

IAC-07-D1.3.08

System Engineering Strategy for Distributed Multi-Purpose
Simulation Architectures

Dilipkumar Bhula

United Space Alliance, LLC, USA
Dilip.Bhula@usa-spaceops.com

Cindy Marie Kurt

United Space Alliance, LLC, USA
Cindy.M.Kurt@usa-spaceops.com

Roger Luty

United Space Alliance, LLC, USA
Roger.A.Luty@usa-spaceops.com

ABSTRACT

This paper describes the system engineering approach used to develop distributed
multi-purpose simulations. The multi-purpose simulation architecture focuses on user
needs, operations, flexibility, cost and maintenance. This approach was used to develop
an International Space Station (ISS) simulator, which is called the International Space
Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software,
system models, and the astronaut command and control interface in an open system
design that allows for rapid integration of multiple ISS models.

The initial intent of ISIS was to provide a distributed system that allows access to ISS
flight software and models for the creation, test, and validation of crew and ground
controller procedures. This capability reduces the cost and scheduling issues associated
with utilizing standalone simulators in fixed locations, and facilitates discovering
unknowns and errors earlier in the development lifecycle. Since its inception, the
flexible architecture of the ISIS has allowed its purpose to evolve to include ground
operator system and display training, flight software modification testing, and as a
realistic test bed for Exploration automation technology research and development.

1 The International Space Station Integrated Simulation (ISIS) is patent pending technology.

Disclosure Information. Disclosure Information. Disclosure Information. Disclosure Information.

1

OBJECTIVE

This paper describes the system
engineering approach used to develop a
distributed multi-purpose simulation.
Multiple instances of high fidelity
simulations using real flight software and
hardware to a distributed workforce are
ideal. However, such simulations can be
costly to duplicate or develop. Emulation
of some system components to provide an
acceptable distributed simulation can
significantly reduce the resources
required. Trade-off assessments are
required to determine emulated versus
unmodified components.

Our system engineering approach for ISIS
focused on user needs and requirements,
cost, operations, verification and
flexibility to balance these trades. The
primary goals were to develop a
distributed multi-purpose simulator to
extend the user community and to reduce
scheduling issues associated with
utilizing the Space Station Training
Facility (SSTF). The International Space
Station Integrated Simulation (ISIS) was
originally developed to create, test, and
validate crew and ground controller
procedures. As a distributed simulator,
ISIS facilitates discovering unknowns and
errors earlier in the procedure
development lifecycle.

BACKGROUND

International Space Station (ISS) Flight
Controllers and Crew are responsible for
operating and maintaining spacecraft

systems. Understanding the interactions
and complexities between systems, and
the underlying flight software, is a core
part of daily operations and training.
Flight procedures are used to document
commands and command sequences that
must be executed in response to specific
emergencies, as well as general
maintenance and operations activities.
The procedures contain commands and
responses from the onboard flight
software.

Flight controllers and mission planners
develop, test and verify all procedures.
The flight controllers and crew train
extensively using these procedures.
Training sessions are used to validate the
procedures and any special conditions
noted. After this validation, procedures
are released for operations use. Access to
the flight software is generally limited to a
small number of facilities that are heavily
used for integrated training and flight
software verification.

GOALS

A need was identified for access to ISS
system models and simulation in a
distributed environment. Such a
capability would reduce the cost and
scheduling pressures associated with
utilizing the primary ISS simulators in
fixed and physically restricted locations.

Based on our discussions with users of the
fixed base ISS simulator, we identified
needs and requirements for ISIS. These

Disclosure Information. Disclosure Information. Disclosure Information. Disclosure Information.

2

were used in developing the goals for the
project. The system had to be economical
to implement and maintain, and provide
access to multiple users at multiple sites.
The system had to allow anytime
anywhere use of real ISS flight software
and SSTF models and be expandable to
accommodate additional models as ISS
capability increases. The system had to be
capable of running unmodified ISS flight
software and integrating with existing ISS
simulation models. The selected
approach had to be easily adaptable to
new or future spacecraft designs.

