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1 INTRODUCTION 
Reduced order nonlinear simulation is often times the only computationally efficient means of 
calculating the extended time response of large and complex structures under severe dynamic loading.  
This is because the structure may respond in a geometrically nonlinear manner, making direct 
numerical integration in physical degrees of freedom (DoF) prohibitive.  As for any type of modal 
reduction scheme, the quality of the reduced order solution is dictated by the modal basis selection.  
The techniques for modal basis selection currently employed for nonlinear simulation are ad hoc and 
are strongly influenced by the analyst’s subjective judgment.   The authors have shown that the 
common approach for basis selection, consisting of only modes in the excitation bandwidth, is 
insufficient because it does not capture the nonlinear coupling between low and high frequency 
modes [1-3].  For all but the simplest structures, the choice of which high frequency modes to include 
is itself problematic, as was recently demonstrated for a large aircraft fuselage sidewall structure [4].  
This work is aimed at developing a reliable and rigorous procedure through which an efficient modal 
basis can be chosen. 

2 FORMULATION 
The proposed procedure requires a short, but representative time history of the full-field nonlinear 
displacement response.  This may be obtained by a finite element (FE) method simulation in physical 
DoF or from an experiment.  A Proper Orthogonal Decomposition (POD) [5, 6] analysis is first 
employed to determine the Proper Orthogonal Values (POVs) and Proper Orthogonal Modes (POMs).  
The POVs are then used to determine the most contributing POMs.  Since POMs change as the 
loading condition changes, they do not themselves form the preferred basis as the nonlinear modal 
transformation would need to be repeated for each loading condition.  Instead, a set of normal modes 
(NMs) which resembles a desired set of POMs is identified by employing the Modal Assurance 
Criterion (MAC) [7].  Such an approach permits determination of a reduced order system that remains 
applicable over a relatively large nonlinear response regime. 

2.1 Finite Element Model and Physical DoF Analysis  
An aluminum beam structure previously considered [1-3] served as the basis for the current 
investigation.  The beam measured 0.4572 m x 25.4 mm x 2.286 mm (l x w x h), and had clamped 
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boundary conditions at both ends.  Material properties used were: Young’s modulus (73.11 GPa), 
shear modulus (27.59 GPa), mass density (2763 kg/m3), and mass proportional damping (14.52 1/s). 

The beam response was analyzed with the FE code ABAQUS [8].  The FE model consisted of 144 
B21 beam elements (145 nodes), each 3.175 mm in length.  The B21 element allows single-plane 
bending and has two translational and one rotational DoFs at each node.  Therefore, the total number 
of DoFs (3M) in the model was 435.  The clamped boundary conditions were modeled by constraining 
both translational (transverse and in-plane) and the rotational DOFs at both ends of the beam, reducing 
the active number of DoFs (3m) to 429.  The ABAQUS/Explicit solution was used with an automatic 
time step adjustment, referred in ABAQUS as ‘element-by-element’.  This approach is known to yield 
a conservative time step increment. 

The beam was subjected to a uniformly distributed random pressure loading.  A flat, band-limited 
random pressure time history was generated by summing equal amplitude sine waves having random 
phase in the frequency range 0 – 1500 Hz [9].  An overall sound pressure level of 170 dB was used, 
resulting in a strongly nonlinear response regime.  The simulation time was 2.1384 s.  The initial 
transient of 0.5 s was removed to provide 1.6384 s of developed response for the subsequent analysis.  
A total of 32,768 data points (n) at an output sampling of 50 sμ  were utilized in the analysis. 

2.2 Proper Orthogonal Decomposition 
For the planar structures considered in this paper, the NMs are uncoupled between the transverse and 
in-plane DoFs.  Since the POMs most closely matching the NMs are sought, the POD analysis was 
conducted separately for the transverse and in-plane displacement DOFs.  Furthermore, since NM 
rotational DoFs are not independent from transverse displacement DoFs, no attempt was made to 
conduct a third POD analysis for the rotational DoFs. 

Nonlinear displacement time histories are stored in two matrices [Xi], where i = t (transverse) or m 
(in-plane membrane).  Both matrices are of size n x M, where n is the number of data points in a 
numerical simulation (or experimental acquisition), and M is the number of active and constrained 
DoFs for the selected component (or the number experimentally captured response DoFs).  The 
correlation matrix of size M x M can be formed 
 [ ] [ ] [ ]1 T

i iR X X
n
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Eigenanalyses are next performed on the correlation matrices [Ri] to yield vectors of M POVs and the 
corresponding POMs in a form of M x M matrices [Vi]. 

