
Kalman filter must be developed using a new M 
matrix. With the reduced data set, it is assumed that the 
total efficiency shift (∆η) corresponds to the total shift 
in turbine gas temperature, i.e., the matrix M is 
computed such that ∆T4.5 = M∆η (the amount T4.5 is 
shifted for a given value of Wf is proportional to the 
shift in efficiency). 

A “minimum variance” estimate of fuel flow Ŵf  
may be generated as the weighted sum of Q and Ng, 
which have a linear relationship to Wf. Thus 

 

2 2

2 2 2 2
ˆ

/ /
Q Ng

Ng Q Ng Q

Ng QWf
Ng Wf Q Wf

σ σ
= +

Δ Δ Δ Δσ + σ σ + σ
 (6) 

where the delta terms represent the steady state gains of 
the variables (the slopes of the lines from figures 2 and 
3), and σx is the standard deviation of the sand 
ingestion data. Thus the relative weight given to each 
of the two measurements in equation (6) is related to 
the spread of the data around the straight line 
representing the slope; the tighter the relative fit, the 
greater the weight. (This is an approximation of the 
minimum variance estimate based on steady state data, 
in a true minimum variance estimator, the 
measurement noise variance of each variable would be 
used.) The Wf residuals (difference of estimated and 
actual) are shown in figure 9; the large values near the 
beginning correspond to the two low power points 
which are out of the linear range. Figure 10 shows the 
efficiency shift estimated from the “time” sequences 
generated by stretching out the steady state data; the 
estimates using both actual Wf and estimated Wf are 
presented for comparison. Although noisy, the plot has 
the correct downward trend (except for the two low  
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power points near the beginning) and approximately 
correct total efficiency shift. Again, even though the 
estimated efficiency here is a combined effect, in the 
field, degradation as a result of sand erosion is 
primarily limited to the compressor efficiency, so the 
technique would also be valid under normal 
circumstances for desert operation. 

The on-line compressor health estimation tool has 
now been demonstrated and validated using a data set 
similar to what is currently available on most T700 
engines. The estimator will next be applied to actual in-
flight T700 data. The level of degradation of the engine 
components is not known, so the results cannot be 
validated. The purpose is to show that the estimator 
produces results that could be interpreted, given more 
information about the engine. 
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Figure 11.—Efficiency shift estimate (%) and corrected SHP (%) in transient flight from HUMS data. 

 
Evaluation Using HUMS Data 

Health Usage and Monitoring System (HUMS) data 
were obtained from an in-service T700-GE-701C 
engine, which is a different version of the engine that 
was used to scale the model. The operating 
environment for the aircraft with this engine is 
unknown to the authors. The data available included 
Ng, Q, T4.5, Np, and ambient conditions. Once the data 
were corrected, Ng and Q were used to estimate the 
unmeasured Wf. Data from a single flight, takeoff 
through landing, were used to test the transient 
capability of the estimator. The flight covered nearly 
the complete power range of the engine, and the 
estimator is valid over only about the upper half, based 
on the sand ingestion data used to determine its model. 
Figure 11 shows the efficiency estimate as well as the 
power level over a portion of the flight where the 
model is valid. The power level varies about 
40 percent, yet the compressor efficiency estimate is 

fairly stable, varying generally less than 2 percent 
during transients and well under 1 percent in the 
steadier power regions. The large magnitude of the 
estimated efficiency shift (shifted 24 to 25 percent 
from trim) is probably due to differences between the 
–401 and –701C engines that would result in different 
scaling or trim values for the –701C linear model. Note 
that the estimate is used to detect an efficiency change 
over time, so the deviation from trim is not relevant 
and is, in fact, arbitrary. Analysis using the HUMS data 
showed that the efficiency estimate varies slightly but 
linearly with power over a wide range of power levels, 
indicating that a gain adjustment within the estimator 
would provide a constant estimate across the linear 
range, or that the apparent component efficiency shift 
actually varies with power (ref. 23). There is no way to 
validate the estimate obtained with the HUMS data 
because there was no independent testing of the 
component efficiency. 
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Sources of Error 

Many assumptions were made in order to perform 
the analysis and generate the results described in this 
paper. Some were simplifications, others were due to 
lack of information, and still others were the result of 
the interpretation of the sand ingestion data. The 
ramifications of these assumptions are discussed in this 
section. 

