The Need for an Aerospace Pharmacy Residency

T. Bayuse1, C. Schuyler2
1 Wyle Laboratories NASA Johnson Space Center,
Houston TX
2 NATO, Joint Force Command, AF South, Naples, Italy

POSTER SESSION
Introduction:
• Aerospace medicine provides a unique twist on traditional medicine.
• A subspecialty for physicians exists to care for the altered body systems as a result of extreme environments.
• Pharmacy practice has expanded to accommodate specialized medicine through pharmacy residencies.
• No formal training in aerospace medicine currently exists for pharmacists.
POSTER

• Time and resources are committed behind the scenes that require an understanding of pharmaceutical science and an understanding of all the aspects of flight. *(Integration)*

• The range is virtually unlimited:
 – undersea/recompression/HBO to long duration space flight.
 – NOMI, Brooks, NASA, and virtually every country represented in AsMA has some form of a Pharmacy and Therapeutics committee to determine not only safe use of drugs in aerospace for physical ailments, but also performance “management.”
POSTER

• An understanding of the changes to the body and body systems as it relates to pharmacy is necessary by the profession.
 – *(Patient Care, Pharmacovigilance and DI)*

• Providing an Aerospace Pharmacy residency would accomplish this task and allow pharmacists to provide better care for aerospace and space travelers in both government and civilian programs.
Method

• A review of the topics in aerospace medicine that involve pharmacy was conducted.

• Pharmacy practice areas embedded within aerospace medicine are identified.
• Deficits in current pharmacy curriculum identified
 – Physiological changes to body in microgravity
 – Changes to pharmacokinetics and pharmacodynamics
 – Pharmaceutics issues
 • Fluid properties in zero G
 – Drug delivery systems
 – Interpretation of pharmacy law
Aerospace Physiologic Changes Not Addressed in Current Pharmacy School Curriculum

• Pathophysiology of the body *(Patient Care, Pharmacovigilance, DI, Commercial Space Travel)*
 – Understanding of all altered body systems important for pharmacist to understand in order to provide best treatment options
 – Altered blood volume – pharmacokinetics?
 – Altered hepatic/renal fxn – therapeutics?
 • Biodynamics of acceleration
 • Aerospace otolaryngology
 • Aerospace ophthalmology
 • Aerospace cardiology
 • Aerospace neurology
 • Aerospace nephrology

• Radiation biology
 – Effects on body, what about drugs?
Aerospace Physiologic Changes Not Addressed in Current Pharmacy School Curriculum

• Pharmacotherapy of:
 – Hypoxia at Altitude
 – Mountain Sickness
 – Dysbarism
 – Microgravity/Neurovestibular Effects
 – Motion sickness

• Balance between countermeasures and other medications.
Aerospace Medicine Issues Not Addressed in Current Pharmacy School Curriculum

• Pharmaceutics (*Patient Care, Pharmacovigilance, DI, Commercial space travel*)
 – Altered Atmospheres
 • Fluid mechanics of meds?
 • Drug delivery systems?

• Accident Investigation (*Pharmacovigilance*)
 – Toxicology/drug review?

• Mission performance (*Pharmacovigilance*)
 – DNIF or not DNIF

• History of aerospace medicine
 – Medical support for military aerospace medicine
 – Medical Support of Mercury, Gemini, Apollo, Skylab and Mir
 • Historical perspective provides insight into current and future issues

• Current topics
 – ISS Medical Operations
 • Med kit design
 • Treatment options and medications chosen
 – Space Shuttle Operations

• Future topics (*Commercial space travel*)
 – Commercial space flight
 • A changing population of space travelers
POSTER

• Areas for pharmacist involvement
 – Pharmacy and therapeutics committees
 – Counseling for drug delivery systems
 – Consultation for altered PK/PD
 – Research guidance

• Future involvement within the military, government sponsored aerospace programs and commercial space tourism emphasizes the need for an aerospace pharmacy residency.
POSTER

• Challenges
 – Currently, limited pharmacist involvement in field.
 – Lack of information as it pertains to the pharmacokinetics and pharmacodynamic research.
 – Identifying a university partner.
 • Creating a piggyback program to an existing aerospace medicine residency.
 – Navigating through credentialing process