DEVELOPMENT APPROACH

After generating an overall concept, ISIS
development was completed using the
steps shown in Figure 1. This is an
iterative approach to meet user needs and
allow for growth. The steps can be

categorized as: (1) develop project goals,
identify capability of existing system,
identify user needs, priorities and risks;
(2) develop requirements; (3) Develop
core architecture, design prototype and
test with users, modify system if required;
(4) Verify and implement system.
Through understanding the capabilities of
the existing system, user needs, priorities
and inherent risks, the project goals were
established.

Requirements were categorized by risk
and priority, and selected subsets of the
requirements were implemented. The
highest project risks and the most critical
system functionality and performance
requirements were met first, before
committing to development of the entire
system. This approach allowed us to use a
philosophy of “minimum commitment”
in the initial development phases and

Develop requirements for system
to meet user needs and goals
Requirements must be achievable
and verifiable

Design prototype and test with
users

Does
system satisfy

goals and
other needs?

Proceed to detailed
verification and implementation

Yes

No

Planned
growth

requirements?

Yes

No

Identify program and user needs
Develop goals
Capture key requirements and
capability of existing fixed base
system

1

2

3

4

Develop requirements for system
to meet user needs and goals
Requirements must be achievable
and verifiable

Design prototype and test with
users

Does
system satisfy

goals and
other needs?

Proceed to detailed
verification and implementation

Yes

No

Planned
growth

requirements?

Yes

No

Identify program and user needs
Develop goals
Capture key requirements and
capability of existing fixed base
system

1

2

3

4

Figure 1. ISIS Development Approach. The project used a systematic, iterative and
incremental approach to minimize resources required

Disclosure Information. Disclosure Information. Disclosure Information. Disclosure Information.

3

allowed the project to analyze and build a
robust and sustainable core architecture
from several candidates, while managing
cost.

We kept an architecture-centric focus and
designed the initial system with modular
components. The intent was to leave
design options open as long as possible
while technical risks were retired. As
clear architectural choices emerged, the
components were standardized.

A key focus in the system design was
basing implementation design decisions
on operational need. Emulation of the
entire existing simulation environment
was cost-prohibitive and beyond the
requirements for our system. Complete
emulation also introduced additional risk
to the project, as our system would have
lower fidelity in key areas.

Upon selection of the architecture, a
prototype was designed and
demonstrated to users to ensure goals
were satisfied. An iterative process was
used to mature the system and user
feedback was continually received.
Subsequently, the system was verified for
implementation. Areas of planned growth
were incorporated in a similar manner.

DESIGN DEVELOPMENT

Flight controllers maintain an extensive
inventory of procedures necessary to
safely operate the ISS. Knowledge of how
the onboard Multiplexer/Demultiplexer
(MDM) computers respond to each
procedure pathway is required. The

procedures are developed using existing
ISS MDM flight software and component
documentation, operational experience,
peer reviews, and limited verification in
training facilities prior to certification.
The flight controllers identified the need
for an ISS simulator to verify new and
updated procedures using actual MDM
flight software and high fidelity
simulations of other components. This
simulator would eliminate the need to
utilize valuable training facility time to
debug procedures. ISIS provides this
capability.

We chose to implement the ISIS solution
maximizing the use of available
technology. Several products existed to
carry out continuing development of the
ISS, flight controller training and crew
training. Evaluation of these products was
limited to those using real MDM FSW. The
users wanted to use the simulations
developed for the Space Station Training
Facility (SSTF) since these simulations are
used for primary training and differences
in fidelity between the actual ISS are well
known. These simulations also come with
an extensive set of malfunctions and an
Instructor Operator Station (IOS) for their
control.

The choices of available technology were
narrowed down to two. These were the SSTF
and an MDM Application Development
Environment (MADE) developed to carry
out Formal Qualification Tests (FQT) on
MDM FSW. The key drivers influencing
the selection were:

Disclosure Information. Disclosure Information. Disclosure Information. Disclosure Information.