The estimation of Δη included the effect of ΔηComp 
and ΔηGG from the sand ingestion data because the 
corresponding columns of M were determined to be 
nearly linearly dependent, since changes in ηComp and 
ηGG have very similar effects (ref. 19). Even though the 
system was intended for use in the desert where most 
deterioration occurs in the compressor (Δη≈ΔηComp, 
ΔηGG≈0), this simplification appears valid for the more 
general case. 

In a turboshaft engine, the apparent degradation 
level can appear different at various power conditions 
(ref. 20). This was seen to a small extent in the sand 
ingestion data (the stair-stepping in figure 8 tended to 
be small and would probably not be noticeable using 
noisy flight data), and even though it was noted with 
the HUMS data, where the efficiency estimate varied 
linearly with power, the Kalman filter could have 
easily been rescaled to produce a constant efficiency 
estimate across the power range of interest. This may 
be related to the assumption that the steady state gain 
of the engine variables to fuel flow does not change 
with deterioration; unaccounted-for changes in this 
relationship would appear as efficiency variations with 
power. 

In the test data, Ng and Q did not noticeably shift 
with engine degradation. This result was unexpected 
because it means that SHP (which equals Q×Np) versus 
Wf does not change with deterioration, although T4.5 
versus SHP does increase. Since Ng and Q were used 
to estimate fuel flow in the cases with the limited data 
set such as might be available to engines without a 
FADEC, it introduces a potential source of error. If Ng 
and/or Q were to shift as the engine deteriorated, this 
approximation would not be valid, even though this 
contradicts the sand ingestion data. 

Power turbine speed was not accounted for as an 
input to the model (it was present but scaled by a small 
number) because it seemed to be uncorrelated to the 
engine outputs. Although it is maintained essentially 
constant, when corrected the change was significant. 
Since the correction factors are based on ambient 
conditions and Np is controlled to an absolute value, Q 
was considered to be a more significant variable than 
SHP for modeling purposes. The fact that Np was not 
used as a model input may have an effect on transient 
operation. 

Much of the literature attributes degradation due to 
sand ingestion primarily to compressor efficiency, 
considering degradation of other components 
insignificant. As long as the assumption is correct in 
the field, estimation of compressor efficiency alone 
will produce a meaningful value; otherwise, as in the 
sand ingestion data where ηComp, ηGG, and ηPT all 
changed, the results could be misleading (unless the 
effect of variations in other health parameters and 
ΔηComp are nearly linearly dependent). 

Health parameters besides efficiency, such as flow 
capacity, are not accounted for at all in the current 
modeling. Here again, this has the potential to produce 
misleading results if shifts due to flow capacity are 
attributed to efficiency and their influence is different. 

All of the data used to scale the model are from a 
test cell. Extra variation in the data due to such factors 
as altitude and air speed is not seen here. These 
variations might be harder to eliminate through 
parameter correction, making the linear relationship 
more complicated. This might require the model to 
incorporate variable gains scheduled on altitude and 
other variables. However, preliminary analysis of the 
HUMS data did not reveal a dependence on altitude or 
air speed. 

An attempt was made to eliminate from analysis the 
HUMS data that were affected by such confounding 
factors as the anti-ice system being on. The model 
might need to be rescaled to account for these types of 
factors. 

Conclusions 
The on-line health assessment tool for the T700 

turboshaft engine produced very consistent, repeatable 
results, even with transient data, and the variation was 
acceptably small, generally within 1 percent. There is 
however a need to validate the fuel flow estimate or 
incorporate an actual fuel flow measurement. Even 
though the Kalman filter was based on a different 
engine model, the results were remarkably good, 
providing justification that this type of algorithm 
should be investigated further for inclusion in future 
condition-based maintenance systems. The wide power 
range covered by the piecewise linear model makes the 
algorithm extremely attractive for this application 
because it is so easy to implement. In a sand 
environment, it provides a relative compressor 
efficiency value, which can be used to determine 
fitness for service similar to the way a HIT check does, 
and it also provides the ability to track performance 
changes to detect abnormal wear quickly. 
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Appendix 
 
Data correction to standard day conditions is 

performed using the following relationships. First, the 
parameters δ and θ are calculated as 
 

0 0

,P T
P T

δ = θ =  

 
where P0 and T0 represent the standard day conditions 
in full scale (P0 = 29.92 in. Hg (14.696 psi) and T0 = 
519 °R) and P and T represent the measured pressure 
and temperature on the engine. Using these values, the 
engine variables are corrected as 

c
WfWf α=
δθ

 

c
TT β=
θ

 

c
NN =
θ

 

c
QQ =
δ

 

 
where the exponents α and β are derived from 
theoretical and empirical data for each engine type, but 
tend to be about 0.5 and 1.0, respectively (ref. 24). 



