Orbital Debris: A Policy Perspective

Nicholas L. Johnson
Chief Scientist for Orbital Debris
NASA Johnson Space Center

12 October 2007

The Jefferson Society
University of Virginia
Voyage through near-Earth Space

(Animation)
What is Orbital Debris?

- Space debris encompasses both natural (meteoroid) and artificial (man-made) particles.
 - Meteoroids are in orbit about the Sun
 - Orbital debris are man-made and in orbit about the Earth

Non-operational Spacecraft

Fragmentation and Mission-related Debris

Derelict Launch Vehicle Stages
Orbital Debris Detectors and Damage Potential

Potential Shuttle Damage

- Window Replacement
- EVA Suit Penetration
- Radiator Penetration
- RCC Penetration
- TPS Tile Penetration
- Cabin Penetration
- Cargo Bay Damage

Debris Diameter in Centimeters

Space Surveillance Network

- Goldstone Radars
- Haystack Auxiliary Radar
- Haystack Radar

Spacecraft Surface Inspections
The Hubble Space Telescope suffered a significant impact in one high gain antenna during its first four years in space.
After 7 years in space the Hubble Space Telescope had been peppered with more than 500 craters on its aft shroud.
Mir Space Station Solar Array

- Sample impact from Mir solar array returned in 1998 by Space Shuttle.
Satellite Explosions

- Nearly 200 satellite breakups identified since 1961
 - Primary source of orbital debris larger than 1 cm

Explosion of Russian Launch Vehicle Stage in February 2007
Satellite Collisions

• Three accidental satellite collisions from different missions have already been identified.

• In the future, accidental collisions among derelict objects will be the greatest source of new debris.
• Avoid the unnecessary release of orbital debris
• Avoid accidental and deliberate satellite fragmentations
• Properly dispose of spacecraft and launch vehicle orbital stages
• Protect people and property on Earth from reentering debris
International Space Station Jettison Policy

SUITSAT
International Space Station Jettison Policy

(Video)
Controlled Satellite Reentries

Compton Gamma Ray Observatory

Reentry 2000

6:12:26 AM

6:13:04 AM

6:13:27 AM
Controlled Satellite Reentries

Mir Space Station

Reentry 2001
Uncontrolled Satellite Reentries

- Georgetown, Texas, 1997
Return of Space Objects

- Nose cone launched in October 1998
- Washed ashore in Texas in Feb 2000
- Returned to France in 2004
Orbital Debris and U.S. National Space Policy

- Orbital debris has been addressed in all U.S. national space policies since 1988.

- New National Space Policy (signed 31 August 2006 by President Bush) states:

 “Orbital debris poses a risk to continued reliable use of space-based services and operations and to the safety of persons and property in space and on Earth. The United States shall seek to minimize the creation of orbital debris by government and non-government operations in space in order to preserve the space environment for future generations.”
U.S. Government Policy Strategy

REPORT ON ORBITAL DEBRIS
By INTERAGENCY GROUP(SPACE)

For National Security Council, Washington, D.C.
February 1989

The National Science and Technology Council
Committee on Transportation Research and Development

Interagency Report on Orbital Debris 1995

November 1995
Bankruptcy of the Iridium Satellite System

- We'll be shutting down our global communications business and de-orbiting our satellites.
- Question: Wouldn't that create dozens of deadly flame balls speeding toward earth?
- That's why we're aiming for cities that have lots of swimming pools.
Orbital Debris at the United Nations
Chinese Anti-satellite System

• Test conducted 11 Jan 2007

• ~2500 large orbital debris

• Some debris will remain in orbit for > 100 years
In the future accidental collisions will dominate the growth of debris population.
Challenge of Orbital Debris

• Failure to curtail the growth of orbital debris will eventually lead to potential loss or limitation of the practical use of portions of near-Earth space for economic, scientific, and national security purposes.

• The challenge of orbital debris is to identify economically acceptable, but effective, mitigation practices which will be implemented by the majority of international space-faring community.

 – The alternative is to bequeath a degraded space environment to future generations