2.3 Linear Eigenanalysis 
The NMs of the system under investigation, [E], are obtained as part of either a normal modes analysis 
of the numerical model, or via an experimental modal analysis.  For the clamped beam, there are 3m 
NMs of size 3M each, therefore the matrix [E] is of size 3M x 3m.  Two new matrices, [Et] and [Em], 
can now be formed through partitioning of [E].  The matrix [Et] has rows corresponding only to the 
transverse displacements, and [Em] has rows corresponding to the in-plane displacements.  
Consequently their dimensions are M x 3m. 

2.4 Modal Assurance Criterion 
The MAC value sought is a measure of similarity between the k-th column of POM matrix [Vi] and the 
l-th column of NM [Ei] matrix, and is computed as 
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Two MAC matrices of size M x 3m can be formed containing the MAC values for the transverse and 
in-plane pairs of [Vi] and [Ei].  In practice, the process of computing MAC values can be accelerated 
by computing only the values corresponding to the most contributing POMs of interest.  This can be 
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achieved by ranking the POMs by their corresponding POVs, which are known to be indicative of the 
signal power associated with a certain POM [5, 6]. 

3 RESULTS 
A MSC.NASTRAN implementation of a computer code RANSTEP [2, 4] was used to perform the 
nonlinear reduced order analysis.  The formulation is omitted here for the sake of brevity.  Two sets of 
modal basis were considered.  The first basis, referred to as the Low Frequency Basis, was chosen on 
the assumption that inclusion of all of the symmetric modes present in the excitation bandwidth is 
sufficient.  The second set of basis functions was guided by the POD/MAC-based technique, and is 
subsequently referred to by that name.  The Low Frequency Basis approach resulted in a selection of 
six eigenvectors.  For consistency, the six most contributing transverse modes, in terms of their POVs, 
were selected for the POD/MAC basis.  Not surprisingly, the POD/MAC-based technique identified 
the same transverse modes as the Low Frequency Basis. Their ordering numbers and the 
corresponding frequencies and MAC values are indicated in Figure 1a and 1c.  For the POD/MAC 
basis, the six most contributing in-plane modes were also selected giving a basis consisting of twelve 
modes.  The in-plane modes ordering numbers and their corresponding frequencies and MAC values 
are provided in Figure 1b and 1c.  Figure 1b confirms earlier results which indicated the need for both 
low and high frequency modes in the basis [1-3].  The transverse modes selected all had MAC values 
exceeding 0.9.  The correlation between the in-plane NMs and the in-plane POMs however is 
generally weaker than for the transverse modes.  Four in-plane modes (42, 51, 58 and 65) are 
correlated with more than one POM each, and with generally smaller MAC values relative to the 
transverse modes.  Note that the approach used for POD/MAC basis selection is one of a few 
alternatives, and is based on fixing the number of included basis functions, since the computational 
benefit of the reduced order analysis is strongly influenced by this.  An alternative approach could be 
for selection of POMs corresponding to all POVs above some threshold, and then inclusion of all NMs 
that correlate with those selected POMs by a certain minimum value of MAC. 
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Mode # 
 

Transverse 
Frequency 

 

(Hz) 
1 57.78 
3 312.1 
5 770.1 
7 1431 
9 2293 

11 3354 
  

In-plane (Hz) 
22 11,240 
33 22,480 
42 33,710 
51 44,920 
58 56,110 
65 67,270 

 

 

(c) 
Figure 1.  Correlation matrix between (a) transverse and (b) in-plane NMs and POMs, and (c) NM 

frequencies.  Note the correlation of high frequency modes with in-plane POMs in Figure 1(b). 
 

Figure 2 shows the improvement of reduced order simulation results obtained with the POD/MAC-
based modal basis selection over those obtained using the Low Frequency Basis.  It is seen that even 
though the in-plane modes do not contribute directly to the transverse response, their presence is 
important for accurate modeling of the overall system dynamics. 
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Figure 2.  Comparison of reduced order simulations using POD/MAC basis and a Low Frequency 

Basis with a physical DoF solution. 

4 CONCLUSIONS 
A feasibility study was conducted to explore the applicability of a POD/MAC basis selection 
technique to a nonlinear structural response analysis.  For the case studied the application of the 
POD/MAC technique resulted in a substantial improvement of the reduced order simulation when 
compared to a classic approach utilizing only low frequency modes present in the excitation 
bandwidth.  Further studies are aimed to expand application of the presented technique to more 
complex structures including non-planar and two-dimensional configurations.  For non-planar 
structures the separation of different displacement components may not be necessary or desirable. 
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