NASA/TM—2007-214843 14

References 
1. Desai, M., Smith, B.J., and Storey, W., “Engine 

Test Results for the Next Generation Control 
System for Helicopter Engines,” American 
Helicopter Society 62nd Annual Forum, Phoenix, 
AZ, May 9–11, 2006. 

2. Hattie, R.J., Bird, J.W., and Saravanamuttoo, H.I. 
H., “Component Fault and Power Assurance 
Modeling of the T400-CP-400 Helicopter Engine,” 
Canadian Aeronautics and Space Journal, vol. 44, 
no. 2, June 1998, pp. 82–91. 

3. Lombardo, G., Torella, G., “An Airborne 
Monitoring System for FOD and Erosion Faults,” 
AGARD Conference Proceedings 558, Erosion, 
Corrosion and Foreign Object Damage Effects in 
Gas Turbines, papers presented at the Propulsion 
and Energetics Panel (PEP) Symposium, 
Rotterdam, The Netherlands, April 25–28, 1994. 

4. Scala, S.M., Konrad, M., and Mason, R.B., 
“Predicting the Performance of a Gas Turbine 
Engine Undergoing Compressor Blade Erosion,” 
AIAA 2003-5259, 39th Joint Propulsion 
Conference and Exhibit, Huntsville, AL, July 20–
23, 2003. 

5. Excell, J., “War Machining,” Design Engineering, 
4 December 2003. 

6. Mann, D.L. and Warnes, G.D., “Future Directions 
in Helicopter Engine Protection System 
Configuration,” AGARD Conference Proceedings 
558, Erosion, Corrosion and Foreign Object 
Damage Effects in Gas Turbines, papers presented 
at the Propulsion and Energetics Panel (PEP) 
Symposium, Rotterdam, The Netherlands, April 
25–28, 1994. 

7. Przedpelski, Z.J., “The T700-GE-700 Engine 
Experience in Sand Environment,” RWP-22, 
Rotary Wing Propulsion System Specialist 
Meeting, Williamsburg, VA, November 16–18, 
1982. 

8. Van der Walt, J.P., and Nurick, A., “Life 
Prediction of Helicopter Engines Fitted with Dust 
Filters,” Journal of Propulsion and Power, vol. 32, 
no. 1, January-February 1995, pp. 118–123. 

9. “Technical Manual, Aviation Unit and 
Intermediate Maintenance Manual Engine, Aircraft 
Turboshaft Models T700-GE-700, T700-GE-701, 
T700-GE-701C, T700-GE-701D,” Technical 
Manual No. 1-2840-248-23, 1 June 1999. 

10. Astrom, K.J., Wittenmark, B., Computer-
Controlled Systems: Theory and Design, 3rd Ed., 
Prentice Hall, Upper Saddle River, NJ, 1997, pp. 
429–436. 

11. Luppold, R.H., Gallops, G.W., Kerr, L.J., and 
Roman, J.R., “Estimating In-Flight Engine 
Performance Variations Using Kalman Filter 

Concepts,” AIAA-89-2584, 25th Joint Propulsion 
Conference, Monterey, CA, July 10–13, 1989. 

12. Orme, J.S., and Gilyard, G.B., “Subsonic Flight 
Test Evaluation of a Propulsion System Parameter 
Estimation Process for the F100 Engine,” AIAA 
92-3745, NASA-TM-4426, 28th Joint Propulsion 
Conference, Nashville, TN, July 6–8, 1992. 

13. España, M.D., “Sensor Biases Effect on the 
Estimation Algorithm for Performance-Seeking 
Controllers,” Journal of Propulsion and Power, 
vol. 10, no. 4, July-August 1994, pp. 527–532. 

14. Provost, M.J., “Observability Analysis for 
Successful Diagnosis of Gas Turbine Faults,” in 
Gas Turbine Condition Monitoring & Fault 
Diagnosis, Lecture Series 2003–01, von Karman 
Institute, Belgium. 

15. Prescott, W.E., Morris, H.F., “T700 Training 
Guide,” SEI-418, General Electric Company, 
Aircraft Engine Business Group, Lynn, MA, 1987. 

16. Duyar, A., Gu, Zh., and Litt, J.S., “A Simplified 
Dynamic Model of the T700 Turboshaft Engine,” 
Journal of the American Helicopter Society, vol. 
40, no. 4, October 1995, pp. 62–70. 