4

Control
data

Instructor
Operator
Station
(IOS)

Control
Center

Applications
MDM Flight

Software

Generic
1553

Application

1553 1553 data

Telemetry
(ISP)

Server

Telemetry

Telemetry

SCSI data

1553/SCSI data

PCS

SSTF Host Code
Partitions

Portal Applications

Control
data

Instructor
Operator
Station
(IOS)

Control
Center

Applications
MDM Flight

Software

Generic
1553

Application

1553 1553 data

Telemetry
(ISP)

Server

Telemetry

Telemetry

SCSI data

1553/SCSI data

PCS

SSTF Host Code
Partitions

Portal Applications

1. ISIS must run real unmodified MDM
FSW to ensure high fidelity when
compared to actual ISS operations.

2. ISIS should be controlled using an
IOS-like application so users will not
need extensive training on its use.

3. ISIS should utilize the SSTF simulation
models to maintain the same level of
fidelity and functionality the user
community is used to.

Figure 2. The open architecture of ISIS allows for rapid integration of multiple models
throughout the life of the ISS

The solution that satisfied all of the key
drivers was a hybrid SSTF-MADE system.
The basic layout and dataflow of the ISIS
is shown in Figure 2. The four key
features shown are: the SSTF host code
which runs the ISS software models, the
MDM Application Development
Environment (MADE) which runs the ISS
MDM FSW, the telemetry server which
drives the external applications
(Information Sharing Protocol Server –
ISP), and supporting applications that tie
the system together. The external
interfaces include the IOS, Portable
Computer System (PCS), and Control
Center applications. We gained an
additional benefit from this configuration.
Reusing existing components such as the
IOS and Control Center applications in
ISIS reduced or eliminated training time
requirements for this “new” simulator.

4. ISIS must be able to drive existing MCC
applications to provide users with
familiar displays for ISS telemetry.
These applications require their data be
delivered to them via an ISP server and
the data must be passed through front
end processing to translate the raw
telemetry into usable values.

5. ISIS must be able to support real PCS
FSW to provide users with additional
displays for ISS telemetry and a
commanding pathway.

Disclosure Information. Disclosure Information. Disclosure Information. Disclosure Information.

5

CURRENT CAPABILITIES

The system is currently being used in a
variety of ISS applications. They include
flight controller procedure verification,
flight software familiarization, and ESTL
pre-test. The simulator is also being
applied as a realistic test bed for NASA
Exploration automation technology
research and development including
autonomous command string creation,
verification and execution, and the
integration of intelligent algorithms and
tools for ground-based decision support
for the Crew Exploration Vehicle.

operations goals ensured ISIS could
coexist with current operations concepts.
Using the highest priority requirements
and risks to drive the design enabled the
simulator to evolve without over
designing the system or over committing
resources.

The iterative, incremental development
process allowed continuous interaction
with the user community and quick
turnaround on user feedback. Careful
reuse of existing components helped to
lower lifecycle costs, maintenance and
training requirements for the new system.
Finally, re-using communication
standards and protocols that are common
in the ISS environment instead of a
custom solution allows ISIS to be
extended to multiple ISS applications and
domains.

Currently we are focused on using the
simulator for part-task training of the
crew and of the flight control team. New
requirements are being analyzed to
provide training-specific functionality.

SUMMARY
ACKNOWLEDGEMENTS

 The systems engineering approach
described here enabled the development
of a new, multipurpose simulator, ISIS,
that met user needs for a distributed and
open design. Focusing on the overall

The work reported herein was performed
under NASA contracts NAS9-20000 and
NNJ06VA01C.

Disclosure Information. Disclosure Information. Disclosure Information. Disclosure Information.

6

	OBJECTIVE
	BACKGROUND
	GOALS
	DEVELOPMENT APPROACH
	DESIGN DEVELOPMENT
	CURRENT CAPABILITIES
	SUMMARY
	ACKNOWLEDGEMENTS