17. Volponi, A.J., “Gas Turbine Parameter 
Corrections,” Journal of Engineering for Gas 
Turbines and Power, vol. 121, October 1999, pp. 
613–621. 

18. Saravanamuttoo, H.I.H., “Technical Evaluator’s 
Report,” AGARD Conference Proceedings 558, 
Erosion, Corrosion and Foreign Object Damage 
Effects in Gas Turbines, papers presented at the 
Propulsion and Energetics Panel (PEP) 
Symposium, Rotterdam, The Netherlands, 
April 25–28, 1994. 

19. Edwards, V.R., and Rouse, P.L., “U.S. Army 
Rotorcraft Turboshaft Engines Sand & Dust 
Erosion Considerations,” AGARD Conference 
Proceedings 558, Erosion, Corrosion and Foreign 
Object Damage Effects in Gas Turbines, papers 
presented at the Propulsion and Energetics Panel 
(PEP) Symposium, Rotterdam, The Netherlands, 
April 25–28, 1994. 

20. Desai, Mihir C., Crainic, Christina, “Adaptive 
Thermodynamic Engine Model for the Next 
Generation Control System for Helicopter Engines,” 
American Helicopter Society 58th Annual Forum, 
Montreal, Canada, June 11–13, 2002. 

21. Peluso, J.D., “Turboshaft/Turboprop Cycle 
Sensitivity Analysis,” AIAA 92-3476, 28th Joint 
Propulsion Conference, July 6–8, 1992, Nashville, 
TN. 

22. Romero, R., Summers, H., and Cronkhite, J., 
“Feasibility Study of a Rotorcraft Health and Usage 
Monitoring System (HUMS): Results of Operator’s 
Evaluation,” NASA CR-198446, ARL-CR-289, 
DOT/FAA/AR-95/50, February 1996. 



NASA/TM—2007-214843 15

23. Kamboukos, Ph. and Mathioudakis, K., 
“Multipoint Non-Linear Method for Enhanced 
Component and Sensor Malfunction Diagnosis,” 
GT2006-90451, Proceedings of GT2006 ASME 
Turbo Expo 2006: Power for Land, Sea and Air, 
Barcelona, Spain, May 8–11, 2006. 

24. United Technologies Pratt & Whitney, 
“Aeronautical Vestpocket Handbook,” Part No. 
PWA 795000, Twentieth Edition, August 1986. 

 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
25-06-2007 

2. REPORT TYPE 
Technical Memorandum 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Toward a Real-Time Measurement-Based System for Estimation of Helicopter 
Engine Degradation Due to Compressor Erosion 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Litt, Jonathan, S.; Simon, Donald, L. 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
WBS 561581.02.07.03.05 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
John H. Glenn Research Center at Lewis Field 
Cleveland, Ohio 44135-3191 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
E-16059 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 
and 
U.S. Army Research Laboratory 
Adelphi, Maryland 20783-1145 

10. SPONSORING/MONITORS 
      ACRONYM(S) 
NASA, ARL 

11. SPONSORING/MONITORING 
      REPORT NUMBER 
NASA/TM-2007-214843; ARL-TR-4087 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified-Unlimited 
Subject Categories: 07 and 63 
Available electronically at http://gltrs.grc.nasa.gov 
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
This paper presents a preliminary demonstration of an automated health assessment tool, capable of real-time on-board operation using 
existing engine control hardware. The tool allows operators to discern how rapidly individual turboshaft engines are degrading. As the 
compressor erodes, performance is lost, and with it the ability to generate power. Thus, such a tool would provide an instant assessment of 
the engine’s fitness to perform a mission, and would help to pinpoint any abnormal wear or performance anomalies before they became 
serious, thereby decreasing uncertainty and enabling improved maintenance scheduling. The research described in the paper utilized test 
stand data from a T700-GE-401 turboshaft engine that underwent sand-ingestion testing to scale a model-based compressor efficiency 
degradation estimation algorithm. This algorithm was then applied to real-time Health Usage and Monitoring System (HUMS) data from a 
T700-GE-701C to track compressor efficiency on-line. The approach uses an optimal estimator called a Kalman filter. The filter is designed 
to estimate the compressor efficiency using only data from the engine’s sensors as input.
15. SUBJECT TERMS 
Turboshafts; Maintenance; Degradation; Kalman filters; Ingestion (Engines); Compressor efficiency 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
      ABSTRACT 
 

18. NUMBER 
      OF 
      PAGES 

20 

19a. NAME OF RESPONSIBLE PERSON 
Jonathan S. Litt 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
216-433-3748 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18








